© Raffles Institution 2022 9729/01/S/22	Hence, in the sample of bronze, $\frac{\%}{2}$ composition of $\frac{68}{6}$ Cu = $\frac{d}{88-d} = \frac{0.75}{0.25}$ $d = \underline{66}$		number of atoms in 10 dm ³ of Ar = $\frac{10}{V_m} \times 6.02 \times 10^{23}$ Q2 (Ans: C)	Option D is incorrect. Let V _m be the molar volume of gas. At the same temperature and pressure, number of atoms in 5 dm ³ of O ₂ = $\frac{5}{V_m} \times 2 \times 6.02 \times 10^{23}$	Option C is correct. Number of electrons in 1 mol of N ₂ = $(7 + 7) \times 6.02 \times 10^{23}$ Number of electrons in 1 mol of CO = $(6 + 8) \times 6.02 \times 10^{23}$	Option B is incorrect. Number of NO ₂ molecules = $\frac{46}{14 \times 2} \times 6.02 \times 10^{23}$ Number of N ₂ molecules = $\frac{14}{14 \times 2} \times 6.02 \times 10^{23}$		MCQ worked solutions	Question 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Answer C D B A B D C C D B A D	Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Answer C C A A B B D B A D D C	2022 RI H
© Raffles Inst		Q5			Q						ຄູ
Raffles Institution 2022		(Ans: A) Indium is a Group 13 element with 3 valence electrons. Hence, there should be a <u>large jump between</u> <u>the third and fourth IE</u> as the fourth electron is removed from an inner electronic shell. Hence, option A is correct.	Q (¹¹ C ³⁺) should be a cation as it is attracted to the negatively charged plate, and its charge/mass ratio should be between that of the two anions P (¹ Li ²⁻) and R (¹⁵ N ⁴⁺).	ions charge mass	(Ans: A) Angle of deflection $\alpha \frac{charge}{mass}$	The valence electrons of ³⁰ Si ⁺⁺ are found in the n=2 shell while the valence electrons of ³¹ P3 ⁻ and ³² S2 ⁻ are found in the n=3 shell. Hence the ionic radius of ³⁰ Si ⁺⁺ is smaller than that of ³¹ P3 ⁻ and ³² S2 ⁻ . Since ³¹ P3 ⁻ and ³² S2 ⁻ are isoelectronic with the same electronic configuration, their valence electrons experience the same shielding effect. However, nuclear charge of ³¹ P3 ⁻ is smaller than that of ³² S2 ⁻ . Hence, the effective nuclear charge of ³¹ P3 ⁻ is smaller than that of ³² S2 ⁻ , and therefore ³¹ P3 ⁻ has a larger ionic radius than ³² S2 ⁻ .	Statement 2 is incorrect. As the ions have different number of electrons, their electronic configurations are different. Statement 3 is incorrect. The ionic radii increase in the order ³⁰ Si ⁴⁺ < ³² S ²⁻ < ³¹ P ³⁻	Statement 1 is correct. The ions have the same number of neutrons	Number of neutrons Number of protons	Number of electrons	(Ans: A)
		element with 3 va as the fourth ele	cation as it is attr at of the two anic	7Ll2- 0.286	charge	ts of ³⁰ Si ⁴⁺ are fou shell. Hence the [−] are isoelectroni ³ shielding effect ³ shielding effect ³ nuclear charge an ³² S ^{2−} .	rect. As the ions h rect. The ionic rat	ct. The ions have	s 16	³⁰ Si ⁴⁺	
9729/01/S/22		alence electrons actron is remove	acted to the neg ons P (⁷ Li ^{2–}) and	¹⁵ O ²⁺		Ind in the n=2 s ionic radius of ^a د with the same . However, nucl of ^a اP ^{3−} is smal	have different nu dii increase in th	the same num	15 15	³¹ p3-	2
		s. Hence, there ed from an inn	gatively charge ł R (¹⁵N⁴⁻).			³⁰ Si ⁴⁺ is smalle electronic cou lear charge of ller than that c	umber of electi ne order ³⁰ Si⁴⁺	ber of neutron	16 16	³² S ²⁻	
		should be a <u>la</u> er electronic sł	d plate, and its	¹⁵ N ⁴⁻ 0.267		valence electro ir than that of ³¹ nfiguration, the ³¹ P ³⁻ is smalle yf ³² S ²⁻ , and th	rons, their elec. < 32S2- < 31p3-	ŝ			
-		<u>arge lump between</u> nell. Hence, option	; charge/mass ratio	¹¹ C³⁺ 0.273		ns of ³¹ P ³⁻ and ³² S ²⁻ ¹ P ³⁻ and ³² S ²⁻ ¹ r rulence electrons r than that of ³² S ²⁻ erefore ³¹ P ³⁻ has a	tronic configurations				

e

	S	dipole than H.	r than P-C/ bond. t dipole than H.	r than Br-C/ bond. t dipole than H.	have a net dipole.
	Remarks	G has a greater net dipole than H.	P-F bond is more polar than P-C/ bond. G has a <u>smaller</u> net dipole than H.	I-F bond is more polar than Br-C/ bond. G has a greater net dipole than H.	Both G and H do not have a net dipole.
	H	Structure Structure no net dipole	F F F	Br CC	
B)	σ	0==++ 0==== net dipole:	Cl X Cl	A L + <u> </u>	F
(Ans: B)	$\left \right $	4	<u>0</u>	U	٩
06 C	ι	1			More papers at v

(Ans: B)

6

More papers at www.testpapersfree.com

no net dipole

their intermolecular instantaneous dipole-induced dipole interactions is similar. However, the hydrogen bonds present between molecules of M are stronger than the permanent dipole-permanent dipole interactions between molecules of N. Hence, M would have a higher boiling point and lower volatility Statement 1 is correct. Since compounds M and N have the same electron cloud size, the strength of than N.

Statement 2 is correct. Compounds M and N are constitutional isomers as both have the same molecular formula $C_5H_{10}O$ but different structural formula.

Statement 3 is incorrect. M has 16 σ bonds whereas N has 15 σ bonds. (Note: Remember to include the C-H and O-H σ bonds.)

(Ans: B) 80

For ionic compounds, the extent of polarisation/distortion of the electron cloud of the anion and hence the degree of covalent character increases with:

- higher polarising power of the cation .
 - higher polarisability of the anion

Compared to Ca^{2*} , Mg^{2*} has a smaller ionic radius and hence a higher charge density and polarising power. Mg^{2*} is able to distort the electron cloud of the anion to a greater extent.

Compared to O^{2-} , S^{2-} has a larger and more polarisable electron cloud.

Hence, MgS has the greatest covalent character.

(Ans: D) ອ

4

Applying $p_1V_1 = p_2V_2$ (since n and T are constant), After mixing at constant temperature

p_{He} upon mixing = 6.67 kPa $(10 \text{ kPa})(2 \text{ m}^3) = (p_{Ne})(3 \text{ m}^3)$ $(20 \text{ kPa})(1 \text{ m}^3) = (p_{He})(3 \text{ m}^3)$

P_{He} ⁼⁼ P_{Ne} upon mixing From the calculations, p_{Ne} upon mixing = 6.67 kPa

Total pressure upon mixing = 6.67 + 6.67 = 13.3 kPa

After decreasing temperature

- Total pressure will decrease below 13.3 kPa since p α T (at constant V and n)
- p_{He} will still be equal to p_{Ne} as the number of moles of each gas remains the same ⇒ options A and B are incorrect.
 - ⇒ option C is incorrect.
- (Ans: B) **010**

Element D is silicon as it has the highest metting point. Since the elements are consecutively arranged, B is sodium.

(Ans: A) <u>9</u>

Option A is correct. The solubility of silver halides in aqueous ammonia decreases down the group (due to decreasing \mathcal{K}_{p} values). Since silver iodide is insoluble in aqueous ammonia, silver astatide is expected to be also insoluble in aqueous ammonia. Option **B** is incorrect. The melting and boiling points of halogens increase down the group. Since lodine is a solid, astatine is expected to be also a solid at room temperature and pressure.

Option C is incorrect. H-X bond energy decreases down the group due to decreasing effectiveness of the valence orbital overlap. Hence the bond energy of HAt is expected to be smaller than that of HI. Option D is incorrect. Oxidising power of halogens decreases down the group. Hence, a halogen can oxidise a halide below (but not above) it. Bromine is expected to be able to oxidise sodium astatide to give astatine.

(Ans: A) 012 012

= -3268 + 3(-286) - (-3754) = <u>-372 kJ mol⁻¹</u> $\Delta H_{r}^{eb} = \Sigma n \Delta H_{c}^{eb}$ (reactants) – $\Sigma m \Delta H_{c}^{eb}$ (products)

© Raffles Institution 2022

9729/01/S/22

9729/01/S/22

									Q14										Q13	
9729001/S/22					Using data from the first experiment, k = 5.10 × 10 ⁻⁴ + (0.015 × 0.010 ²) = 340 mol ⁻² dm ⁶ s ⁻¹	The rate equation is: rate = k[R][S] ²	Comparing the first and second experiments, When [R] \times 2 and [S] \times 2, initial rate \times 8. Since the order of reaction with respect to R is 1, rate α [S] ² . Hence, order of reaction with respect to S is 2.	Comparing the first and third experiments, When [R] × 3 while keeping [S] constant, initial rate × 3 \Rightarrow rate α [R]. Hence, order of reaction with respect to R is 1.	(Ans: D)	Option D is correct. The standard enthalpy change of solution of a substance is the energy change when 1 mole of the substance (lonic compound) is completely dissolved in a solvent to form an infinitely dilute solution (containing aqueous ions) under standard conditions.	Note: The elements, hydrogen and oxygen, do not exist in the monoatomic form under standard conditions (i.e. 1 bar and 298 K).	$H_2(g) + 2O_2(g) + S(s) \longrightarrow H_2SO_4(l)$	Option C is incorrect. The standard enthalpy change of formation of a substance is the energy change when 1 mole of the pure substance in a specified state is formed from its <u>constituent elements in their standard states</u> under standard conditions. The correct equation should be	Note: H_2 cannot be the end product of a combustion reaction as it can be combusted to give H_2O .	$H_2S(g) + \frac{3}{2}O_2(g) \longrightarrow H_2O(g) + SO_2(g)$	Option B is incorrect. The standard enthalpy change of combustion of a substance is the energy released when 1 mole of the substance is <u>completely burnt in excess oxygen</u> under standard conditions. The correct equation should be	$\frac{1}{2}Cl_2(g) \longrightarrow Cl(g)$	Option A is incorrect. The standard enthalpy change of atomisation of chlorine is the energy absorbed when <u>1 mole of gaseous <i>Cl</i> atoms</u> is formed from <i>Cl</i> ₂ (g) under standard conditions. The correct equation should be	(Ans: D)	G
	© Raffles Institution 2022	$K_2 = \frac{(P_{so_2})^2(P_{o_2})}{(P_{so_3})^2} =$	P ₈₀₃ = 0.40425 P ₈₀₂ = 0.40425	x – 2(0.0275) + x = 0.40425	P _{\$03} + P _{\$02} + F	Since total pre	initial pressure / atm change in pressure / atm eqm pressure / atm	Since the mole SO ₃ and SO ₂ t	SO ₃ must first	Q16 (Ans: C) SO ₃ and SO ₂		Statement 4			Statement 3	Statement 2		Statement 1	Q15 (Ans: C)	
D. ZZSHDREZIG		$\frac{1}{2} = \frac{(0.45925)^2(0.0275)}{(0.34925)^2} = \frac{0.0476 \text{ atm}}{0.0476 \text{ atm}}$	P _{\$03} = 0.40425 - 2(0.0275) = 0.34925 atm P _{\$02} = 0.40425 + 2(0.0275) = 0.45925 atm	x - 2(0.0275) + x + 2(0.0275) + 0.0275 = 0.836 x = 0.40425	$P_{so_3} + P_{so_2} + P_{o_2} = 0.836$ atm	Since total pressure at equilibrium is 0.836 atm,	2SO ₃ (g) ≓ 2SO ₂ (g) + O ₂ (g) ure / atm x × 0 ressure / atm -2(0.0275) +2(0.0275) +0.0275 re / atm x - 2(0.0275) x + 2(0,0275) 0.0275	Since the mole ratio of SO ₃ and SO ₂ is $1:1$ in reaction 1, let x atm be the initial partial pressures of SO ₃ and SO ₂ for reaction 2.	SO ₃ must first be formed from reaction 1.	(Ans: C) SO3 and SO2 are found in both reactions 1 and 2 For the forward months of the forward	Since the equilibrium constant ($K_p = (P_{NH_2})^2(P_{CO_2})$) remains unchanged (as temperature is constant) and the P_{NH_3} : P_{CO_2} stays the same at 2 : 1, the equilibrium partial pressures of NH ₃ and CO ₂ at t_2 will be the same as that at t_1 .		Correct. Decreasing the volume of the vessel will cause the total pressure (and partial pressures of NH ₃ and CO ₂) to increase. By Le Chatelier's Principle, the equilibrium position will shift left to reduce the number of gas particles and the narrial				Incorrect. Since the temperature at t_i is higher than that at t_c , the rate of the forward (and backward) reaction at t_i is creater than that a_i to be the forward	Correct. As there are no addition of any reactant or product to the system, the mole nt 1 ratio of $NH_3 : CO_2$ should always stay the same at 2 : 1 (following the stoichiometric ratio of the balanced equation). Since p α n, P _{NH3} : P _{CO2} is also 2 : 1 at <i>t</i> .		б

~

Incorrect. For a given volume, a more dituted buffer solution will have a lower buffering capacity due to smaller amount of the lactic acid and lactate ions to remove any added OH⁻ and H⁺ ions respectively. Correct. Since the buffer solution has a greater amount of lactic acid (weak acid) than the lactate ions (conjugate base), the buffer solution is more effective in buffering the effect of addition of small amounts of base than acid. (if the buffer solution is infinitely diluted with water, the [H⁺] in the buffer solution tends towards that of pure water (i.e. 10^{-7} mol dm⁻³) and pH increases and approaches 7.) Incorrect. Upon dilution with some water, the pH of the buffer solution should remain the same as the amount of lactic acid and sodium lactate in the buffer solution remains $pH = pK_a + Ig \frac{I[actate]}{I[actic acid]} = pK_a + Ig \frac{n(Iactate) / V_{busiles}}{n(Iactic acid) / V_{busiles}} = pK_a + Ig \frac{n(Iactate)}{n(Iactic acid)}$ Hence, pH of the buffer solution will not decrease upon dilution with water. pH = pK_a + lg $\frac{||actate||}{||actic acid||}$ = $-|g(1.4 \times 10^{-4}) + lg \frac{0.5}{1.5}$ = 3.38 unchanged (although their concentrations decrease). ncorrect. The correct pH of the buffer solution is: Option C Option B Option A (Ans: D) 017

(Ans: B) Q18

Option D

More papers at www.testpapersfree.com

$0 Cu^{*}(aq) + Cr^{*}(aq) \rightleftharpoons CuCl(s)$ $0 CuCl(s) + Cr^{*}(aq) \rightleftharpoons CuCl_{2}^{*}(aq)$ $0 Cu^{*}(aq) + 2Cr^{*}(aq) \rightleftharpoons CuCl_{2}^{*}(aq)$ $0 = 0 + 0$ $K_{3} = \frac{[CuCl_{2}]}{[Cur_{1}]Cr_{1}^{2}} = \frac{1}{[Cur_{1}]Cr_{1}^{*}} \times \frac{[CuCl_{2}]}{[Cr_{1}]} = K_{1}$	$K_1 = 8.33 \times 10^5$ $K_2 = 0.104$	$K_3 = z$		< <i>K</i> ² = 86632 mol ⁻² dm ⁶
			@ = 0 + 0	$K_3 = \frac{[CuCl_2]}{[Cur_1]Cr_1^2} = \frac{1}{[Cur_1][Cr_1]} \times \frac{[CuCl_2]}{[Cr_1]} = K_1 \times K_2 = 86632 \text{ mol}^{-2} \text{ dm}^6$

Hence, z = <u>8.66 × 10</u>⁴

 $\frac{1}{(8.33 \times 10^5)} = \frac{1.20 \times 10^{-6} \text{ mol}^2 \text{ dm}^{-6}}{1.20 \times 10^{-6} \text{ mol}^2 \text{ dm}^{-6}}$ ù Solubility product, K_{sp} , of CuCI(s) = [Cu⁺][Cl⁻] = $\frac{1}{K_1}$ =

(Ans: A) Q19

From the Data Booklet: $E^{\circ}(Cr_2O_7^{2-}/Cr^{3+}) = +1.33$ V and $E^{\circ}(O_2/H_2O_2) = +0.68$ V

60

For this electrochemical cell, E_{eal} = E(Cr₂Or²-/Cr³+) − E(O₂/H₂O₂). Hence, an <u>increase in E(Cr₂Or²-/Cr³+)</u> or a <u>decrease in E(O₂/H₂O₂</u>) will lead to an increase in E_{cel}.

The reduction half-equations of the two half-cells are shown below. $Cr_{2}Or^{2}$ -(aq) + 14H⁺(aq) + 6e⁻ \Rightarrow 2Cr³⁺(aq) + 7H₂O(l) ------ (1) $O_2(g) + 2H^*(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$

For option **A**, addition of water to O_2/H_2O_2 half-cell favours the side with more aqueous species so position of equilibrium of (2) shifts left and <u>decreases $E(O_2/H_2O_2)$ </u>. Thus, E_{cell} increases.

decreases Thus, Ecel Hence the reaction is spontaneous and the addition of KI(s) to the $Cr_2O_7^{2s}/Cr^{2s}$ half-cell $[Cr_2Or^2]$ so that position of equilibrium of (1) shifts left and <u>decreases E[Cr_2Or^2-[Cr^3)</u>. For option B, $E^{\Theta_{out}}$ for the reaction between I⁻ and Cr₂Or²⁻ = +1.33 – 0.54 = +0.79 V decreases. (Note: KI(s) is soluble in water and dissolves to form K*(aq) and I*(aq).) For option C, 1 atm of O_2 has a higher pressure than 1 bar of O_2 . The increase in P_{O_2} shifts position of equilibrium of (2) to the right and increases $E(O_2/H_2O_2)$. Thus, E_{cal} decreases.

For option **D**, using [Cr^{2+}_{2}] of 2.0 mol dm⁻³ increases [Cr^{2+}_{2}] so that position of equilibrium of (1) shifts left and <u>decreases E($Cr_{2}Or^{2+}_{2}Cr^{2+}_{2})$ </u>. Thus, E_{ost} decreases.

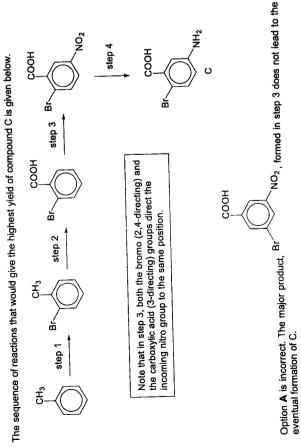
(Ans: B) 020

5 ↑ At E4, reduction of Cu^{2+} occurs: $Cu^{2+} + 2e^{-}$ $n_{e^-} = 2 \times n_{cu} = 2 \times 0.635 / 63.5 = 0.02$ mol

 $t = (n_{e^-} \times F) / I = (0.02 \times 96500) / 5 = 386 s = 6.43 min \Rightarrow Option A is incorrect$ Since $Q = n_{e^-} \times F = I \times t_i$,

As Cu^{2*} is reduced to Cu at E4, [Cu²⁺] decreases and the colour intensity of the solution in cell 2 decreases ⇒ Option D is incorrect At E2, H_2O is reduced to H_2 : $2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$ Since OH⁻ is produced and the electrolyte contains Mg^{2+} , a white precipitate of $Mg(OH)_2$ is formed around $E2 \Rightarrow Option B is correct.$

At E1 and E3, H₂O is oxidised to O₂ and effervescence is observed. At E2, H₂O is reduced to H₂ and effervescence is also observed \Rightarrow Option C is incorrect.


9729/01/S/22

9729/01/S/22

With 4 double bonds in the structure, there should be 4π bonds. @ Raffles Institution 2022 972901/S/22	A possible structure of compound A:	Since compound A (C₁,H₁₄O) has 4 fewer H atoms than the above structure, compound A must have two more C=C bonds ⇒ total of 2 + 2 = 4 double bonds.		Q23 (Ans: C) An example of a 11 carbon-containing compound with an aldehyde group, a cyclohexene ring and a straight chain is shown below.	Statement 3 is correct. Compared to [CrYe] ³⁺ , the absorbance peak of [CrXe] ³⁺ is at a shorter wavelength with higher energy. Hence, d-orbital splitting is larger in [CrXe] ³⁺ .	Statement 2 is correct. In S3, [X] _{InNate} and [Y] _{InNate} are reduced by half compared to S1 and S2. The concentration of [Cr V ₆] ³⁺ formed is greater than [CrX ₆] ³⁺ , as can seen by the absorbance peak of [Cr V ₆] ³⁺ being reduced to a smaller extent in S3. Hence, <i>V</i> forms the complex with Cr ³⁺ more readily and <i>Y</i> forms stronger bond with Cr ³⁺ .	Q22 (Ans: C) Statement 1 is incorrect. Since S2 consists of [CrYs] ³⁺ and absorbs orange-red light strongly, [CrYs] ³⁺ (aq) cannot be orange in colour as the colour observed is complement of the colour absorbed.	As the resultant solution is violet, the final vanadium-containing species is V²*. Thus, <i>E</i> ^e (M ⁿ⁺ /M) must be <u>more negative than −0.26 V but less negative than −1.20</u> so that the metal will not further reduce V²⁺ to V.	Since the metal is oxidised, E ^e _{cell} = E ^e (species containing V) – E ^e (M™/M) To be thermodynamically feasible, E ^e _{cell} > 0. Hence, E ^e (M™/M) need to be less positive or more negative than E ^e (species containing V).	half-cell of V species VO2*/VO2* VO2*/V ³⁺ V ³⁺ /V ²⁺ V ²⁺ /V E ^o /V +1.00 +0.34 -0.26 -1.20	Q21 (Ans: D)	9
Reaction 4 is incorrect as <u>both</u> hydrocarbons and carbon monoxide needs to be oxidised. Hence, they do not react together in the catalytic converter. @Raffles Institution 2022 9729/01/S/22	$C_xH_y(g) + (x + \frac{y}{4})O_z(g) \longrightarrow xCO_z(g) + \frac{y}{2}H_zO(g)$ Reaction 3 is correct. C_xH_y is oxidised. O_z is reduced.	$NO_{2}(g) + 2CO(g) \longrightarrow 2CO_{2}(g) + \frac{1}{2}N_{2}(g)$ $NO_{2}(g) + 2CO(g) \longrightarrow 2CO_{2}(g) + \frac{1}{2}N_{2}(g)$ $Reaction 2 is oxidised.$ $C \ Us oxidised.$ $Reaction 2 is oxidised.$ $NO_{2} \ is reduced$	• • R	Cars are fitted with catalytic converters to remove three main pollutants (CO, NO, and unburnt hydrocarbons) from exhaust gases. The harmful gases are converted into $\underline{CO_{2x}}$, $\underline{N_2}$ and $\underline{H_2O}$. The following reactions occur in the catalytic converter. Each reaction is a redox reaction.	Q25 (Ans: C)		Statement 3 is correct. In the termination step, two alkyl radicals (•C ₁₀ H ₁₉) can react together to form the product (C ₂₀ H ₃₈) in small quantities. Example:		Statement 2 is correct. Ignoring stereoisomers, the eight possible mono-chlorinated products are as follows.	Statement 1 is correct. The initiation step involves the homolytic fission of the CI-CI bond. The propagation steps can involve the homolytic fission of C-H and CI-CI bonds.	Q24 (Ans: D)	10

÷

(Ans: D) Q26

Option B is incorrect. In step 4, the amino (2,4-directing) and the carboxylic acid (3-directing) groups do not direct the incoming bromo group to the same position.

Option **C** is incorrect. In step 2, the methyl (2,4-directing) and the bromo (2,4-directing) groups do not direct the incoming nitro group to the same position.

(Ans: B) 027

To oxidise the aldehyde group (–CHO) in J to carboxylic acid group (–COOH) in K (without oxidative cleave of the C=C bond), only $K_2Cr_2O_7$ with H_2SO_4 and heating can be used. If J is heated with KMnO₄ and H_2SO_4 , the C=C bond will undergo oxidative cleavage, in addition to the oxidation of the –CHO to -COOF

For the reduction of both alkene (C=C) and aldehyde (−CHO) groups in J to −CH₂CH2− and primary alcohol (--CH₂OH) groups respectively in L, only H₂ with Ni and heating can be used. If NaBH₄ is used, only –CHO will be reduced to –CH₂OH and the C≔C bond will remain unreacted

(Ans: B) Q28

(1-Bromoethyl)benzene reacts with methylamine via nucleophilic substitution. As the rate of the reaction is independent of the concentration of the nucleophile, CH_{24} He reaction proceeds via Sv1 mechanism. The following carbocation will be formed when the C–Br bond breaks in the ratedetermining step:

--chcH₃

© Raffles Institution 2022

9729/01/S/22

(Ans: A) Q29

Option A is correct. When heated with NaOH, CH₃CH₃NH₃⁺ will undergo acid-base reaction to form CH₃CH₂NH₂ gas which will turn damp red litmus paper blue. For (CH₃CH₂)₄N⁺, there is no acid-base reaction with NaOH, and no gas will be evolved.

2

Option B is incorrect. Fehling's solution forms brick-red ppt of Cu₂O only with <u>aliphatic</u> aldehyde.

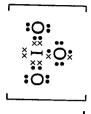
is a ketone. Hence, both compounds сосн is an aromatic aldehyde and will not form brick-red ppt 9 4 9

and CH₃CH₂OH do not react with aqueous Na₂CO₃ to form CO2 gas. (Note: Aqueous Na2CO3 reacts only with carboxylic acid functional group.) HO Option C is incorrect. Both

, the lone pair of electrons in the p orbital õ and ၓု

double bond character in the C-C/ bond, the bond is strengthened and will not be easily broken to form chloride ions when heated with ethanolic AgNO₃. Hence, no AgC/ (white ppt) will be observed for both of the chlorine is able to delocalise into the benzene ring and C=C bond respectively. As there is partial Option D is incorrect. In both compounds

(Ans: D) **0**30


In options B and C, the compounds contain the –CH(CH₃)OH group which will give a yellow ppt with hot alkaline aqueous $I_2 \Rightarrow Options B$ and C are incorrect. (Note: In option D, the $-N(CH_3)COCH_3$ group is an amide which will not form a yellow ppt with hot alkaline aqueous I₂.) Option A is incorrect. The –CN group will be reduced by LiAJH, in dry ether to form a primary amine $(-CH_2NH_2)$. The product contains the $-CH_2NH_2$ and $-C(CH_3)_2OH$ groups which will react with ethanoyl chloride to form an amide and ester respectively, and hence the product will react with ethanoyl chloride in a 1:2 ratio. Option **D** is correct. The –N(CH₃)COCH₃ group will be reduced by LiA/H₄ in dry ether to form a tertiary amine (–N(CH₃)CH₂CH₃) which does not react with ethanoyl chloride. Since only –C(CH₃)₂OH group will react with ethanoyl chloride in a 1:1 ratio.

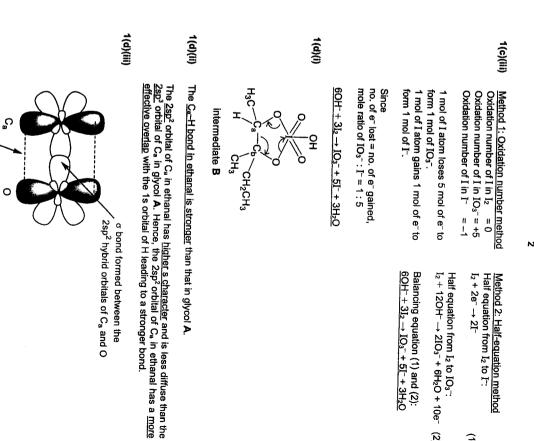
© Raffles Institution 2022

9729/01/S/22

1(c)(I) 1(b)(ii) 1(b)(i) 1(a) stability decreases from HCI to HBr to HI. Hence, the <u>H–X bond strength decreases</u> from <u>HC/ to HBr to HI</u> and the <u>therma</u> decreases, resulting in a <u>decrease in bond polarity</u>. The boiling point decreases from HF to HC/ (or HF has the highest boiling point) due to the presence of stronger hydrogen bonding between HF molecules which The <u>boiling points increase from HC/ to HBr to HI</u> as the <u>size of electron cloud for</u> <u>polarisation increases</u>, resulting in <u>stronger instantaneous dipole-induced dipole</u> (id-id) interactions, and hence requiring more energy to overcome. requires more energy to overcome. Mass of iodine = $1.432 \times 10^{-3} \times 126.9 \times 2 = 0.363 \text{ g}$ Amount of iodine reacted = $\frac{65}{22700} \times \frac{1}{3} \times \frac{3}{2} = 1.432 \times 10^{-3}$ mol .

Down Group 17, the valence orbital of the halogen atom becomes increasingly diffuse and the <u>orbital overlap between the halogen and hydrogen atoms becomes less effective</u> / electronegativity difference between the halogen and hydrogen

1(c)(ii) As the lone pair-bond pair repulsion is greater than the bond pair-bond pair atom. To minimise electronic repulsion between the bond pairs and lone pair In IO37, there are <u>3 bond pairs and 1 lone pair</u> of electrons around the central I <u>repulsion</u>, the bond angle is <u>107</u>° electrons, the shape about the I atom is trigonal pyramidal.


© Raffles Institution 2022

9729/02/S/22

© Raffles Institution 2022

9729/02/S/22

unhybridised 2p orbitals of Ca and O π bond formed between the

છ

Э

2022 RI H2 Chemistry Prelim Paper 2 – Suggested Solutions

e

→ NOC*I*(g) + HNO₃(g)

2NO₂(g) + HCI(g)

At t = 200 s, [NOC/] = 0.032 mol dm⁻³

2(b)(l)

+0.032 0.032

+0.032 0.032

-0.032 0.018

-0.064 0.936

change in conc / mol dm⁻³ conc at 200 s / mol dm⁻³

mole fraction of NOCl = $\frac{0.036}{0.936 + 0.018 + 0.032 + 0.032} = \frac{0.0314}{0.0314}$

 $= \frac{0.032}{10^{-3}}$ (8.31)(500) = 1.3296 × 10⁵ Pa

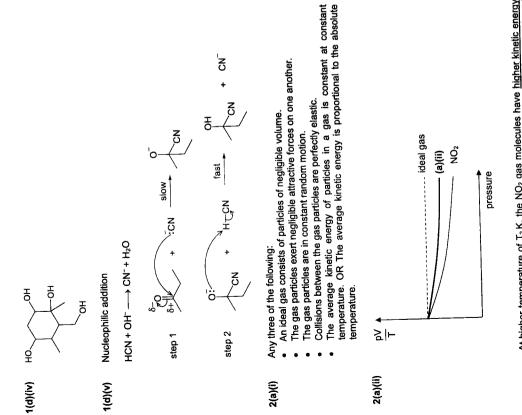
>

p_{NOC}V = n_{NOC}RT phoci = Thoci RT

pV = nRT

2(b)(ii)

0.032


0

0

0.05

1.00

initial conc / mol dm⁻³

At higher temperature of T₂K, the NO₂ gas molecules have <u>higher kinetic energy</u> and are better able to <u>overcome the intermolecular attractive forces</u>. Hence it would exhibit less deviation from an ideal gas as compared to at a lower temperature of Ļ Ā

9729/02/S/22

© Raffles Institution 2022

9729/02/S/22

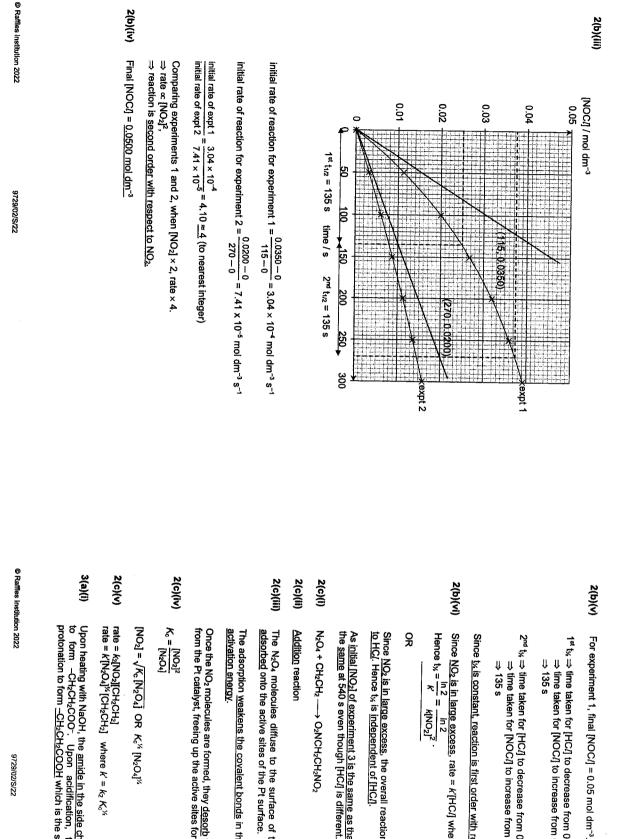
© Raffles Institution 2022

 $= \frac{0.936 + 0.018 + 0.032 + 0.032}{0.936} (8.31)(500)$

Alternative method:

 $p_{total}V = n_{total}RT$

pV = nRT


 $p_{total} = \frac{n_{total}}{\sqrt{}} RT$

= 4.23 × 10⁶ Pa $p_{\text{total}} = \frac{1.3296 \times 10^5}{0.0314}$ PNOCI = XNOCI X Plotal

<u>و</u>

= <u>4.23 × 10⁶ Pa</u>

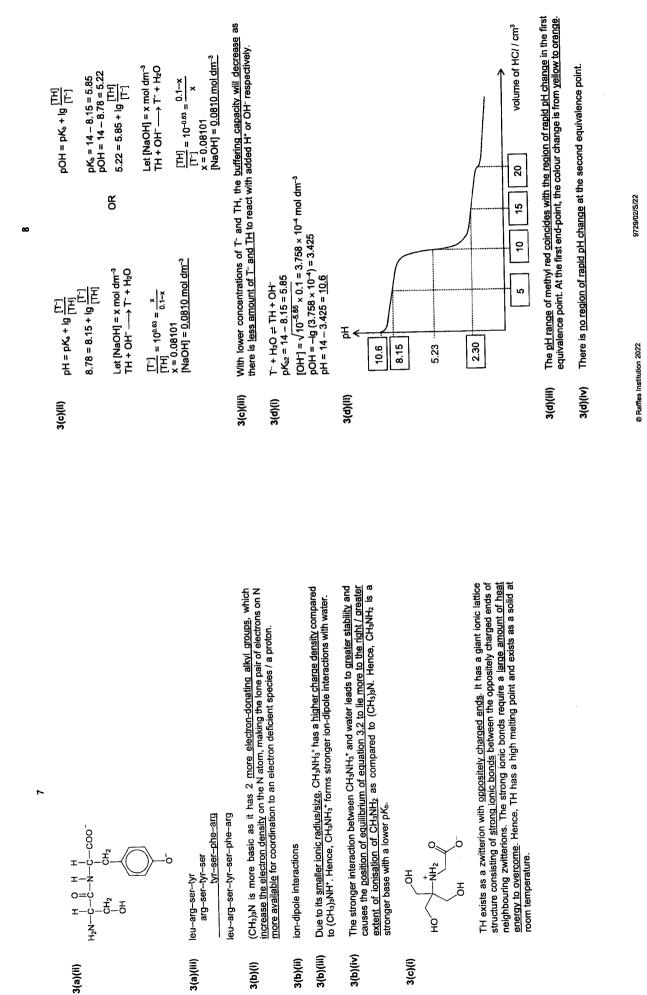
More papers at www.testpapersfree.com

Since <u>NO₂ is in large excess</u>, rate = *K*[HC*I*] where *K* = *K*[NO₂]². Hence $t_{34} = \frac{\ln 2}{K} = \frac{\ln 2}{4(NO_2)^2}$. 2^{nd} t_M \Rightarrow time taken for [HC/] to decrease from 0.025 mol dm⁻³ to 0.0125 mol dm⁻³ \Rightarrow time taken for [NOC/] to increase from 0.025 mol dm⁻³ to 0.0375 mol dm⁻³ Since t₁₄ is constant, reaction is first order with respect to HCI. 1st $t_x \Rightarrow$ time taken for [HC/] to decrease from 0.05 mol dm⁻³ to 0.025 mol dm⁻³ ⇒ time taken for [NOC/] to increase from 0 mol dm⁻³ to 0.025 mol dm⁻³ ⇒ 135 s

G

a

Since NO₂ is in large excess, the overall reaction is pseudo first-order with respect to HC/. Hence t_{34} is independent of IHC/.


As initial INO₂I of experiment 3 is the same as that of experiment 2, $t_{\rm M}$ would remain the same at 540 s even though [HCI] is different.

The N₂O₄ molecules diffuse to the surface of the Pt catalyst and they become <u>adsorbed</u> onto the active sites of the Pt surface.

The adsorption <u>weakens the covalent bonds</u> in the N₂O₄ molecules and <u>lowers the</u>

Once the NO₂ molecules are formed, they desorb from the surface and diffuse away from the Pt catalyst, freeing up the active sites for adsorbing other N₂O₄ molecules.

Upon heating with NaOH, the <u>amide in the side chain</u> of glutamine was <u>hydrolysed</u> to form -CH₂CH₂COO⁻. Upon acidification, the -CH₂CH₂COO⁻ undergoes protonation to form <u>-CH₂CH₂COOH</u> which is the side chain of glutamic acid.

© Raffles Institution 2022

9729/02/S/22

4(b)(iv) 4(b)(iii) 4(b)(ii) 4(b)(i) 4(a)(vi) Cu^{2*} can be released from the CuX_2 molecules in the oil solution by <u>adding H₂SO₄</u> to increase [H^{*}(aq)]. This shifts the <u>position of equilibrium</u> in equation 4.2 to the <u>left</u>, converting CuX₄(oil) to Cu^{2*}(aq). Percentage of copper extracted = eqm amount in oil Initial amount of Cu²⁺ in 2.0 dm³ = eqm amt of Cu²⁺(aq) + eqm amt of CuX₂(oil) $2.1 \times 10^{-2} = \frac{(0.045)(10^{-3})^2}{[Cu^{2+}(aq)](0.20)^2}$ $K_{c} = \frac{[CuX_{2}(oii)][H^{+}(aq)]^{2}}{\sum_{i=1}^{n}}$ H has <u>two large PPh₃ groups which are close to each other</u>. This results in <u>great</u> repulsion / steric strain between the two groups, causing H to be less stable than F. Hence, G is converted to the more stable F rather than H. [Cu²⁺(aq)] at equilibrium = 5.36 × 10⁻⁵ mol dm⁻³ Concentration of CuX₂(oil) at equilibrium = 0.045 mol dm⁻³ X must have a large non-polar/ hydrophobic portion to enable CuX_2 to interact well with oil rather than with water. Ph3P <u>ي</u> [Cu²⁺(aq)][HX(oil)]² PPh₃ ŝ $= (2 \times 5.36 \times 10^{-5}) + (1 \times 0.045) \text{ mol}$ = <u>0.0451</u> × 100% = <u>99.8 %</u> = 0.0451 mol initial amount

In F (a square planar complex), the four ligands approach Ni²⁺ (the central metal

ligands, causing $3d_{\chi^2-y^2}$ orbital to have the highest energy. <u>3d_x2 y2 orbital would be repelled most greatly</u> by the lone pair of electrons in the

~> 34

	energy level	
11/11	1	Jun ² a ³
	1111	

square planar

tetrahedral

© Raffles Institution 2022

9729/02/S/22

4(a)(iv)

Since the proportion of G to F increases with temperature, the <u>forward reaction is</u> <u>favoured</u> by an increase in temperature. As <u>increase in temperature favours the</u> <u>endothermic reaction</u> which absorbs heat, the forward reaction is endothermic and

nence <u>v is a positive value</u>.

4(a)(i)

ø

4(a)(ii) 1s²2s²2p63s²3p63d6

4(a)(iii)

4(a)(v) In F and G, the 3d orbitals are split differently, causing the energy gap between the higher and lower energy levels to be different.

5

The energy required to promote an electron from the lower energy to the higher energy d orbital corresponds to different wavelengths of light.

The different colours observed of F and G are the complement of the colour

absorbed.

© Raffles Institution 2022

9729/02/S/22

BP~255

ion) along the x and y axes. Since $3d_{x^2,y^2}$ orbital has its lobes along the x and y axes, any electron in the

$$\begin{split} \mathsf{CuS}(s) & \rightleftharpoons \ \mathsf{Cu}^{2*}(\mathsf{aq}) + \mathsf{S}^{2^*}(\mathsf{aq}) & \longrightarrow^{---}(1) \\ \mathsf{Cu}^{2*}(\mathsf{aq}) + \mathsf{4NH}_3(\mathsf{aq}) & \rightleftharpoons \ [\mathsf{Cu}(\mathsf{NH}_3)_4]^{2*}(\mathsf{aq}) & \longrightarrow^{----}(2) \end{split}$$
4(c)

 Cu^{2*} reacts with NH₃ in the metal polish to form a soluble complex [Cu(NH₃)J]^{2*}, thus decreasing [Cu^{2*1}].

This causes the <u>position of equilibrium in (1) to shift to the right</u> so that the tarnish, CuS, <u>dissolves and can be removed</u>. OR If there is <u>sufficient NH₃, the ionic product, [Cu²⁺][S²], will be less than the K_{ss} and hence <u>all the CuS dissolves</u>.</u>

_

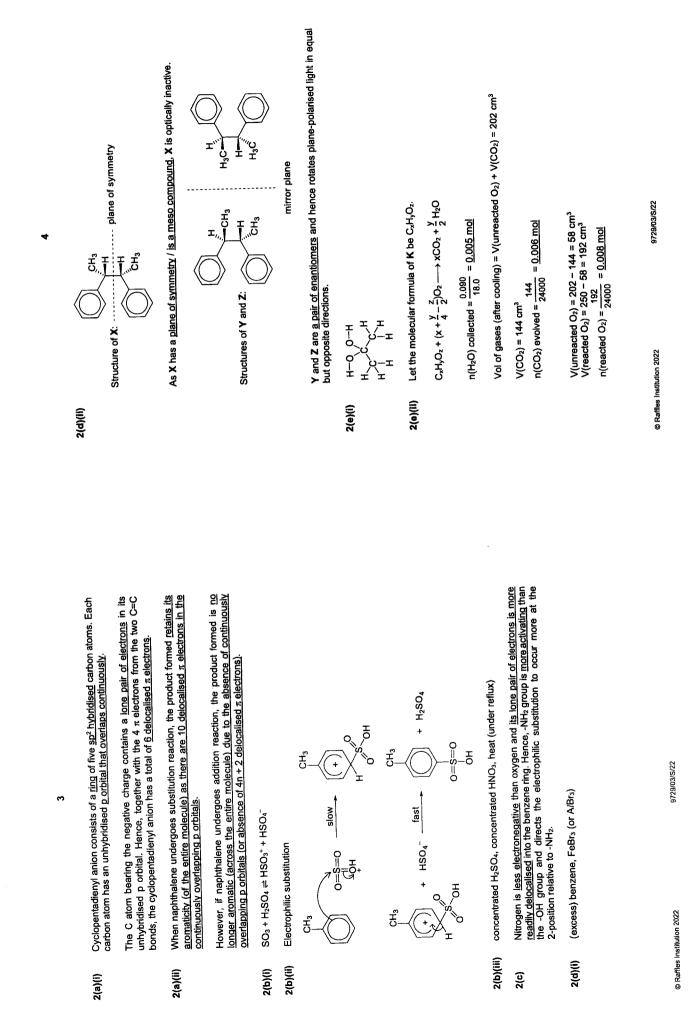
$\frac{\mathbf{r}(\mathbf{c})(\mathbf{l})}{\frac{\mathrm{decrea}}{\Delta G} = t}$		Due to than B	OR	1(b)(iii) The io is requand C.	1(b)(ii) As the greate	1(b)(i) Ca-on <u>ion of</u>	This is	Percentz = (5.00 × = <u>99.9%</u>	r(a)(II) Initiai		ionic [Ag ⁺] [Ag ⁺]	As m the s	[co	1(a)(i)	2 Section A	
As the process occurs readily (or is spontaneous), ΔG is negative. Since there is a decrease in the number of ways the water particles can be arranged, ΔS is negative. $\Delta G = \Delta H - T\Delta S$. Since $-T\Delta S$ is positive, ΔH_1 must be <u>negative</u> .		Due to its smaller size/radius, Ca ²⁺ has a higher charge density and polarising power than Ba ²⁺ . As such, CaCk has a <u>greater covalent character</u> than BaCk, resulting in an unexpectedly lower matting point then be the set of th		The ions in CaC <i>k</i> are less tightly <u>packed</u> in the lattice structure. Hence, less <u>energy</u> is required to overcome the weaker electrostatic forces of attraction between Ca^{2*} and C <i>t</i> ions.	As the <u>Ba²⁺ ion is larger</u> than the Ca ²⁺ ion, the Ba ²⁺ ion is <u>able to accommodate a</u> <u>greater number of chloride ions surrounding it</u> .	Co-ordination number is the <u>number of</u> nearest neighbouring <u>ions that surrounds an</u> <u>ion of opposite charge</u> .	This is <u>an effective</u> method.	Percentage of CF precipitated $= \frac{(5.00 \times 10^{-3}) - (4.97 \times 10^{-6})}{5.00 \times 10^{-3}} \times 100\%$ $= 99.9%$	0.010 × 20 Initial [C <i>t</i> ⁻] in mixture = <u>20 + 20</u> 1000 = 5.00 × 10 ⁻³ mol dm ⁻³	As the solution is also saturated with AgC <i>t,</i> [Ag*][C <i>E</i>] _{emmaining} = (4.025 × 10 ⁻⁵)[C <i>E</i>] _{emmaining} = 2.0 × 10 ⁻¹⁰ [C <i>E</i>] _{emmaining} = <u>4.97 × 10⁻⁶ mol dm⁻³</u>	ionic product = K _{sp} (Ag ₂ CO ₃) [Ag ⁺] ² (5.00 × 10 ⁻³) = 8.1 × 10 ⁻¹² [Ag ⁺] = 4.025 × 10 ⁻⁵ mol dm ⁻³	As maximum amount of AgCl have been precipitated without precipitating Ag_2CO_3 , the solution is saturated with Ag_2CO_3 . Hence,	$[CO_3^{2^2}] = \frac{1000}{1000} = 5.00 \times 10^{-3} \text{ mol dm}^{-3}$		2022 RI H2 Chemistry Prelim Paper 3 – Suggested Solutions	
	PC15(1	row-ry The r acidic	PCI6	A we [A/(H	Arci,	1(d) A/C/. ions.		+17		o				, testinit		
	PC i₅(s) + 4H₂O(l) → H₃PO₄(aq) + 5HC <i>i</i> (aq)	riow-ying c-orbitals of the central P atom accepts a lon The reaction produces HC/ as a product which dissolv acidic solution of <u>pH 2</u> .	PCIs exists as simple covalent molecules, which	or trie water molecules, allowing the complex ion to unc A weakly acidic solution of <u>pH 3</u> results. [AI(H₂O) ₈] ³ "(aq) + H₂O(l) ≓ [AI(H₂O) ₅ (OH)] ² *(aq) + H₃C	A/Cl ₃ (s) + 6H ₂ O(l) \longrightarrow [A/(H ₂ O) ₆] ³⁺ (aq) + 3C <i>L</i> (aq) In [A/(H ₂ O) ₆] ³⁺ , the high charge density of A ^{f3+} polarise:	-	$LE(CaCl_2) = -230 \text{ kJ mol}^{-1}$	CaCi ₂ (S)	–796 or AH ^e (CaCi ₂ (s))	$Ca(g) + Cl_2(g)$ $Ca(s) + Cl_2(g) + 177 \text{ or } \Delta H_{atom}^{-9}(Ca(s))$	or 1해 IE + 2㎡ IE of Ca		Ca ²⁺ (g) + C <i>l</i> ₂ (g) + 2e ⁻	enthalpy ▲	The lattice energy (LE) of calcium chloride is the <u>energy (LE) of calcium chloride is the solid CaC/2</u> is formed from <u>Ca²⁺(g) and C/⁻(g)</u> at <u>1 b</u>	

N

-

um chloride is the <u>energy released</u> when <u>1 mole of</u> '(<u>g) and C/'(g)</u> at <u>1 bar and 298 K</u>.

 $2 \times \Delta H_{f}^{\Theta}(Cl^{-}(g)) = 2(-242)$ Ca²⁺(g) + 2C*l*⁻(g)



olecules but dissolves in water to form [A/(H₂O)₈]³⁺

ansity of $A/^{3+}$ polarises and weakens the O–H bond to complex ion to undergo hydrolysis to form H_3O^+ esults.

D)₅(OH)]²⁺(aq) + H₃O⁺(aq)

molecules, which hydrolyses in water as the 2 atom accepts a lone pair of electrons from H₂O.

© Raffles Institution 2022

9729/03/S/22

ㅈ

0=

0= z

© Raffles Institution 2022

9729/03/S/22

				_	
>	When M is heated with acidified KMnO4, the only product form is a gas that gives a white precipitate with limewater.	When L is heated with aqueous I ₂ in dilute NaOH followed by acidification, M and a yellow ppt are formed.	When K is heated with acidified KMnO4, L and propanone are formed.	Evidence / Information K gives an orange ppt with 2,4-DNPH but does not form silver mirror with Tollens' reagent.	$\frac{2}{x} + \frac{y}{4} - \frac{z}{2} = 6 + 2.5 - \frac{z}{2} = 8$, hence z = 1 Molecular formula for K is C ₆ H ₁₀ O.
OH HO OH	M contains a -COOH group. <u>Oxidation</u> Gas is <u>CO</u> ₂ .	Oxidation and acid-base reaction L has 3 C atoms and contains 	Strong <u>oxidation</u> K is an <u>alkene</u> that contains =C(CH ₃) ₂ group.	<u>Deduction / Explanation</u> <u>Condensation</u> with 2,4-DNPH but <u>no</u> <u>oxidation</u> with Tollens' reagent. K is a carbonyl compound but not an aldehyde. K is a ketone.	

2(e)(iii)

x = 6 $\frac{y}{2} = 5$, hence y = 10

amount / mol mole ratio

C_xH_yO_z

0.002

6 6 6

0.005 5

	1000000000000000000000000000000000000
3(a)(ii)	O₂ + 2H₂O + 4e⁻ ⇒ 4OH⁻ (a) 2H⁺ + 2e⁻ ≓ H₂ (b)
	At the cathode, CO ₂ <u>removes OH⁻ formed</u> , causing a decrease in [OH ⁻]. The <u>position of equilibrium for reaction (a) shifts to the right and this causes E_{valuate} to be <u>more positive</u>.</u>
	At the anode, the CO_3^{2-} which migrates from the cathode <u>removes H⁺ formed</u> , causing a decrease in [H ⁺]. <u>The position of equilibrium for reaction (b) shifts to the left and this causes E_{mode} to be more negative.</u>
	Hence, <i>E</i> _{cell} of the EDCS is <u>more positive</u> than that of the hydrogen-fuel cell in (a).
3(a)(iii)	The higher the CO ₂ concentration, the <u>more positive the E_{sal}</u> and the current increases. Since I = n_eFt , the amount of electrons transferred per second increases and hence increases the rate of removal of CO ₂ .
3(b)(i)	From the Data Booklet, If a typical hydrogen-oxygen fuel cell operates under acidic conditions: cathode reaction: $O_2(g) + 4H'(aq) + 4e^- \longrightarrow 2H_2O(l)$ anode reaction: $H_2(g) \longrightarrow 2H'(aq) + 2e^-$
	E° cathode = +1.23 V and $E^{\circ}_{node} = 0.00 V$ Hence, $E^{\circ}_{cell} = +1.23 - 0.00 = \pm 1.23 V$
	If a typical hydrogen-oxygen fuel cell operates under alkaline conditions:

cathode reaction: anode reaction: - Bei

 $E^{\circ}_{\text{cathode}} = \pm 0.40 \text{ V} \text{ and } E^{\circ}_{\text{anode}} = -0.83 \text{ V}$ Hence, $E^{\circ}_{\text{cell}} = \pm 0.40 - (-0.83) = \pm 1.23 \text{ V}$

3(b)(ii) Under acidic conditions, there will not be any OH⁻ ions at the cathode to react with and to convert atmospheric CO₂ to CO₃²⁻. Hence, the CO₂ in air cannot be captured by the EDCS.

Under alkaline conditions, there will not be any H^{*} ions at the anode to convert CO_3^{2-1} ions back to CO_2 to be removed into a separate storage.

Hence, a typical hydrogen-oxygen fuel cell cannot be used in the EDCS.

G

From the Data Booklet, $E^{e}_{antode} = +0.40 \text{ V}$ and $E^{a}_{anode} = 0.00 \text{ V}$. Hence, $E^{e}_{call} = E^{e}_{callrode} - E^{e}_{anode} = +0.40 \text{ V}$

3(a)(i)

3(e)(i)

within R-COO⁻ are weakened to a greater extent as compared to that in (R-COO⁻)₂Ca^{2x}. Therefore, less heat energy is needed to decomoose

(R-COO⁻)₂Mg²⁺. Hence (R-COO⁻)₂Mg²⁺ has lower thermal stability

(CH₃-COO⁻)₂Mg²⁺ → CH₃COCH₃ + CO₂ + MgO

3(e)(iii) 3(e)(ii)

MgCO₃ → MgO + CO₂

 Mg^{2*} has a smaller ionic radius than Ca^{2*} . Hence, with the same charge, Mg^{2*} has a <u>higher charge density and hence greater polarizing power</u> than Ca^{2*} . As a result, Mg^{2*} distorts the electron cloud of R-COO⁻ to a greater extent. The covalent bonds

Similar to graphite, CNTs have an <u>extended delocalised π electron cloud</u>, which allows CNTs to conduct electricity.

Thus, it is likely that CNTs help conduct electricity across the membrane and

increases the membrane's electrical conductivity.

The CO_3^{2-} and electrons can diffuse more quickly across a larger surface area and

hence increase the rate of CO2 removal

3(c)(ii)

3(d)

Hence, current = $1.65 \times 10^{-6} \times 96500 = 0.159 \text{ A}$

amount of electrons passed per second

From equations (1) -- (4), = 2 × 8.25 × 10⁻⁷

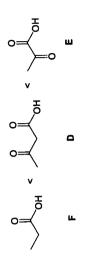
= 1.65 × 10⁻⁶ mol per second

9729/03/S/22

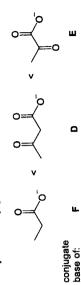
Volume of CO₂ removed per minute = 0.99 × 3000 × $\frac{400}{10^6}$ = 1.188 cm³ Amount of CO₂ removed per second = $\frac{1.188}{24000}$ + 60 = 8.25 × 10⁻⁷ mol

3(c)(i)

Section B


m

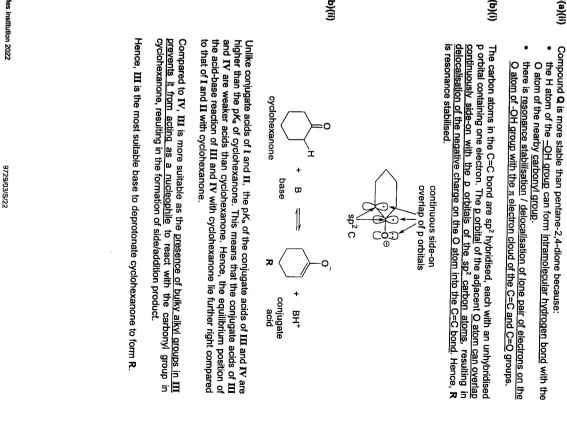
valence electron from nitrogen. Hence, the first ionisation energy of nitrogen is stronger electrostatic attraction between the nucleus and the valence electrons than carbon, resulting in an increase in the amount of energy required to remove the carbon. Atthough there is one more electron in nitrogen than carbon, this electron is added to the same outermost shell, and hence shielding effect remains approximately constant. Thus, nitrogen has a higher effective nuclear charge and vitrogen has a higher number of protons and hence <u>higher nuclear charge than</u> higher than carbon. 4(a)


the <u>2p electron</u> to be removed from <u>oxygen is a paired electron</u> while that to be removed from <u>inter-electronic repulsion</u> between paired electrons in the same orbital, less energy is required to remove the The first ionisation energy of oxygen is lower than that of nitrogen. This is because paired 2p electron from oxygen.

The stronger the acid, the lower the pK_{s} value and the more stable the conjugate base. (9

Based on the given pK_a values, acidity increases in the order.

and the stability of the conjugate base increases in the order:

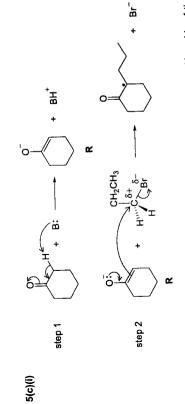

Compared to the conjugate base of F, the conjugate bases of D and E are more stable due to the presence of the electron-withdrawing carbonyl group to disperse the negative charge and hence stabilising the anions.

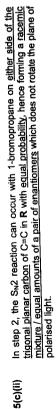
carbonyl group is nearer to the <u>-COO</u>, and can <u>better disperse the negative</u> charge, thus <u>stabilising the conjugate base of E to a greater extent</u>. The conjugate base of E is more stable than that of D as the <u>electron-withdrawing</u>

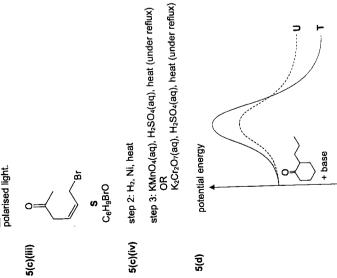
© Raffles Institution 2022

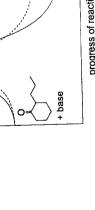
9729/03/S/22

	4(f)(ii) In conjugate acid X, the <u>lone pair of electrons</u> <u>n electron cloud of the adjacent C=O bond</u> and is <u>positive charge on the O atom</u> and stabilising X. In conjugate acid Y, there is no continuous side- Y is <u>not resonance stabilised</u> .	4(e)(ii) High dilution or low concentration of reactant 4(f)(i) A catalytic amount of H ⁺ is not sufficient as <u>step 6</u> to protonate the NH₃ hydrolysis produces the		۳(ч)(۱) Acruic hydrolysis and oxidation 4(d)(۱۱) KMnO₄(aq), H₂SO₄(aq), heat (step 2: KMnO₄(aq), H₂SO₄(aq), heat (under reflux) 4(c)(iii) step 1:	4(c)(ii) step 1: ethanolic KOH, heat (under reflux) Ⅰ:	4(c)(i)	
Ι <u>ά</u>	In conjugate acid X, the <u>lone pair of electrons</u> on the N atom <u>interacts with the</u> <u><i>π</i> electron cloud of the adjacent C=O bond and is <u>delocalised</u>, hence <u>dispersing the</u> <u>positive charge on the O atom</u> and stabilising X. In conjugate acid Y, there is no continuous side-on overlap of p orbitals and hence</u>	High dilution or low concentration of reactant A catalytic amount of H* is not sufficient as H* is <u>consumed</u> stoichiometrically <u>in</u> <u>step 6</u> to protonate the NH ₃ hydrolysis product.	o <u><u><u></u></u></u>	Activitic myorolysis and oxidation KMnO₄(aq), H₂SO₄(aq), heat OR K₂Cr₂O⁊(aq), H₂SO₄(aq), heat		₄(aq), heat (under reflux)	vat (under reflux)		G
					5(b)(ii)		5(b)(i)	5(a)(i) 5(a)(ii)	

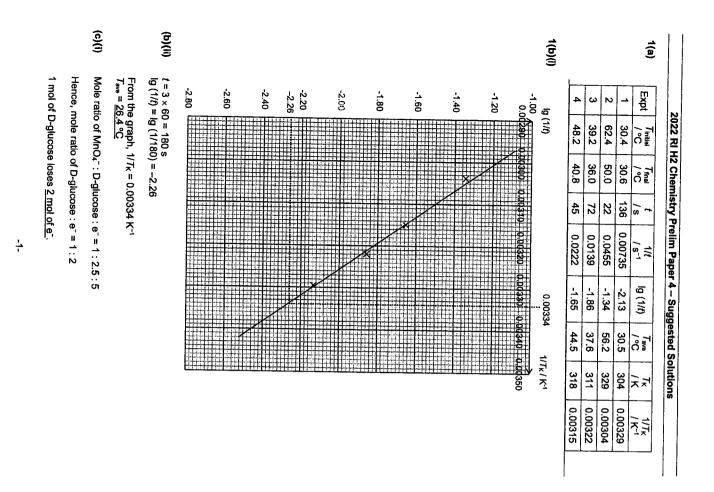



Cyclohexanone and compound P are constitutional (or structural) isomers.

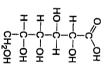

10


...

Ŧ



9729/03/S/22


C Raffles Institution 2022

Step 1 is a condensation reaction. 5(e)(i)

- Compound V <u>does not exhibit cis-trans isomerism</u>. Although there is restricted rotation about the C=N bond, the <u>C atom in the C=N</u> bond has <u>two identical groups</u> bonded to it. 5(e)(ii)
- H₂SO₄(aq) / HC/(aq) / HNO₃(aq), heat OR NaOH(aq), heat 5(e)(iii)

(c)(ii) Structure of P

Since 1 mol of D-glucose loses 2 mol of e⁻ and only one carbon atom in each glucose molecule is oxidised, the oxidation state of this carbon must have increased by 2. Hence, the aldehyde group of D-glucose is oxidised to carboxylic acid as the <u>oxidation state of</u> carbon increases from +1 in aldehyde to +3 in carboxylic acid.

- (d)(i) Maximum total percentage uncertainty = $\frac{2(\pm 0.05) + (\pm 0.5) + (\pm 0.5)}{\epsilon_0} \times 100\% = \pm 1.83\%$ 8
- (d)(ii) Although T_{ave} was calculated, the <u>difference between T_{initial} and T_{finiti} was quite significant</u>, especially for experiments conducted at temperatures above room temperature. This in turn resulted in <u>inaccuracy</u> in the <u>measurement</u> of the temperature of the reaction/measurement of the time required for the reaction to complete at T_{ave}.

A modification to the experimental procedure would be to use a water bath maintained reaction mixture stayed constant throughout the reaction. temperature before starting the reaction, and to ensure that the temperature of the at a fixed temperature for each experiment, to equilibrate the reactants at the same fixed

å

The <u>human perception of when the reaction mixture turned colourless may be</u> inconsistent/vary across different <u>experiments</u>, hence resulting in <u>inaccuracy in the</u> measurement of the time required for the reaction to complete at T_{ave}.

A modification to the experimental procedure would be to use a colorimeter to monitor no more absorbance (i.e. reaction mixture had turned colourless) the absorbance of the reaction mixture, and stopping the stopwatch only when there was

Mass of FA 4 used / g	Mass of capped weighing bottle after emptying FA 4 / g	Mass of capped weighing bottle and FA 4 / g
3.924	5.211	9.135

2(a)(i)

Values used	Volume of FA 1 used / cm ³	Initial burette reading / cm ³	Final burette reading / cm ³	Titration number
<	19.90	0.00	19.90	-
۲	19.90	19.90	39.80	N

2(a)(ii) Average volume of FA 1 used = (19.90 + 19.90) / 2 = <u>19.90 cm³</u>

Ņ

2b(ii) 2(b)(iv) 2(b)(iii) 2(c) 2(c) 2(c) 2(b)(iv) 2(b)(iv) 3(a) 3(a) 2(c) 2(c) 2(c) 2(c) 2(c) 2(c) 2(c) 2(c	$\begin{aligned} & (Fe^{2^{n}}) \ln 250 \ cm^{3} \ of FA 5 = 5(\text{MnO}_{4}) = 5 \times 0.0001990 = 0.0009950 \ mol \\ & (Fe^{2^{n}}) \ln 250 \ cm^{3} \ of FA 5 = 0.25 \times 0.03986 = 0.009950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.25 \times 0.03986 = 0.009950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.25 \times 0.039850 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.26 \times 0.039850 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.209950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.209950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.209950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.209950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.20398 = 10.00950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.009950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 5 = 0.009950 \ mol \\ & (FA 4) \ln 250 \ cm^{3} \ of FA 4 = 0.009160 \ cm^{3} \ cm^{3} \ of FA 4 \\ & (1) \ f = 222 \ cm^{3} \ f = 0.009950 \ cm^{3} \ f = 394.4 \ mol \\ & (1) \ f = 28.0 \ a 96.1b + 163.8 \ a 394.4 \ mol \\ & (1) \ f = 18.0a + 96.1b + 163.8 \ a 394.4 \ mol \\ & (1) \ f = 18.0a + 96.1b + 163.8 \ a 394.4 \ mol \\ & (1) \ cm^{3} \ cm^{$	1990 = 0.0009950 mol 950 mol nol 10 16.0 × 4) + 6(2 × 1.0 + 16.0) 16.0 × 4) + 6(2 × 10.0
	boiling tube. Wash the residue with some deionised water.	Red/brown residue. Brown filtrate.
	The residue is FA 9 . Retain the filter funnel containing FA 9 for	
	Retain the filter funnel containing FA 9 for	

3(b)

observations with FA 7	ale, observation of the solution		Yellow ppt formed in orange / red solution.	Solution turns colourless. Yellow ppt remained.
observations with FA 6	Decolourisation of purple KMnO4	Silver mirror formed.		spannelpon († 1, 2), teta des exciles para esse
test	Add about 2 cm depth of FA 6 to a test-tube. To this test-tube, add 2 cm depth of dilute suffuric acid, followed by 1 drop of potassium manganate(VII) solution and shake well. Leave the test-tube to stand in a beaker of hot water for about	Add 1 cm depth of aqueous silver nitrate to a test-tube. Then slowly add 1 cm depth of aqueous sodium hydroxide. Add aqueous ammonia slowly, with shaking, until the precipitate just dissolves. You may use a clean glass rod to stir the mixture and help dissolve the precipitate. Add 1 cm depth of FA 6 to this mixture, shake the tube and place it in the tube and place it in stand.	Add about 1 cm depth of FA 7 to a test-tube. To this test-tube, add 4 drops of sodium hydroxide solution followed by iodine solution, dropwise, until a permanent orange/red colour is present. Warm the mixture in a beaker of hot water for about 2 minutes.	Add sodium hydroxide solution using a teat pipette until no further change is seen.
	€	E	(j)	

4

ω
\sim
5
Ē
-
<
_

3	functional group	evidence
FA 6	aldehyde	In test (b)(ii), FA 6 gives a silver mirror with Tollens' reagent.
<u> </u>		In test (b)(i), FA 7 did not decolourise purple acidified
FA 7	ketone	In test (b)(iii), FA 7 gave yellow ppt, CHI ₃ , with alkaline aq iodine.

3(c)

	test	observations
()	Test solution FA 8 with Universal Indicator paper.	Universal indicator turns dark blue. pH is 12.
(11)	Add about 1 cm depth of FA 8 to a test-tube. Then add 1 cm depth of dilute nitric acid.	Solution FA 8 turns from dark blue to light blue. No effervescence.
	To this test-tube, add about 1 cm depth of aqueous barium nitrate slowly, with shaking, until no further change is seen.	White ppt formed in light blue solution.
Ĵ	Place the filter funnel containing FA 9 into a clean test-tube.	
	Using a 10 cm ³ measuring cylinder, carefully add 2.0 cm ³ of dilute sulfuric acid to the filter funnel. The filtrate will collect in the test-tube.	The residue turned from red/brown to red- brown/dark brown/black .
	The residue is FA 10.	Red-brown/dark brown/black residue.
	The filtrate is FA 11.	Blue filtrate.
(iv)	Add 1 cm depth of FA 11 to a test-tube.	
	Add aqueous ammonia slowly, with shaking, until	Blue ppt formed, soluble in excess $NH_3(aq)$ to form a dark blue solution.

3(c)(v) Cu²⁺

no further change is seen.

3(c)(vi) Oxidation state of element X: +1

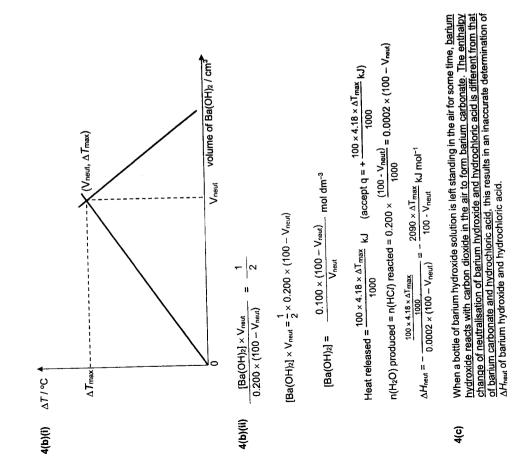
Type of reaction: Disproportionation

3(c)(vii) SO4²⁻ is present. In test (c)(ii), FA 8 reacted with Ba(NO3)₂ in the presence of HNO3(aq) to form white ppt of BaSO4.

4(a)(i) Let V_{neut} cm³ be the volume of barium hydroxide and (100 - V_{neut}) cm³ be the volume of hydrochloric acid used at which stoichiometric amount of barium hydroxide and hydrochloric acid react.

Assuming $[Ba(OH)_2] = 0.080 \text{ mol dm}^{-3}$,

mole ratio of HC*l* : Ba(OH)₂ = 2 : 1 n(HC*l*) = 2 × n(Ba(OH)₂) <u>100 - V_{neut}</u> × 0.200 = 2 × <u>V_{neut}</u> × 0.080 20 - 0.2V_{neut} = 0.16V_{neut} 0.36V_{neut} = 20 V_{neut} = 55.6 cm³


4(a)(ii) Procedure

- Using a 100 cm³ measuring cylinder, transfer 10.0 cm³ of Ba(OH)₂ into a clean and dry Styrofoam cup supported in a 250 cm³ beaker.
 Use a thermometer to measure and record the stocky initial transfer to measure and tran
- Use a thermometer to measure and record the steady initial temperature of Ba(OH)₂.
 Using another 100 cm³ measuring cylinder measure on 0 cm³ of 0 cm³ and 1 cm³.
- Using another 100 cm³ measuring cylinder, measure 90.0 cm³ of 0.200 mol dm⁻³ HC*i*. Ensure that both Ba(OH)₂ and HC*i* have the same initial temperature. Add HC*i* from the measuring cylinder into the Styrofoam cup containing $Ba(OH)_2$

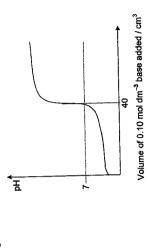
4

- and cover the Styrofoam cup with a lid. Use the thermometer to stir the mixture gently. Measure and record the highest temperature of the mixture.
- Empty, wash and carefully dry the Styrofoam cup.
 Repeat steps 1 to 5 using volumes of HC/ and Ba
- Repeat steps 1 to 5 using volumes of HC/ and Ba(OH)₂ in the table below so that the total volume of the mixture is 100 cm³.
 Record all measurements of volume highest temperature can be an example.
- Record all measurements of volume, highest temperature after mixing and temperature change, ΔT , in the table below.

	r—	r—	1-	T	T	T	т	<u> </u>	,	
8	75	70	ន	ප	5	40	జ	20	10	volume of Ba(OH) ₂ / cm ³
20	25	30	35	40	50	60	70	80	90	volume of HC <i>1</i> / cm ³
									- 1	initial temperature of Ba(OH) ₂ / °C
										highest temperature after mixing / °C
										/°C

River Valley High School 9729/01/PRELIMS/22 2022 Preliminary Examination [Turn over	This document consists of 16 printed pages.		I ne use of an approved scientific calculator is expected, where appropriate.	Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.	Read the instructions on the Answer Sheet very carefully.	Choose the one you consider correct and record your choice in soft penci l on the separate Answer Sheet.	There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A , B , C and D .	Write your name, class, centre number and index number on the Answer Sheet in the spaces provided.	Write in soft pencil. Do not use stables manor cline alter or normative extra	READ THESE INSTRUCTIONS FIRST	Data Booklet	Additional Materials: Multiple Choice Answer Sheet	Paper 1 Multiple Choice 22 September 2022	CENTRE S INDEX NUMBER 9729/01	CLASS 2 1 J		JC 2 PRELIMINARY EXAMINATION	RIVER VALLEY HIGH SCHOOL
River Valley High School 2022 Preliminary Examination		D On average, there are two hydrogen bonds betwe compared to one hydrogen bond between HF molecules.	C There are more electrons in a H ₂ O molecule than there are in a HF molecule so the instantaneous dipole-induced dipole interactions are stronger in H ₂ O.	B Each hydrogen bond formed betweer formed between HF molecules.	A The H ₂ O molecule has a larger net dipole moment than the HF molecule	4 The boiling point of water (100 °C) is greater than that of HF (20 °C). Which statement is a correct explanation of this?	A 1 and 3 only B 2 and 3 only C	$3 \qquad 2M + 5Cl_2 \rightarrow 2MCl_5$	$2 \qquad 2M + 3C_{l_2} \rightarrow 2MC_{l_3}$	1 M + 2C $l_2 \rightarrow$ MC l_4	Which equations show the formation of the chloride of M?	1.E./ kJ mol ⁻¹ 1012 1907 29	1st 2nd	3 The first six ionisation energies (I.E.) of a Period 3 element, M, in kJ mol ⁻¹ are shown.		2 Which particle would on gaining an electron have a how sub-the to the	$(D = \frac{2}{1}H)$ $A NO_2 \cdot B ND_2H$	1 Which particle has more protons than ele
122		are two hydrogen bonds between H ₂ O molecules Irogen bond between HF molecules.	There are more electrons in a H_2O molecule than there are in a HF molecule, so the instantaneous dipole-induced dipole interactions are stronger in H_2O .	Each hydrogen bond formed between H_2O molecules is stronger than that formed between HF molecules.	ipole moment than the HF molecule.	ter than that of HF (20 °C). of this?	C 1 only D 2 only				te chloride of M?	2914 4964 6274 21267	3 rd 4 th 5 th 6 th	[:] a Period 3 element, M, in kJ mol ⁻¹ are	C Se ⁺ D Ti		C NDH- D ND3H+	Which particle has more protons than electrons and more protons than neutrons?

N


- Which molecule contains a dative bond? ŝ
- BF3 ∢
- 0 Z 60
 - 8 ပ
 - SiO2 ۵
- Which gas shows the greatest deviation from ideality? g
- ۵ C₂H₂ υ SO3 ۵ GH₄ 4

çõ

- When a sample of gas is compressed at constant temperature from 20 atm to 80 atm, its volume changes from $67.0~{
 m cm}^3$ to $15.5~{
 m cm}^3$. 1
 - Which of the following is **not** a possible explanation of this behaviour?
- Gas is adsorbed onto the vessel walls. ۷
- Gas begins to liquefy at 80 atm. മ
- The gas dissociates. C
- The gas dimerises. ۵

The titration curve shows how pH changes when 20.0 $\rm cm^3$ of 0.20 mol dm^{-3} acid is titrated against 0.10 mol dm^{-3} base.

œ

Which of the following statements regarding this titration is incorrect?

- The identity of the acid and base could be CH₃COOH and Ba(OH)² respectively. 4
- A buffer solution is formed when 15 cm^3 of the base is added. ß
- The solution at equivalence point is alkaline. ပ
- This is a weak acid-strong base titration. ۵
- Self-heating cans offer benefits to campers without access to a stove or campfire. These soup cans have double walls with an ionic compound such as CaO in a packet and water between the walls. Upon opening the can, the packet breaks, allowing CaO to react with water and warm up the soup. **6**

CaO(s) + H₂O(l) → Ca(OH)₂(s)

is of AH AS and AG for the overall process? . 4 . VA/h

9729/01/PRELIMS/22

River Valley High School 9720/01/PRELIMS/22 2022 Preliminary Examination [Turn over		 12 When 10 cm³ of a hydrocarbon was burnt in 100 cm³ of excess oxygen, the volume of residual gas mixture contracted by 20 cm³ after passing through a solution of aqueous sodium hydroxide. The remaining volume of gas was just sufficient to completely burn exactly 30 cm³ of the same hydrocarbon. All gas volumes were measured at room temperature and pressure. What is the formula of the hydrocarbon? A C₂H₂ B C₂H₃ C C₂H₄ D C₂H₆ 	 11 The enthalpy change of reaction between calcium and water is measured in the laboratory and found to be <i>x</i> kJ mol⁻¹. Ca(s) + 2H₂O(l) → Ca(OH)₂(aq) + H₂(g) ΔH = <i>x</i> kJ mol⁻¹ What information is needed to calculate the value of <i>x</i>? 1 enthalpy change of neutralisation of calcium hydroxide 2 enthalpy change of reaction of calcium with acid 3 enthalpy change of formation of water A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only 	10Hydrogen peroxide is thermodynamically unstable and decomposes over time to form water and oxygen gas. $H_2O_2(l) \rightarrow H_2O(l) + Y_2O_2(g)$ The following data are provided: $O_2(g) + 2H_2(g) \rightarrow 2H_2O(l)$ $\Delta H_1 = -572 \text{ kJ mol}^{-1}; \Delta S_1 = -325 \text{ J mol}^{-1} \text{ K}^{-1}$ $O_2(g) + H_2(g) \rightarrow H_2O_2(l)$ $\Delta H_2 = -188 \text{ kJ mol}^{-1}; \Delta S_2 = -225 \text{ J mol}^{-1} \text{ K}^{-1}$ What is the value of ΔG , in kJ mol}^{-1}, for the decomposition of hydrogen peroxide
River Valley High School 9729/01/PRELIMS/22 2022 Preliminary Examination	 B The overall order of reaction is 3. C The order of reaction with respect to H₂ is 2. D The rate is independent of the concentration of NO. 	15 The reaction between NO and H2 is thought to involve the following mechanism: $2NO = N_2O_2$ (fast) $N_2O_2 + H_2 \rightarrow N_2O + H_2O$ (slow) $N_2O + H_2 \rightarrow N_2 + H_2O$ (fast)Which of the following conclusions can be drawn from this information?AN_2O acts as a catalyst.	$\begin{array}{c} CH_3CO_2CH_2CH_3+H_2O & \stackrel{H^*}{\longrightarrow} CH_3CO_2H+CH_3CH_2OH\\ \text{The rate equation is found to be}\\ & \text{rate}=k\left[CH_3CO_2CH_2CH_3\right]\left[H^*\right]\\ \text{In experiment 1, the half-life was found to be 31 minutes when 0.2 mol dm^{-3} of HC/ was reacted with 0.2 mol dm^{-3} of ethyl ethanoate.\\ \text{In experiment 2, 0.1 mol dm^{-3} of ethyl ethanoate}.\\ \text{How long does it take for the concentration of ethyl ethanoate in experiment 2 to fall to 0.05 mol dm^{-3}?\\ \text{A} 31 \min \text{B} 62 \min \text{C} 93 \min \text{D} 124 \min \end{array}$	1350.0 cm³ of a 0.10 mol dm⁻³ metallic salt solution was found to react exactly with 25.0 cm³ of 0.10 mol dm⁻³ aqueous sodium sulfite. In this reaction, the sulfite ion is $S0_3^{2-}(aq) + H_2O(l) \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$ The oxidation state of metal in the salt solution is +3. What is the oxidation state of

6

S

In a (oxide 3.0 m	Slosed system, the is an example on of Fe with 2.0 m	In a closed system, the reaction between steam and hot iron to form ferroso-ferric oxide is an example of an equilibrium. The reaction is investigated by mixing 3.0 mol of Fe with 2.0 mol of H ₂ O and allowing the equilibrium to establish.	Im and hot iron to f reaction is invest the equilibrium to	orm ferroso-ferric igated by mixing establish.	17 0.1 mol and Sn ^d Releva	0.1 mol solid sodium sulfide was added to a 1 dm ³ sample containing Ag ⁺ , Cu^{24} and Sn^{4*} to obtain saturated solutions for all 3 sulfides. Relevant K_{sp} values are given in the table.	ide was add ed solutions iven in the ta	led to a 1 dm ³ s for all 3 sulfides able.	sample containin s.	g Ag⁺, Cu²⁺
			C°09 1	Ť +		L	salt	Ksp		
		+	IL				Ag2S	6.8×10^{-50}		
	initial moles	3.0 2.0	5	D		.1	CuS	6.3×10^{-36}		
At e Wha	quilibrium, <i>x</i> mol of it are the amounts	At equilibrium, <i>x</i> mol of H ₂ O has reacted with Fe. What are the amounts, in moles, of each of the components of the equilibrium	Fe. f the components	of the equilibrium		J	SnS ₂	1.0×10^{-70}		
mixt	ure?		Ee ³ O4	H2	What a	What are the concentrations, in mol dm 3 , for each of the cations?	ons, in mol d	lm⁻³, for each of	the cations?	
	രി		44	4x		[Ag⁺(aq)]		[Cu ²⁺ (aq)]	[Sn ⁴	[Sn4+(aq)]
۲	$3.0 - \frac{3x}{4}$	2.0 4	\$		4	8.25 × 10 ⁻⁴⁹	 	6.3×10^{-36}	1.0 >	1.0×10^{-68}
ß	$3.0-\frac{4x}{3}$	2.0 <i>- x</i>	4x	4 <i>x</i>	6	8.25 × 10 ⁻²⁵		6.3×10^{-36}	1.0	1.0 × 10 ⁻⁶⁸
ပ	$3.0 - \frac{3x}{4}$	2.0 - x	× 14	x 4	U	8.25 × 10 ⁻²⁵		6.3×10^{-37}	1.0 >	1.0 × 10 ⁻⁶⁹
٥	$3.0 - \frac{4x}{4}$	2.0 - x	* 1*	* 14	۵	8.25 × 10 ⁻⁴⁹		6.3×10^{-37}	1.0	1.0 × 10 ⁻⁶⁹
					18 The pK _a the table	The pK_a values of ethanoic, bromoethanoic and fluoroethanoic actus are given in the table.	ioic, bromoe	ithanoic and fluo	proetnanoic aciu	
							сн _з соон	CH2BrCOOH	CH₂FCOOH	
						pKa	4.76	2.86	2.57	
					Which	Which statements explain these data?	in these dat	a?		
					Ţ	1 Bromine and from the O#H	fluorine are bond in the	Bromine and fluorine are both electronegative and draw electrons away from the O#H bond in the carboxyl group.	ative and draw e	lectrons away
						2 Bromine and fluc carboxylate anion.	orine	are both electr	electronegative and	stabilise the
						3 Methyl group anion.	is are electi	Methyl groups are electron donating and destabilise the carboxylate anion.	id destabilise th	e carboxylate
					A	1 and 2 only B	1 and 3 only	υ	2 and 3 only D	1, 2 and 3
									·	
	-	4759101/PRELIMS/22	122		River Valley High School 2022 Preliminary Examination	School Examination	9729/0	9729/01/PRELIMS/22		

[Turn over____

9729/01/PRELIMS/22

River Valley High School 2022 Preliminary Examination

16

~

œ

River Valley High School 2022 Preliminary Examination	A 2 only B 3 only C 1 and 2 only	 Some of the products are isomeric. 	 Two organic products are obtained. All organic products react with warm according to the second second	P-carotene reacts with hot, acidified KMnO₄. Which statements are correct?	CH3 CH3			20 β-carotene is a red-orange pigment found in carrots.		A 1 and 2 only B 1 and 3 only C 2 and 3 only		2 measurement of e.m.f when the current delivered by the cell is effectively zero	19 Which conditions are necessary when an electrode potential is measured using a standard hydrogen electrode as the reference electrode? 1 the use of hydrogen gas at 1 bar
[Turn over	ily D 1, 2 and 3	arkaline lootne.			ĆH ₃ H ₃ C ČH ₃		H ₃ C			nly D 1, 2 and 3	ectrode	red by the cell is effectively	ential is measured using a ??
River Valley High School 2022 Preliminary Examination						0	œ	>				what halogei	21 Equal a ethano dried a
độ ôn					1.434	1.723	1.434	1.434	×	-	×	What are the possible ma halogen-containing compound?	Equal amounts of comp ethanolic silver nitrate f dried and weighed.
9729/01/PRELIMS/22					1.434	0	0	0	×	mass of p	×	ound?	ound W, X, Y ai
-					1.434	1.434	1.256	1.256	۲	mass of precipitate/ g	(۱۹۹۵) ۱۹۹۵ א	What are the possible masses of the precipitates halogen-containing compound?	Equal amounts of compound W, X, Y and Z are heated separately with excess ethanolic silver nitrate for the same duration. Any precipitate formed is filtered, dried and weighed.
					1.878	1.256	1.723	1.388	Z		(CH3)3CBr Z	0	separately with itate formed is
									l l			Ē	∄ o

10

Which are the products formed when compound ${\bf P}$ reacts with the following reducing agents?

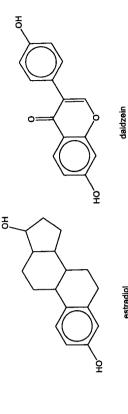
7

- LiA/H4 in dry ether Б HO compound P È È È È FO Б H₂, Ni, heat È <u>Q</u> ۵ υ ۵ ∢
- Which statement is true about the reaction between propanone and hydrogen cyanide? 23

<u>ک</u>

- **A** The sp² hybridised carbon is electrophilic and accepts a pair of electrons.
- The π bond in the carbon-oxygen bond is weak and undergoes homolytic fission. ß
- All carbon atoms in the product are sp^3 hybridised. C
- Nucleophilic attack on the trigonal planar carbon centre forms a racemic mixture. ۵
- River Valley High School 2022 Preliminary Examination

9729/01/PRELIMS/22

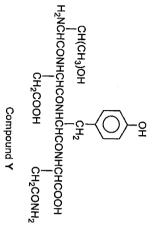

[Turn over_

River Valley High School 2022 Preliminary Examination

9729/01/PRELIMS/22

Estradiol is an estrogen steroid hormone and daidzein is a natural isoflavone with estrogen-like activity.

24

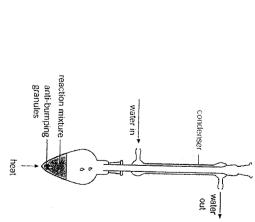


You may assume that the C#O#C bond in daidzein is unreactive. Which reagent cannot be used as a distinguishing test?

estradioi

- acidified potassium dichromate(VI), heat ∢
- phosphorous pentachloride ß
- 2,4-dinitrophenylhydrazine ပ
- aqueous bromine ۵
- Which statements best describe the reaction mechanism involved in the conversion of chloroethane to ethanol? 25
- The reaction mechanism involves a carbocation. **~**---
- The rate determining step involves both the chloroethane and the nucleophile. 2
- The reaction mechanism involves heterolytic fission of the C#CI bond. ი
- The activation energy of the first step of the mechanism is greater than that of the second step. 4
- C 1, 3 and 4 only D 2, 3 and 4 only B 2 and 3 only A 2 only

13


.

Which of the following statements is incorrect?

- A Two moles of Brz are needed for complete reaction with one mole of compound Y.
- B Two moles of Na₂CO₃ are needed for complete reaction with one mole of compound Y.
- C Prolonged heating of compound Y with dilute NaOH liberates an alkaline gas.
- D Prolonged heating of compound Y with dilute NaOH produces three carbon-containing products.

27 The set-up below is commonly used in the synthesis of organic compounds in the laboratory.

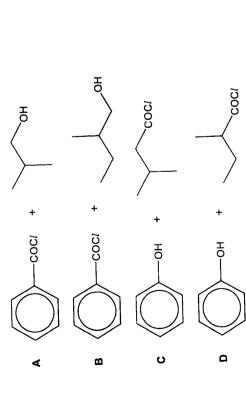
14

Which reaction requires the above set-up for synthesis?

 $\mathsf{CH_3CH_2NH_2} + \mathsf{CH_3COC}/ \rightarrow \mathsf{CH_3CONHCH_2CH_3} + \mathsf{HC}/$

⋗

- B CH₃COCl + H₂O → CH₃COOH + HCl
- **C** CH₃CH₂OH + [O] \rightarrow CH₃CHO + H₂O
- $CH_3CONH_2 + NaOH \rightarrow CH_3COONa + NH_3$


D

9729/01/PRELIMS/22

River Valley High School 2022 Preliminary Examination

9729/01/PRELIMS/22

15

When drops of NH3(aq) are added to Cu(NO3)2(aq), a pale blue precipitate is formed. This precipitate dissolves when an excess of NH3(aq) is added, giving a dark blue solution. 29

Which of the following process does not occur?

- ligand exchange 4
- acid-base reaction ۵
- reduction of Cu²⁺ ions υ
- formation of a complex ion ۵

- **1**6
- Iron, a transition metal, is used in the Haber process. Which of the following statements best explains the role of iron in this application? 30
- Iron has partially filled 3d orbitals for adsorption of reactant molecules. <
- Iron exhibits variable oxidation states in its compounds as 3d and 4s electrons have similar energies. 8
- Iron has a very high melting point as both 3d and 4s electrons contribute to forming strong metallic bonds. υ
- Iron forms coloured ions due to absorption of energy in the visible light region to promote an electron from a lower energy to a higher energy 3d orbital. ۵

- End of paper -

9729/01/PRELIMS/22

River Valley High School

Turn over

River Valley High School 2022 Preliminary Examination

9729/01/PRELIMS/22