TEMASEK JUNIOR COLLEGE

2022 JC2 PRELIMINARY EXAMINATION

Higher 2

CANDIDATE NAME		
CENTRE NUMBER	S	INDEX NUMBER
Chemistry		9729/02
Paper 2 Structu	red Questions	25 August 2022

2 hours

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, index number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions in the spaces provided on the Question Paper. The use of an approved scientific calculator is expected, where appropriate.

The number of marks is given in brackets [] at the end of each question or part question.

For Exami	ner's Use	
Paper 1		/30
Paper 2	Q1	/9
	Q2	/14
	Q3	/10
	Q4	/8
	Q5	/20
	Q6	/14
	Total	/75
Paper 3		/80
TOTAL (%)		/100

This document consists of 23 printed pages and 1 blank page.

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

BP~506

2 DO NOT WRITE IN THIS MARGIN

Answer all the questions in the space provided.

1 (a) Element W is from Period 5 of the Periodic Table. The first eight ionisation energies of element W, in kJ mol⁻¹, are

869 1800 2690 3610 5720 6670 12000 13800

(i) Identify element W and explain your answer.

(ii) Explain the difference between the first ionisation energy of element W compared to the element to its left on the Periodic Table.

- (b) The chlorides of elements in Period 3 of the Periodic Table show different behaviours on addition to water.
 - (i) Describe and explain the reactions of aluminium chloride, A/Cl_3 , and phosphorus pentachloride, PCl_5 , with excess water.

Write equations for any reactions that occur.

(ii) The reaction of PCl_5 with limited amount of water involves step-wise substitution of -Cl with -OH.

Write the overall balanced equation for the reaction of PC*l*₅ with limited amount of water. Hence, suggest a three-step reaction sequence for this reaction.

Overall equation:	
Step 1:	
Step 2:	
Step 3:	
	[2]

[2] [Total: 9] DO NOT WRITE IN THIS MARGIN

2 Boron trifluoride, BF_3 , and aluminium fluoride, AlF_3 , differ markedly in their physical properties.

compound	melting point / °C
BF ₃	-127
AlF3	1291

(a) (i) State the type of bonding present in each of these compounds and draw 'dot-and-cross' diagrams in the boxes below to illustrate this bonding.

_			
	Type of bonding:	Type of bonding:	
	BF₃	AlF ₃	DON
(ii)	Outline the principles of the Valence Shell	[2] Electron Pair Repulsion theory.	DO NOT WRITE IN THIS MARGIN
			Z

(iii) Boron trifluoride forms a compound with ammonia.

Use the Valence Shell Electron Pair Repulsion theory to predict and draw the likely shape of the product formed from this reaction.

Shape of product:

Cyclobutane is an example of a cyclic alkane. While itself has no commercial or biological significance, more complex derivatives of cyclobutane are important in biology and biotechnology.

Cyclobutane decomposes to ethene as shown by the following equation.

 $(g) \rightarrow 2CH_2 = CH_2(g) \qquad \Delta H_{decomp}^{\Theta}$

A student planned to determine $\Delta H_{decomp}^{\Theta}$ by using the standard enthalpy changes of combustion of cyclobutane and ethene, represented by ΔH_c^{Θ} (cyclobutane) and ΔH_c^{Θ} (ethene) respectively. Both substances are gases at 298 K.

 ΔH_c^{Θ} (ethene) was previously determined to be –1411 kJ mol⁻¹ in a flame calorimetric experiment.

To determine ΔH_c^{Θ} (cyclobutane), the student decided to conduct another flame calorimetric experiment under the same conditions.

There are two stages to this experiment.

Stage I : Calibration of calorimeter (i.e. copper can, water and other components in the calorimeter)

> In the experiment, the calorimeter must first be calibrated by determining its DO NOT WRITE IN THIS MARGIN heat capacity, C, which is the amount of heat required to raise the temperature of the calorimeter by 1 K.

Stage II : Determination of ΔH_{c}^{Θ} (cyclobutane) using the calibrated calorimeter.

The student carried out the flame calorimetric experiment using the calorimeter. Part of his results is shown below.

Stage I, using ethene as the fuel,

•	change in t	temperature	of water	=	33.8 °C

 $= 1.00 \, \mathrm{a}$ mass of gaseous ethene burnt

Stage II, using cyclobutane as the fuel,

•	change in temperature of water	=	32.9 °C
---	--------------------------------	---	---------

- mass of gaseous cyclobutane burnt = 1.00 g
- Use the above information and experimental results to calculate the heat capacity, C, (i) (b) of the calorimeter.

[2]

(ii) Use your answer to (b)(i) to determine ΔH_c^{Θ} (cyclobutane).

[2]

(iii) Hence, calculate the standard enthalpy change of decomposition of cyclobutane to ethene, $\Delta H_{decomp}^{\Theta}$.

DO NOT WRITE IN THIS MARGIN

(c) (i) Use data from the *Data Booklet* and the △H[⊕]_{decomp} obtained in (b)(iii) to calculate the actual C–C bond energy in cyclobutane.

[You may assume that the difference between the C–H bond energy in cyclobutane and in ethene, and the difference between the C=C bond energy from the *Data Booklet* and in ethene are insignificant.]

[2]

[Turn over

(ii) Suggest an explanation for the difference between the average C–C bond energy from the *Data Booklet* and the actual value calculated in (c)(i).

[Total: 14]

3 (a) SO₂ gas is found in air near volcanoes. 213 cm³ of SO₂ collected at r.t.p. near a volcano required 25.0 cm³ of 0.120 mol dm⁻³ acidified potassium dichromate(VI) solution for complete reaction.

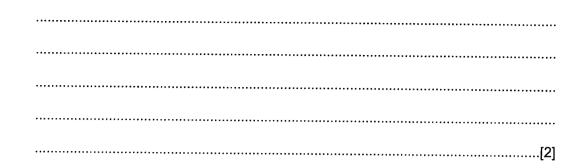
Calculate the final oxidation state of sulfur in the product mixture.

[2]

(b) The Contact process is an important industrial method of manufacturing sulfuric acid.

The key stage of the Contact process is the reaction between sulfur dioxide and oxygen:

 $2SO_2(g) + O_2(g) \implies 2SO_3(g)$ ------ Equation 1


Table 3.1 shows how the percentage of sulfur trioxide in the equilibrium mixtures varies with temperature as well as the volume of the reaction vessels.

Temperature /°C	Percentage of sulfur trioxide in the equilibrium mixture for vessel			
-	Α	В	С	
800	1.68	0.009	0.88	
700	2.98	0.016	1.54	
600	5.70	0.032	3.02	
500	11.9	0.077	6.71	

Table 3.1

Using the data in Table 3.1,

(i) explain whether the forward reaction is exothermic or endothermic.

(ii) explain and rank the three vessels in order of decreasing volume.

A mixture containing 2 moles of SO₂ and 1 mole of O₂ was heated in a closed 3.60 dm³ flask at 500 °C and allowed to reach equilibrium. The flask was then rapidly cooled to liquefy SO₃.

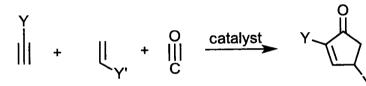
After removing gaseous SO₂ and O₂, excess water was carefully added to the liquid SO₃, $a_{P_2}^{X}$ causing the following reaction to occur:

 $SO_3(l) + H_2O(l) \rightarrow H_2SO_4(aq)$ ------ Equation 2

The resulting solution was made up to 250 cm³ in a standard volumetric flask. 25.0 cm³ of this solution was titrated with 5.00 mol dm⁻³ NaOH and required 38.50 cm³ for complete neutralisation.

(iii) Calculate the equilibrium amount of SO₃ at 500 °C.

[Turn over


(iv) Hence, calculate a value for the equilibrium constant, K_c , of equation 1.

[2]

DO NOT WRITE IN THIS MARGIN

[Total: 10]

(a) The Pauson-Khand reaction is a gas phase reaction between an alkyne, an alkene and carbon monoxide to form a cyclic carbonyl compound, as shown in Fig. 4.1.

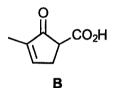
where Y and Y' can be Cl or H.

Fig. 4.1

An organic compound **A** was produced from the Pauson-Khand reaction. The compound has the following composition by mass; 51.5 % C, 13.7% O, 30.5% C*l* and 4.3% H. The relative molecular mass of **A** is 116.5.

Upon heating with ethanolic AgNO₃, A gave a white precipitate.

(i) Determine the molecular formula of **A** and draw its structural formula.


4

[2]

(ii) Draw a diagram to show the orbitals of the carbonyl carbon in compound **A**. State the type of hybridisation involved.

Type of hybridisation:

(b) Another possible product of the Pauson-Khand reaction is shown below:

Draw the organic product formed when **B** reacts with each of the following.

(i) cold KMnO₄(aq) in KOH(aq)

(ii) LiA*l*H₄

DO NOT WRITE IN THIS MARGIN

[1]

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN ····

[Turn over

(c) A flask with a volume of 100 cm³ was first weighed with air filling the flask, and then with another gas Z, filling the flask. The results, measured at 26 °C and 1.00 x 10⁵ Pa are shown.

Mass of flask containing air	= 47.930 g
Mass of flask containing Z	= 47.989 g
Density of air	= 0.00118 g cm ⁻³

Calculate the relative molecular mass of Z.

BP~517

The 'bromine clock' involves a reaction between bromide ions and bromate(V) ions in acid (a) solution:

 $5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(I)$

The reaction can be monitored by adding phenol and a constant volume of methyl red to all the experiments.

Phenol reacts immediately with the bromine as it is produced. Once all the phenol added has reacted, the bromine that is subsequently produced will oxidise the methyl red causing the disappearance of the red colour in the reaction mixture.

A series of experiments were carried out to investigate the order of reaction with respect to [BrO₃-] and the results obtained are shown in Table 5.1.

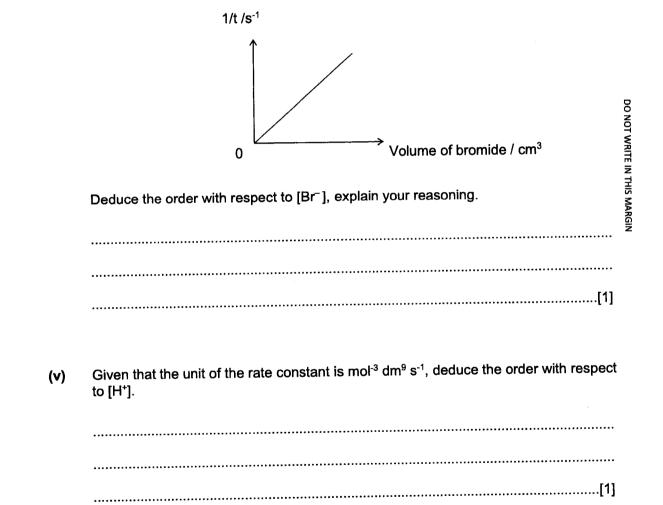
Expt	Volume of BrO3 ⁻ / cm ³	Volume of Br⁻/ cm³	Volume of H⁺ / cm³	Volume of phenol / cm ³	Volume of deionised water / cm ³	Time taken for the colour of methyl red to disappear /s
1	5.0	5.0	10.0	1.0	11.0	82
2	10.0	5.0	10.0	1.0	6.0	42
3	10.0	5.0	10.0	2.0	5.0	x

Table 5.1

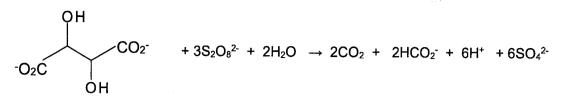
(i) Write an equation for the reaction between phenol and bromine water. DO NOT WRITE IN THIS MARGIN

[1]

(ii) Deduce the order of reaction with respect to [BrO₃⁻]. Explain your reasoning.


.....[1]

5


(iii) Using your answer in (a)(ii), calculate the value of x.

[1]

(iv) Another series of experiments were conducted with varying volumes of bromide ions and large excess of BrO₃[−] and H⁺. The total volume of the mixture was kept constant. The results obtained were used to plot a graph of 1/t against the volume of bromide.

The reaction between S₂O₈²⁻ and tartrate ions is catalysed by iron(III) ions and the overall (b) equation is as shown.

Tartrate ions

Write equations to illustrate how iron(III) ions catalyses the reaction.

8

(c)

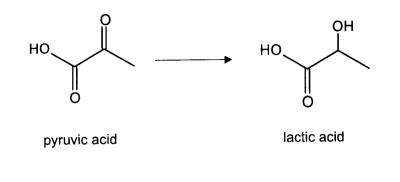
Methyl red is a pH indicator. It is red when the pH is less than 4.4 and yellow when the pH is above 6.2. In microbiology, methyl red is used to identify bacteria that produces acids from the metabolism of glucose. The type of acid produced depends on the specific enzymatic pathways present in the bacteria. All the bacteria initially metabolise glucose to pyruvic acid, CH₃COCO₂H. After which, some bacteria use the mixed acid pathway to metabolise pyruvic acid while other bacteria use the

bacteria use the mixed acid pathway to metabolise pyruvic acid while other bacteria use the butanediol fermentation pathway. The products formed and the colour of methyl red are shown in Table 5.2.

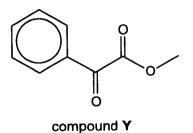
Metabolism pathway	Products formed per mole of glucose	Colour of methyl red
Mixed acid pathway	4 mol of acids (mainly lactic acid, CH ₃ CH(OH)CO ₂ H, and ethanoic acid), 1 mol of ethanol, 1 mol of CO ₂ 1 mol of H ₂	Red
Butanediol fermentation pathway	1 mol of acid	Yellow

Table 5.2

(i) Explain the colours of methyl red shown in Table 5.2.


.....[1]

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN


[Turn over

16 DO NOT WRITE IN THIS MARGIN

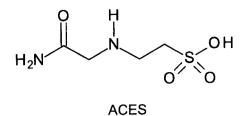
(ii) State the reagent and condition to obtain lactic acid from pyruvic acid.

- Reagent and condition:[1]
- (iii) Suggest the reagents and conditions, including the structures of the intermediates, for the synthesis of compound **Y** from pyruvic acid.

(d) Table 5.3 shows the pK_a values of some compounds, including phenol.

Table 5

Compound	pKa
Phenol	10.0
Phenylmethanol, C ₆ H ₅ CH ₂ OH	15.4
Phenylmethanethiol, C ₆ H ₅ CH ₂ SH	9.93


(i) Suggest how the acidities of phenol and phenylmethanol compare with each other.

[2]

(ii) Suggest a reason why the pK_a for $C_6H_5CH_2SH$ is much lower than that for $C_6H_5CH_2OH$.

More papers at www.testpapersfree.com

(e) ACES, $C_4H_{10}N_2O_4S$, is another compound containing sulfur.

ACES has a pK_a value of 6.88.

(i) Draw the structure of the product formed when dilute hydrochloric acid is added to ACES at room temperature.

(ii) Draw the structure of the conjugate base of ACES.

(iii) The pH of a solution of ACES is 2.2.Calculate the ratio of [conjugate base of ACES] to [ACES].

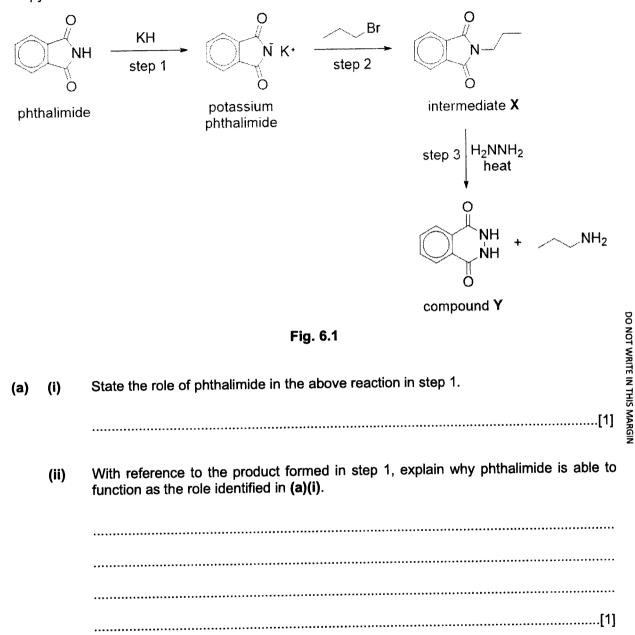
[1]

[1]

DO NOT WRITE IN THIS MARGIN

(iv) 0.0200 mol of the conjugate base of ACES is dissolved in 100 cm³ of deionised water. 50 cm³ of 0.300 mol dm⁻³ of hydrochloric acid was added to the solution.

Given that the conjugate base reacts with hydrochloric acid in a 1:1 stoichiometry, calculate the pH of the solution.


[Total: 20]

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

6 The Gabriel synthesis is a 3-step approach to synthesis amines. Phthalimide is used as the main reactant, which has a nitrogen atom flanked by two carbonyl groups.

Propylamine is obtained from the Gabriel synthesis method as shown in Fig. 6.1.

9729 / TJC Prelims / 2022

DO NOT WRITE IN THIS MARGIN

(b) Step 2 of Gabriel synthesis is a nucleophilic substitution reaction.

With reference to the structures of relevant reactants, explain why potassium phthalimide does not react with 2-bromo-2-methylpropane at all.

(c) Suggest another reagent and condition used to liberate the free amine from intermediate X in the last step.

Construct a balanced equation for this reaction, showing the structures of all reactants and products.

DO NOT WRITE IN THIS MARGIN

[2]

(d) A sample contains both propylamine and compound Y after the Gabriel synthesis shown in Fig. 6.1. A student decides to purify propylamine from the impure sample and starts by adding an equal volume of dilute hydrochloric acid, with stirring, to the sample.

Some physical data for various compounds are given in Table 6.1.

	propylamine	water	compound Y
Density / g cm ⁻³	0.719	1.0	1.3
Boiling point / °C	47.8	100.0	523.5

Table 6.1

(i) With reference to structure and bonding, explain the purpose of the addition of dilute hydrochloric acid in the purification process.

(ii) Starting with the mixture from (d)(i), plan an experiment to purify propylamine from the impure mixture.

Your plan should include details of:

- how propylamine is obtained in its anhydrous liquid form; and
- suitable apparatus used.

	·····	
	[3]	_
		8
		ž
(e)	A student made the following statement in his journal	NOT WR
(e)	A student made the following statement in his journal "Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine."	NOT WRITE IN THI
(e)		NOT WRITE IN THIS MARGI
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine."	DO NOT WRITE IN THIS MARGIN
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine.") NOT WRITE IN THIS MARGIN
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine.") NOT WRITE IN THIS MARGIN
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine.") NOT WRITE IN THIS MARGIN
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine.") NOT WRITE IN THIS MARGIN
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine." Comment on the validity of the student's statement.) NOT WRITE IN THIS MARGIN
(e)	"Using a 2:1 mole ratio of bromomethane and potassium phthalimide in the Gabriel synthesis method will produce a dimethylamine." Comment on the validity of the student's statement.) NOT WRITE IN THIS MARGIN

[Total: 14]

BLANK PAGE

	TEMASEK JUNIOR COLLEGE 2022 JC2 PRELIMINARY EXAMINATIC Higher 2	ON TEMASEK
CANDIDATE NAME		/ICS
CENTRE NUMBER	S INTRO-	DEX
Chemistry		9729/03
Paper 3 Free Response		14 September 2022
		2 hours

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Do NOT open this booklet until you are told to do so.

Write your name, civics class, centre number and index number on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.

A Data Booklet is provided.

The use of an approved scientific calculator is expected, where appropriate.

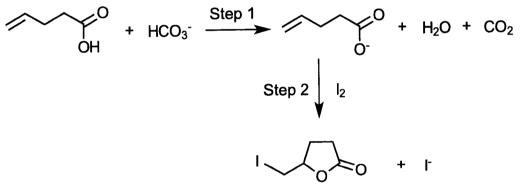
The number of marks is given in brackets [] at the end of each question or part question

For Exami	ner's Use	
Paper 3	Q1	/18
	Q2	/20
	Q3	/22
	Q4	/20
	Q5	/20
	Total	/80

This document consists of 28 printed pages.

Section A

Answer all the questions in this section.


1 (a) Iodolactonisation reaction was first reported by M. J. Bougalt in 1904 and has since become one of the most effective ways to synthesise lactones.

An example of the iodolactonisation is the reaction of 4-pentenoic acid as shown in Fig 1.1.

Two simplified steps in the iodolactonisation mechanism are given in Fig 1.2.

Compound X

[1]

DO NOT WRITE IN THIS MARGIN

- (i) Suggest the role of HCO_3^{-1} in step 1.
- (ii) Suggest the mechanism for reaction taking place in step 2. Show all charges and relevant lone pairs and show the movement of electron pairs by using curly arrows.
 [3]
- (iii) Sketch a well-labelled reaction pathway diagram for the reaction in **step 2**, given that the reaction is exothermic. [2]
- (iv) Suggest the structural formulae of the final organic product formed when CH₂=CHCH(CH₃)CH₂COOH undergoes iodolactonisation in a similar process in Fig 1.1. [1]

		•
		ı
		I.
	,	I
		_
		DO NOT
		WRITE IN
		N THIS N
		IARGIN

(b) Carbon monoxide is one of the most widespread and dangerous industrial hazards. The formation of carboxyhaemoglobin, Hb(CO)₄, takes place much more readily than the formation of oxyhaemoglobin, Hb(O₂)₄.

$$Hb(aq) + 4O_2(aq) \implies Hb(O_2)_4(aq)$$

A treatment method for carbon monoxide poisoning is to provide the patient with pure oxygen gas over a period of time.

With reference to the equations given above, explain why this is a suitable treatment method. [2]

(c) The water-gas shift reaction is used to produce hydrogen gas industrially by reacting carbon monoxide with water vapour.

$$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$$

An evacuated tank was initially filled with 0.0197 atm of CO and 0.0394 atm of H₂O at 600 K. It was sealed and left to stand. At equilibrium, the partial pressure of CO₂ was found to be 0.0191 atm.

(i) Calculate the value of K_p at 600 K.

Table 1.1 shows how the value of K_p varies with temperature.

T/K	300	900	1500
value of K_{p}	1.170 x 10⁵	1.978	0.2195

Table 1.1

(ii) The Gibbs free energy, ΔG^{\ominus} (in J mol⁻¹), and the equilibrium constant, $K_{\rm P}$, of a reaction are related by the following equation:

$$\Delta G^{\Theta} = - \operatorname{RT} \ln K_{\rm p},$$

where R is the molar gas constant and T is the temperature in Kelvins.

Using the given values of K_p , calculate the values of ΔG° at 300 K and 900 K. Hence, determine the value of ΔS° for the water-gas shift reaction.

(Assume that both ΔH^{Θ} and ΔS^{Θ} are independent of temperature.) [3]

- (iii) Comment on the magnitude of the calculated value of ΔS^{Θ} . [1]
- (iv) With the aid of a sketch of the Boltzmann distribution, explain how an increase in temperature affects the rate of water-gas shift reaction. [3]

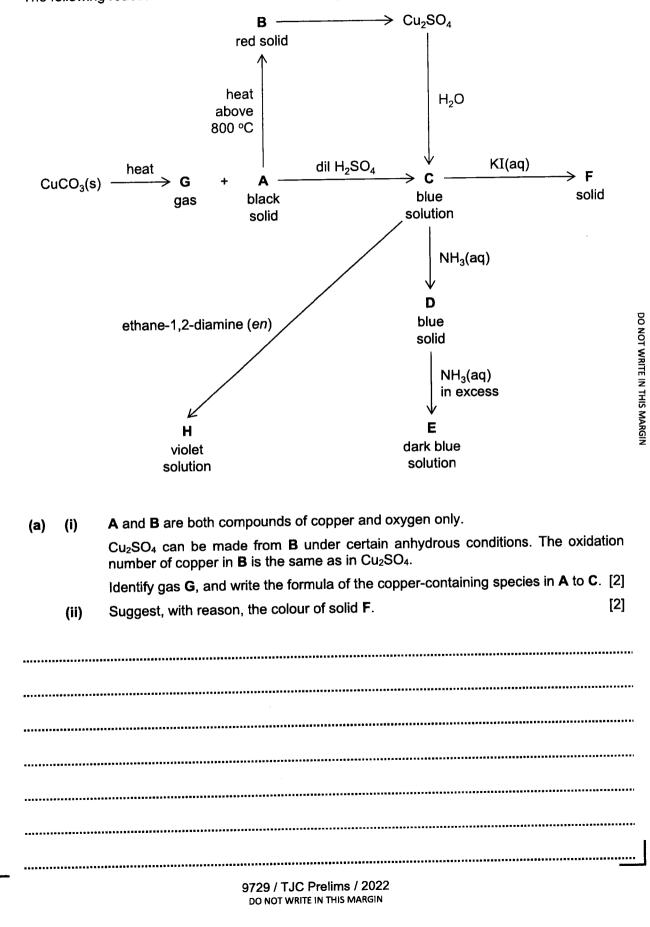
9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

[2]

	-
	•
	•
	•
	•
	•
	ı
	·
	I
	4OT W
	RITE IN
	I THIS N
	DO NOT WRITE IN THIS MARGIN
[Total:18]	L

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

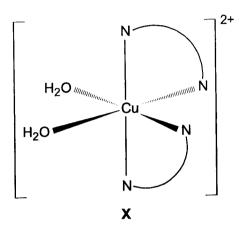

[Turn over

×.

DO NOT WRITE IN THIS MARGIN

2 Copper is a typical transition element with more than one oxidation state. Many of its compounds have colours in the blue-green-yellow part of the visible spectrum.

The following reaction scheme shows the chemistry of some copper-containing species.


••••••		

	Explain the transformations from C to E in terms of the competing equilibria and the type of reaction that has occurred. Include equations and the formulae of all copper-containing species. [4]	DO NOT WRITE IN THIS MARGIN
		TE IN TH
		IIS MAR
		ΰŻ
•••••		
•••••		

More papers at www.testpapersfree.com

(c) Like many organic compounds, transition metal complexes also exhibit stereoisomerism, namely *cis-trans* isomerism and enantiomerism.

For example, $[Cu(en)_2(H_2O)_2]^{2+}$, the complex ion present in **H**, has three stereoisomers, **X**, **Y** and **Z**. One of these stereoisomers, **X**, is shown below.

(N N represents the *en* ligand.)

X and Z are <i>cis-trans</i> isomers, while Y is an enantiomer of X.	
Draw and label clearly the three-dimensional diagrams of Y and Z. You should	use
N N to represent the <i>en</i> ligand.	use [3]
	•••••

(d) Selective precipitation is a technique of separating ions in an aqueous solution by using a reagent that precipitates one or more of the ions, while leaving other ions in solution. In the case of Cu²⁺ ions, the separation is achieved by adjusting the pH so that only Cu²⁺ ions are precipitated.

In an experiment, a student adds sodium hydroxide gradually to a solution containing 0.100 mol $dm^{-3} Cu^{2+}$ ions and 0.100 mol $dm^{-3} Fe^{2+}$ ions.

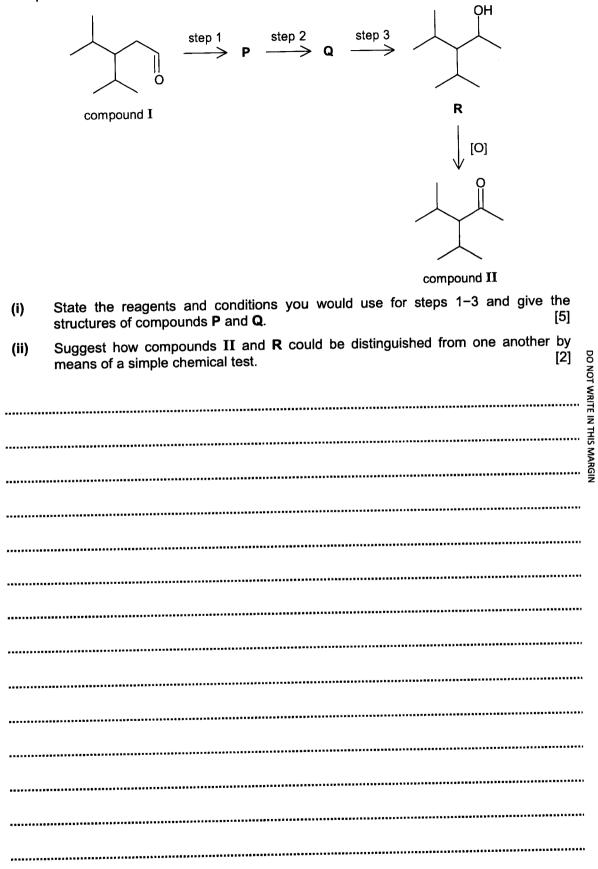
Relevant K_{sp} values are given in Table 2.1.

metal hydroxide	K _{sp} / mol ³ dm ⁻⁹		
Cu(OH) ₂	2.2 × 10 ⁻²⁰		
Fe(OH) ₂	8.0 × 10 ⁻¹⁶		

Table 2.1

Determine the pH at which maximum separation of the two cations is achieved. [2]

DO NOT WRITE IN THIS MARGIN


9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

More papers at www.testpapersfree.com

10 DO NOT WRITE IN THIS MARGIN

(e) Compound II can be converted from compound I in four steps.

[Total: 20]

3 (a) The reaction of SiBr₄ with moist ethoxyethane produces two oxybromides with the formula $Si_3O_2Br_8$ ($M_r = 755.5$) and Si_2OBr_6 ($M_r = 551.6$).

When 0.192 g of one of the oxybromides reacts with excess water, all the bromine atoms are converted to bromide ions. Excess silver nitrate is added and 0.392 g of cream precipitate is obtained.

- (i) Determine, with the aid of calculations, the identity of the oxybromide which reacted with excess water. [2]
- (ii) The cream precipitate was only sparingly soluble in excess aqueous ammonia. However, on addition of aqueous sodium cyanide, the precipitate completely dissolves.

The numerical values of the stability constant, K_{stab} , for the relevant complex ions are given below.

Complex	Stability constant / Kstab	
[Ag(NH ₃) ₂] ⁺	1.7 x 10 ⁷	
[Ag(CN) ₂] ⁻	1.0 x 10 ²¹	

With reference to the table above, briefly explain the observations above as fully as you can. [3]

,

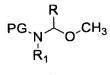
[2]

(b) Polypeptide chain Y has a sequence of 8 α-amino acids. 2 enzymes, E1 and E2, are added to separate samples of Y and the following fragments are obtained.

Fragments after reaction with E1	Fragments after reaction with E	
val-gln-phe	cys-phe-val	
cys-phe	gIn-lys-asp	
gln-lys-asp	gIn-phe	

E1 hydrolyse the peptide bond at the carboxylic acid end of phenylalanine (phe) while **E2** hydrolyse the peptide bond at the amino end of glutamine (gln).

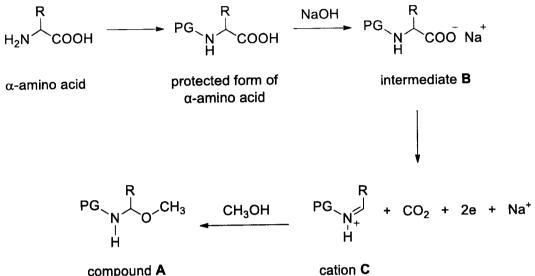
- (i) Under specific conditions, the dipeptide cys-phe exists as a zwitterion. Explain
 - the term "zwitterion"; and
 - one physical property of the cys-phe dipeptide to support its existence as a zwitterion.


The table below shows the R group of some α -amino acids and the pK_a values of respective functional groups.

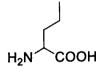
Amino acid	Structure of R-group	p <i>K</i> ₂ of α-amino group	p <i>K</i> ₄ of α- carboxylic group	pK₄ of R group
cys	-CH₂SH	10.28	1.91	8.14
phe		9.09	2.18	-

- (ii) Draw the zwitterion of cys-phe and determine a pH at which the cys-phe exists as a zwitterion as the predominant species. [2]
- (iii) Deduce the sequence of the amino acids in polypeptide chain Y.

 ••
 ••
 -
 -
 •
 •
 •
-
 DO NOT WRITE IN THIS MARGIN
 RITE IN
 THIS MAP
 GIN
 •
 ı
 I


Compound **A** is formed from the electrolysis from α -amino acids in methanol solvent,

compound A


where R is alkyl, R_1 is alkyl or hydrogen and PG is the protecting group, CH_3

The α-amino acids are first converted to its protected form, followed by reaction with sodium hydroxide to form an intermediate, B.

At the anode, the anion in intermediate **B** undergoes decarboxylation to form cation **C**. No other reactions occur at the anode.

Norvaline is an α -amino acid which is used in dietary supplement for bodybuilding. It undergoes the electrolysis reaction above.

norvaline

(c)	State	the reagent and condition to convert norvaline to its protected form.	[1]
(d)	Com	pound A undergoes hydrolysis to form amine X .	
	(i)	Draw the structure of amine X , when norvaline undergoes the electrolysis read above, followed by hydrolysis.	ction [1]
	(ii)	Explain the difference in basicity of amine X and 2-aminopentane.	[2]
	. ,	NH ₂	

2-aminopentane

		D
		O NOT V
		VRITE IN
(e)	Cation C subsequently reacts with methanol, which acts as a nucleophile, to give A in 2 steps. Step 1: methanol attacks the electron deficient carbon in cation C , to form another cation	HIS MARGIN
	intermediate.	
	Step 2: the intermediate undergoes deprotonation to give A.	
	Starting with the appropriate structure of C which is produced from norvaline, use appropriate curly arrows to show how the A is formed at the anode. Show clearly the charges and lone pair of electrons as well as structure of intermediate formed. [2]	

[Turn over

- The standard reduction potential of CO₂/CH₃OH is +0.45 V, measured against the (f) (i) standard hydrogen electrode. Write the ion-electron half reaction for the complete oxidation of methanol. [1] With reference to the reaction occurring at the anode for the electrolysis, suggest a (ii) suitable standard reduction potential value for (cation C)/(intermediate B) and [2] explain your answer. The efficiency of the electrolysis reaction of compound A is around 95%. (g) A current of 0.1 A was applied to the electrolytic cell consisting of N-protected norvaline for 1 hour.
 - Calculate the mass of compound **A** produced at the anode when norvaline undergoes the electrolysis reaction. [M_r of **A**: 145.0] [2]

[Total: 22]

[1]

DO NOT WRITE IN THIS MARGIN

Section B

Answer one question from this section.

4	(a)		ectrochen ning Zn ²⁺ ,		l consi	ists c	ofa	half-cell	containing	Sn⁴⁺/Sn²	+ and	another	half-	cell
		(i)	Draw a	fully la	belled	diaa	ram	of the	experiment	al setup	used	to mea	sure	the

- standard potential of this cell. [2]
- (ii) Use data from the Data Booklet to calculate a value for the standard cell potential.
- (iii) Explain how the cell potential will change when a small amount of sodium carbonate is added to the Zn²⁺/Zn half-cell. [2]
- (iv) Thermal decomposition of zinc carbonate is an endothermic reaction. Explain why the decomposition reaction is spontaneous at high temperature. [1]
- (v) Using relevant data from the *Data Booklet*, explain the relative thermal stability of zinc carbonate and calcium carbonate. [2]

	DO NOT
	WRITE
	DO NOT WRITE IN THIS MARGIN
	MARGIN
	•
	•
	•
	-
	•
	•
	•

	ı
	,
	,
	•
	•
	•
	•
	•
	•
	. DO
	NOT WR
	TE IN TH
	DO NOT WRITE IN THIS MARGIN
	Ĩ
	•
	••
	••
	••
	••
	••
	••
	••
9729 / TJC Prelims / 2022	

[2]

(b) An oxide of tin, G, contains the metal in both oxidation states II and IV. G was dissolved in excess H₂SO₄(aq) to produce solution H, which contains a mixture of tin(II) sulfate and tin(IV) sulfate. Solution H was divided into two portions.

A 25.0 cm^3 of one potion required 17.40 cm^3 of 0.0150 mol dm 3 KMnO4 to reach the end-point.

An excess of powdered zinc was added to another portion of **H**. The mixture was stirred until the reaction was complete, and then filtered. 25.0 cm³ of the filtrate required 26.10 cm³ of 0.0150 mol dm⁻³ KMnO₄ to reach the end-point.

The equation for the titration reaction is as follows.

 $2MnO_4^- + 16H^+ + 5Sn^{2+} \rightarrow 2Mn^{2+} + 8H_2O + 5Sn^{4+}$

- (i) Deduce the Sn^{2+}/Sn^{4+} ratio in the oxide **G**, and hence suggest the formula of **G**. [3]
- (ii) Tin(IV) oxide, SnO₂, reacts separately with both acids and alkalis.

Write separate equations for the reaction of tin(IV) oxide with

- hydrochloric acid
- sodium hydroxide

•
 DO N
 DO NOT WRITE IN THIS MARGIN
 E IN THI
 S MARG
ž

(c) Halogenoalkanes react with lithium to give organolithium compounds.

These organolithium compounds can react with carbonyl compounds to form alcohols, as shown in Fig. 4.1.

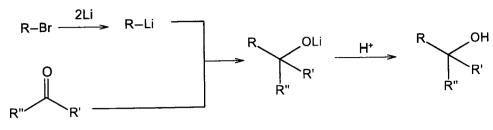


Fig. 4.1

(R is alkyl, R' and R" are either alkyl or H)

- (i) Draw the skeletal formula of the organic product formed when bromoethane is reacted with lithium, followed by cyclopentanone in a similar synthetic route as shown in Fig. 4.1. [1]
- (ii) Compound J, $C_{10}H_{14}NBr$, decolourises aqueous bromine to give a white precipitate K, $C_{10}H_{12}NBr_3$.

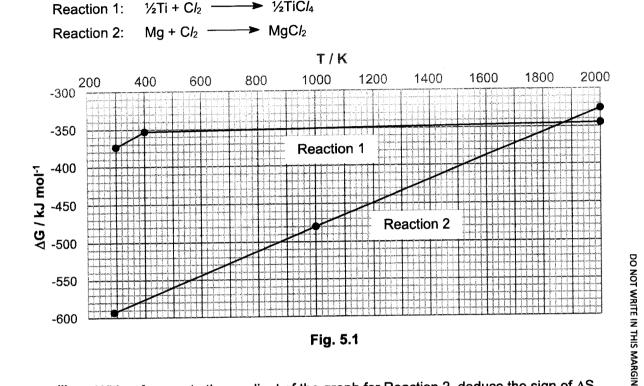
J reacts with hot alcoholic NaOH to form isomers L and M, with the formula $C_{10}H_{13}N$. When heated with acidified KMnO₄, L gives effervescence, whereas M gives N as one of the products. Reacting the N with bromomethane according to the sequence in Fig. 4.1 gives 2-methylpropan-2-ol.

Heating J gives P, C10H13N as the organic product.

Suggest the possible structures of **J**, **K**, **L**, **M** and **P**. For each reaction, state the *type* of *reaction* described and explain what the information tells you about the functional groups present in each compound. [6]

 •
 •
 •
 •
 •
 •
 •
 8
 DO NOT WRITE IN THIS MARGIN
 RITE IN T
 HIS MAF
 RGIN
 r.

[Total: 20]


9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

5 (a) In 1944, T. Ellingham published plots of Gibbs free energy change, ΔG , against temperature, T, for several reactions. Today, such plots are called Ellingham diagrams.

At present, titanium is more commonly produced by reducing titanium tetrachloride with magnesium. Titanium tetrachloride is a colourless liquid that boils at 400 K. To optimise this reduction process, it is necessary to know how ΔG of the reaction changes with T.

Fig. 5.1 shows the variation in ΔG with T for the following reactions:

With reference to the gradient of the graph for Reaction 2, deduce the sign of ∆S.
 Hence, explain why the graph for Reaction 2 becomes more positive with increasing temperature.

Industrially, the reduction of titanium tetrachloride by magnesium is carried out at 1100 K in an atmosphere of argon:

½TiC/₄ + Mg → ½Ti + MgC/₂

(ii) Suggest a reason for the reduction to be carried out in an atmosphere of argon. [1]

Similar to enthalpy change of reaction, the Gibbs free energy, ΔG_r of a reaction can be calculated using the following expression.

$$\Delta G = \sum \Delta G \text{ (products)} - \sum \Delta G \text{ (reactants)}$$

With reference to Fig. 5.1,

- (iii) evaluate ΔG for the reduction of TiC/₄ by Mg at 1100 K. [1]
- (iv) state the temperature above which it is **not** feasible to reduce TiC/₄ with Mg. [1]

	 •
	 •
	 •
	 •
	 •
	 •
	 , D
	 DO NOT WRITE IN THIS MARGIN
	 UTE IN T
	 HIS MAR
	 GIN
•	
•	
•	
•	
•	

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

DO NOT WRITE IN THIS MARGIN

Cobalt(II) chloride has been extensively used as a catalyst for various organic transformations.

(b) Using the data in Table 5.1 and relevant data from the *Data Booklet*, construct a Born– Haber cycle to determine the standard enthalpy change of formation of cobalt(II) chloride.

Enthalpy term	ΔH / kJ mol ⁻¹
Lattice energy of CoCl ₂	-2624
Standard enthalpy change of atomisation of cobalt	+427
First electron affinity for chlorine	-364

Table	5.1
-------	-----

	2020
	TT WRITE
	NTHIS
	MARGIN
•••••	,
	J

(c) Cobalt(II) chloride is known to be a useful catalyst for the synthesis of α-aminonitriles by a one-pot 3-component condensation as shown:

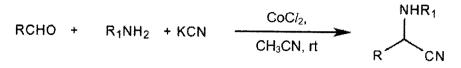
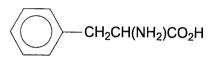



Fig. 5.2

Using the information in Fig. 5.2, propose a pathway to synthesize the following α -amino acid:

phenylalanine

Suggest the structures of the aldehyde that can be used as starting material and the intermediate. State the reagents and conditions for each step clearly. [3]

 DO NOT WRITE IN THIS MARGIN
 VRITE IN
 THIS M/
 ARGIN
 ļ

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

(d) Compound **Q**, C₅H₁₀O₃, does not react with 2,4–DNPH but reacts with warm alkaline aqueous iodine to give a yellow precipitate.

On treatment with hot concentrated sulfuric acid, compound **Q** forms a mixture of three isomeric compounds **R**, **S** and **T**, with the formula $C_5H_8O_2$, two of which are cis-trans isomers of each other.

Compound **R** is a sweet-smelling liquid. Both **S** and **T** undergo reaction with acidified potassium manganate (VII) to give **U**, $C_3H_4O_4$, and ethanoic acid. 1 mole of **U** liberates 1 mole of CO_2 on reaction with excess sodium carbonate.

Identify the five compounds $\mathbf{Q} - \mathbf{U}$, explaining the chemistry of the reactions described. [9]

 DO NO
 OT WRIT
 E IN THI
 DO NOT WRITE IN THIS MARGIN
 Z
 1
 I

Additional answer space

If you use the following pages to complete the answer to any question, the question number must be clearly shown.

	 •
	•
RGIN	 D
IIS MA	 O NOT
EINT	 WRITE
r writ	IN TH
DO NOT WRITE IN THIS MARGIN	 DO NOT WRITE IN THIS MARGIN
-	 GIN
I	
Ľ	L

KGIN	DON
DO NOT WRITE IN THIS MARGIN	 DO NOT WRITE IN THIS MARGIN
E IN TH	 ITE IN 1
- WRITI	THIS M
LON O	ARGIN
	ı
	- 1

	TEMASEK JUNIOR COLLEGE 2022 JC2 PRELIMINARY EXAMINATION Higher 2	TEMASEK JUNIOR COLLEGE
CANDIDATE NAME		
CIVICS GROUP	1	
CENTRE NUMBER	S INDEX NUMBER	
Chemistry		9729/04
Paper 4 Practica	l l	29 August 2022
	2	hours 30 minutes
Candidates answe	er on the Question Paper.	

READ THESE INSTRUCTIONS FIRST

Write your Civics Group and name on all the work you hand in. Give details of the practical shift and laboratory where appropriate, in the boxes provided. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.

The use of an approved scientific calculator is expected, where appropriate.

You may lose marks if you do not show your working or if you do not use appropriate units. Qualitative Analysis Notes are printed on pages 23 and 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Shift	
 Laboratory	

For Examiner's Use			
1	/ 12		
2	/ 19		
3	/ 14		
4	/ 10		
Total	/ 55		

This document consists of 23 printed pages and 1 blank page.

DO NOT WRITE IN THIS MARGIN

Answer all the questions in the spaces provided.

1 Determination of the percentage by mass of water of crystallisation in FeSO₄·*n*H₂O

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

The amount of Fe²⁺ ions can be determined quantitatively by a titration against a standard solution of potassium manganate(VII), KMnO₄. The reaction is shown below.

 $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$

In this experiment, you will determine the percentage by mass of water of crystallisation in $FeSO_4 \cdot nH_2O$. You will titrate a solution of **FA 1** against **FA 3**.

You are provided with

FA 1, contains 26.07 g dm⁻³ of hydrated iron(II) sulfate, FeSO₄•nH₂O, where n is an integer.

FA 2, 1.0 mol dm⁻³ dilute sulfuric acid, H₂SO₄

FA 3, 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄

You are to keep FA 2 and FA 3 for questions 2 and 3.

(a) (i) Titration of FA 1 against FA 3

- 1. Fill a burette, labelled FA 3, with FA 3.
- 2. Use a pipette to transfer 10.0 cm³ of **FA 1** into a 250 cm³ conical flask.
- 3. Use a measuring cylinder to add about 10 cm³ of **FA 2** to this flask.
- 4. Titrate **FA 1** with **FA 3** from the burette until the appearance of the first permanent pale-pink colour.
- Record your titration results, to an appropriate level of precision, in the space on Page
 3.
- 6. Repeat steps 1 to 4 until consistent results are obtained.

Titration Results

[2]

DO NOT WRITE IN THIS MARGIN

(ii) From your titrations, obtain a suitable volume of **FA 3** to be used in your calculations. Show clearly how you obtained this volume.

- volume of **FA 3** =[3]
- (b) (i) Calculate the amount of Fe^{2+} in 10.0 cm³ of FA 1.

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

DO NOT WRITE IN THIS MARGIN

More papers at www.testpapersfree.com

(ii) Calculate the amount of Fe^{2+} in 1 dm³ of **FA 1**.

.

(iii) Calculate the M_r of the hydrated iron(II) sulfate, FeSO₄.*n*H₂O, in **FA 1**.

 M_r of the hydrated iron(II) sulfate =

Hence, deduce the value of n, the water of crystallisation in the hydrated iron(II) sulfate.

[Ar: Fe, 55.8; S, 32.1; O, 16.0; H, 1.0]

n =

[2]

(iv) Hence, determine the percentage by mass of water of crystallisation in $FeSO_4\cdot nH_2O.$

Show your working.

	Percentage by mass of water of crystallisation =	
	[1]	
(v)	Iron(II) sulfate in solution is readily oxidised by air to form iron(III) sulfate.	
	State the effect, on the value of <i>n</i> calculated in (b)(iii) , if some of your sample of FA 1 had oxidised before you carried out the titration. Explain your answer.	DO NOT WRITE IN THIS MARGIN
		THIS M
		IARGIN
	[2]	

[Total: 12]

[Turn over

More papers at www.testpapersfree.com

2 To investigate the reaction between manganate(VII) ions and $C_2O_4^{2-}$ ions

In this experiment, you will investigate the kinetics of the reaction between MnO_4^- and $C_2O_4^{2-}$.

FA 4 is 0.0100 mol dm⁻³ sodium thiosulfate, Na₂S₂O₃

FA 5 is 0.200 mol dm⁻³ sodium ethanedioate, Na₂C₂O₄

FA 6 is 0.100 mol dm⁻³ potassium iodide, KI

FA 2 and FA 3 are solutions from question 1.

You are to keep FA 5 for question 3.

You are also provided with a starch indicator.

Acidified potassium manganate(VII) ions oxidises $C_2O_4^{2-}$ ions to produce Mn^{2+} ions which act as an autocatalyst for the reaction.

$$2 \text{ MnO}_4(aq) + 5 \text{ C}_2\text{O}_4(aq) + 16 \text{ H}^+(aq) \rightarrow 2 \text{ Mn}^{2+}(aq) + 10 \text{ CO}_2(g) + 8 \text{ H}_2O(l)$$

Acidified potassium manganate(VII) ions also oxidises I- ions according to the following reaction:

 $2MnO_4^{-}(aq) + 10I^{-}(aq) + 16H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 5I_2(aq) + 8H_2O(I)$

You will add a solution of acidified potassium manganate(VII) to a mixture containing **FA 2** and **FA 5**. At timed intervals, you will draw 10 cm³ aliquots of the reaction mixture. The concentration of MnO_4^- ions in each aliquot will be determined after adding the aliquot to an excess of I⁻ solution and titrating the iodine produced against $S_2O_3^{2-}$ solution.

The reaction between iodine from the reaction mixture and $S_2O_3^{2-}$ solution is given below.

 $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$

Note: $C_2O_4^{2-}$ does not react with I⁻ in the reaction mixture.

Question 2 continues on the next page.

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

More papers at www.testpapersfree.com

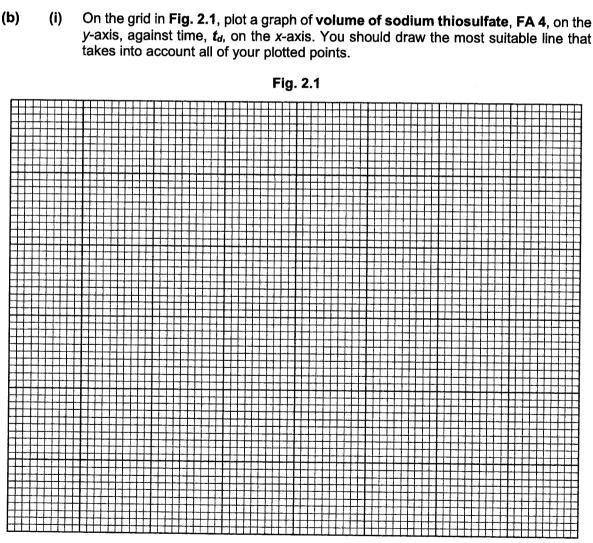
Note: Read all instructions in the procedure before you start performing the experiment.

Recording your results

In an appropriate format in the space provided on **page 9**, draw a table to record your

- transfer time (in minutes and seconds, to the nearest second) when half of the reaction mixture has emptied from the pipette,
- the decimal time, t_d , in minutes, to 0.1 min, for example, if t = 3 min 20 s then $t_d = 3 \text{ min } + 20/60 = 3.3 \text{ min}$,
- titration results for each of your aliquots. Make certain that your recorded results show the precision of your working.

Procedure


- 1. Label each of the large test-tubes **1** to **6**. Using a measuring cylinder, add approximately 10 cm³ of **FA 6** to each of these test-tubes.
- Using appropriate measuring cylinders, transfer 50.0 cm³ of FA 5, 5.0 cm³ of FA 2 and 45.0 cm³ of deionised water into a conical flask labelled reaction mixture.
- 3. Using an appropriate measuring cylinder, transfer 25.0 cm³ of **FA 3** to the conical flask labelled **reaction mixture**. Start the stopwatch and swirl the mixture thoroughly to mix its contents.
- 4. At approximately 1 minute, use a 10 cm³ pipette to remove a 10.0 cm³ aliquot of the reaction mixture. **Immediately** transfer this aliquot into the test-tube labelled **1** and swirl the mixture. Note and record the transfer time (in minutes and seconds, to the nearest second) when half of the reaction mixture has emptied from the pipette.
- 5. At approximately 2 minutes, repeat step 4. Transfer this aliquot into the large test-tube labelled **2**.
- 6. Repeat step 4 four more times at about three minute intervals, transferring the aliquots into test-tubes labelled **3** to **6**.

Titrations

- **Note:** You will only be able to perform each titration **once**. Be careful not to overshoot the endpoint. Performing all of the titrations only after all the aliquots have been collected may affect time management.
- 7. Pour the contents of test-tube labelled **1** into a clean 250 cm³ conical flask. Rinse the test-tube and add the washings to the conical flask.
- 8. Titrate the iodine in this solution with **FA 4**. When the colour of the solution turns pale yellow, add about 1 cm³ of starch indicator. The solution will turn dark blue/black. The end-point is reached when the dark blue/black colour just disappears. Record your results.
- 9. Repeat steps 8 to 9 for each of the remaining test-tubes labelled 2 to 6.

8

(a) Experimental results

[3]

DO NOT WRITE IN THIS MARGIN

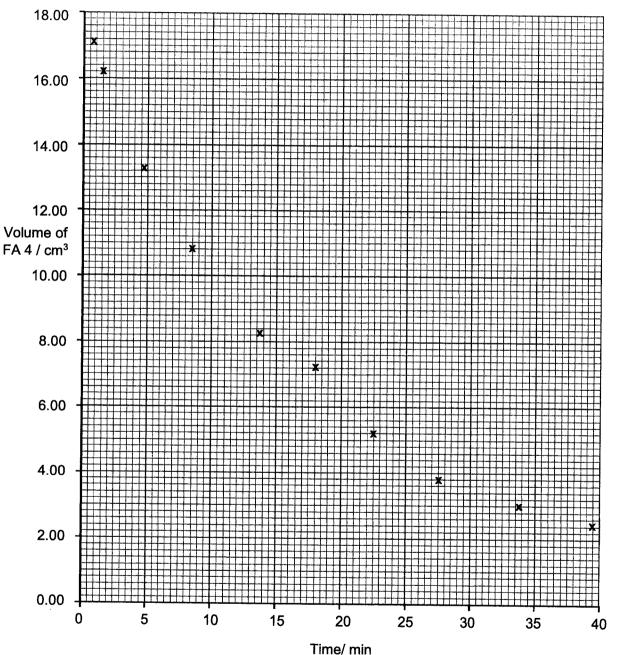
[3]

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN [Turn over

(ii) Consider the shape of the graph in Fig. 2.1.

Describe the shape and explain how it relates to the rate of reaction between MnO_4^- and $C_2O_4^{2-}$.

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN


More papers at www.testpapersfree.com

(c) A student performed a similar experiment under a different temperature. In step 2 of the procedure on page 8, she used the same volumes of FA 2 and FA 5 that you used but she also added 5.0 cm³ of 1.00 mol dm⁻³ manganese(II) sulfate. To keep the total volume of the same as your experiment, she added 40.0 cm³ of deionised water.

The data from the student's experiment has been plotted in Fig. 2.2.

(i) Draw the most appropriate line taking into account all of the plotted points.

Fig. 2.2

[1]

DO NOT WRITE IN THIS MARGIN

9729 / TJC Prelims / 2022 DO NOT WRITE IN THIS MARGIN

[Turn over

(ii) Using the graph in (c)(i), calculate the [MnO₄⁻] in the reaction mixture at t = 15 min.

(iii) Draw a tangent to your graph line in (c)(i) at t = 15 min. Calculate the gradient of this line, and hence determine the rate of change of the amount of $S_2O_3^{2-}$ ions required in mol min⁻¹.

(iv) Using your answer in (c)(iii), calculate the rate of change of MnO_4^- in mol min⁻¹.

[1]

(v) Hence, calculate the rate of disappearance of $[MnO_4]$ in the reaction mixture, at time t = 15 min.

[3]

(d) Using the graph in (c)(i), show that the reaction between MnO_4^- and $C_2O_4^{2-}$ is first order with respect to $[MnO_4^-]$.

		DO NOT WRIT
		E IN THI
		IS MARGIN
		Ï
	[2]	

[Total: 19]

DO NOT WRITE IN THIS MARGIN

More papers at www.testpapersfree.com

3 To explore the chemistry of some compounds of unknown transition elements X and a hydrocarbon

- FA 7 is a solid sample of a common dioxide of the unknown transition element X
- **FA 8** is a pure solution of compound **Y**, which is the product formed in **3(a)**
- **FA 9** is a hydrocarbon

You will need FA 2, FA 3 and FA 5 from question 1 and 2.

Perform the tests described in Table 3.1 and record your observations in the table. Test and identify any gases evolved. The observation in (c)(iii) has been completed for you, there is no need to carry out this test.

	tests	observations
(a)	Add 2 cm depth of FA 2 and 2 cm depth of FA 5 to a test-tube.	
	Using a spatula, add FA 7 to the mixture in small portion with swirling until no further change.	
	Filter the mixture into a test-tube.	
	The filtrate contains compound Y .	
	Divide the filtrate into two portions. To one portion, add aqueous sodium hydroxide until no further change.	
	To the other portion, add aqueous ammonia until no further change.	
(b)(i)	Place 1 cm depth of FA 8 in a test-tube, add aqueous sodium hydroxide.	
(b)(ii)	Place 1 cm depth of FA 8 in a test-tube, add aqueous ammonia solution.	

Table 3.1

(c)(i)	Place 5 cm depth of aqueous sodium hydroxide in a test-tube.			
	Add 5 drops of FA 9 to this test- tube.			
	Add FA 3 , dropwise with shaking, until no further change is seen.			
	Allow to stand for 5 minutes, with occasional shaking. Continue with the remaining parts of Question 3.			
(c)(ii)	Place 5 cm depth of FA 2 in a test-tube.			
	Add 5 drops of FA 9 to this test- tube.			
	Add FA 3, dropwise with shaking, until no further change is seen.			
	Allow to stand for 5 minutes, with occasional shaking. Continue with the remaining parts of Question 3.			
(c)(iii)	Place 5 cm depth of water in a test-tube.			
	Add 1 drop of FA 9 to this test- tube.			
	Add bromine water, dropwise with shaking.	Bromine water decolourised.		

- [6]
- (d) Consider your observations in (a) and (b), identify the transition ion formed in (a). Justify your choice by referring to the observations in (b).

Ion present is

DO NOT WRITE IN THIS MARGIN

Justification.....

(e) The anion in **FA 8** is not a nitrate, nitrite or carbonate ion.

You will devise and perform a series of simple tests to identify the anion present in FA 8.

Use the Qualitative Analysis Notes on pages 23-24 to deduce the possible anions in **FA 8** and describe **two different** tests, that will allow you to distinguish between the possible anions. You can only use the bench reagents provided.

Perform the tests described and record your observations in the space below. Hence, deduce the identity of the anion in **FA 8.**

Possible anions:

DO NOT WRITE IN THIS MARGIN

Identity of anion:

- (f) Compound Z is the main organic product in (c)(i) when FA 9 reacts with FA 3 under alkaline conditions. The molecular formula of Z is $C_6H_{12}O_2$.
 - (i) Deduce the molecular formula of FA 9.

Explain your deduction. Your explanation should be supported by evidence from your observations in **(c)**.

Molecular formula of FA 9 is

Explanation:	

(ii) Draw the structural formulae for FA 9 and compound Z.

structure of FA 9	
	Í

structure of Z

[2]

[2]

DO NOT WRITE IN THIS MARGIN

4 Planning

You are to plan an experiment to determine the concentration of a solution of $H_2C_2O_4$ and the ΔH_{neut} between ethanedioic acid and sodium hydroxide.

$$\frac{1}{2}$$
 H₂C₂O₄(aq) + NaOH(aq) $\rightarrow \frac{1}{2}$ Na₂C₂O₄(aq) + H₂O(*l*) ΔH_{neut}

You are provided with 2.00 mol dm⁻³ NaOH and a solution of $H_2C_2O_4$ of approximately the same concentration. A series of experiments can be carried out using different volumes of the two solutions. In each experiment, the total volume of the two solutions is to be kept at 50 cm³ and the increase in temperature, ΔT , is determined.

A graph of ΔT against volume of $H_2C_2O_4$ can then be used to determine the exact concentration of the $H_2C_2O_4$ solution and ΔH_{neut} .

(a) Determine the volume of H₂C₂O₄ and of NaOH to be used such that both solutions will react completely. Show your working clearly and give your answers to the **nearest whole number**.

[1]

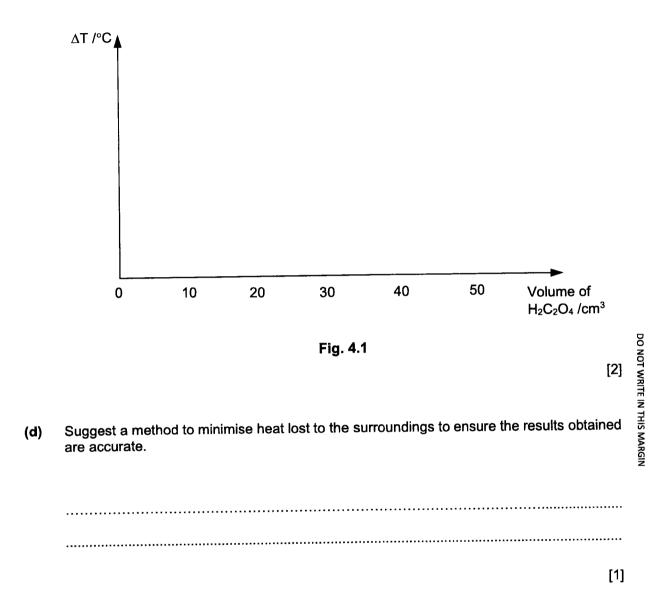
(b) Plan a procedure to collect sufficient data to allow a graph of ΔT against volume of $H_2C_2O_4$ to be drawn.

You are provided with:

DO NOT WRITE IN THIS MARGIN

- 2.00 mol dm⁻³ NaOH,
- H₂C₂O₄ solution of approximately the same concentration,
- the equipment normally found in a school laboratory.

In your plan, you should include the following:


- the procedure, including the apparatus you would use
- a tabulation of the experimental data to be collected, including the volumes of $H_2C_2O_4$ and NaOH

You may assume that the $H_2C_2O_4$ and NaOH solutions have the same initial temperature.

[4]

[Turn over

(c) Using your answer in (a), sketch, on Fig. 4.1, the graph you would expect to obtain from the results.

- (e) Another student conducted a similar experiment but used 1.00 mol dm⁻³ of NaOH instead. He obtained the following results:
 - Volume of ethanedioic acid needed for complete neutralisation = 15 cm³
 - Maximum temperature change = 9.0°C

Calculate the concentration of the H₂C₂O₄ solution, in mol dm⁻³ and the ΔH_{neut} in kJ mol⁻¹. You may assume the following:

- specific heat capacity of all solutions is 4.18 J g⁻¹ °C⁻¹,
- density of all solutions is 1.00 g cm⁻³.

[2] [Total: 10]

More papers at www.testpapersfree.com

BLANK PAGE

Qualitative Analysis Notes

[ppt. = precipitate]

(a) Reactions of aqueous cations

cation	reaction with		
	NaOH(aq)	NH₃(aq)	
aluminium, A/ ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH₄⁺(aq)	ammonia produced on heating	_	
barium, Ba²⁺(aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca²⁺(aq)	white ppt. with high [Ca²⁺(aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt., turning brown on contact with air insoluble in excess	green ppt., turning brown on contact with air insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt., rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess	

DO NOT WRITE IN THIS MARGIN

(b) Reactions of aqueous anions

anion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag⁺(aq) (soluble in NH₃(aq))
bromide, Br⁻(aq)	gives pale cream ppt. with Ag⁺(aq) (partially soluble in NH₃(aq))
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO₃⁻(aq)	NH₃ liberated on heating with OH⁻(aq) and A/ foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and A <i>l</i> foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO₄²⁻(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻(aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in dilute strong acids)

(c) Test for gases

gas	test and test result	
ammonia, NH₃	turns damp red litmus paper blue	
carbon dioxide, CO2	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)	
chlorine, Cl ₂	bleaches damp litmus paper	
hydrogen, H ₂	"pops" with a lighted splint	
oxygen, O ₂	relights a glowing splint	
sulfur dioxide, SO ₂	turns aqueous acidified potassium manganate(VII) from purple to colourless	

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl ₂	greenish yellow gas	pale yellow	pale yellow
bromine, Br ₂	reddish brown gas / liquid	orange	orange-red
iodine, I ₂	black solid / purple gas	brown	purple