

# **RIVER VALLEY HIGH SCHOOL** YEAR 6 PRELIMINARY EXAMINATION II

| CANDIDATE<br>NAME       |                                    |                                                    |   |    |          |  |
|-------------------------|------------------------------------|----------------------------------------------------|---|----|----------|--|
| CLASS                   | 6                                  |                                                    |   |    |          |  |
| CENTRE<br>NUMBER        | S 3 0 4 4                          | INDEX<br>NUMBER                                    | 0 | 0  |          |  |
| H1 CHEMISTRY 8872/01    |                                    |                                                    |   |    | 72/01    |  |
| Paper 1 Multiple Choice |                                    |                                                    |   | 21 | Sep 2017 |  |
|                         |                                    |                                                    |   |    | 50 mins  |  |
| Additional Mater        | ials: Multiple Choice Answer Sheet | Additional Materials: Multiple Choice Answer Sheet |   |    |          |  |

Data Booklet

#### READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, class and index number on the Optical Answer Sheet in the spaces provided.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in **soft pencil** on the Optical Answer Sheet.

#### Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. The use of an approved scientific calculator is expected, where appropriate.

This document consists of **14** printed pages.

## Section A

For each question there are four possible answers, **A**, **B**, **C** and **D**. Choose the **one** you consider to be correct.

**1** Use of the Data Booklet is relevant to this question.

At room temperature and pressure, a sample of 2 dm<sup>3</sup> of polluted air was passed through limewater so that all the carbon dioxide present was precipitated as calcium carbonate. The mass of calcium carbonate formed was 0.05 g.

What is the percentage, by volume, of carbon dioxide in the air sample?

- A 0.30%
  B 0.57%
  C 0.60%
  D 1.20%
- 2 In an experiment, 20 cm<sup>3</sup> of an organic compound was sparked with 160 cm<sup>3</sup> of oxygen. After cooling to room temperature, 120 cm<sup>3</sup> of gas remained. The residual gas was passed through aqueous KOH and 40 cm<sup>3</sup> of gas remained. All gases were measured at room temperature and pressure.

What is the formula of the organic compound?

| Α | C <sub>3</sub> H <sub>8</sub> | В | $C_4H_8$                      |
|---|-------------------------------|---|-------------------------------|
| С | C4H10                         | D | C <sub>6</sub> H <sub>6</sub> |

**3** When  $Tl^+(aq)$  reacts with  $VO_3^-(aq)$ ,  $Tl^{3+}(aq)$  and  $V^{2+}(aq)$  are formed.

Assuming the reaction goes to completion, how many moles of  $Tl^+(aq)$  and  $VO_3^-(aq)$  would result in a mixture containing equal number of moles of  $VO_3^-(aq)$  and  $V^{2+}(aq)$  once the reaction had taken place?

|   | Moles of T <i>l</i> +(aq) | Moles of VO₃⁻(aq) |
|---|---------------------------|-------------------|
| Α | 1                         | 2                 |
| в | 1                         | 3                 |
| С | 2                         | 3                 |
| D | 3                         | 4                 |

4 FA 1 contains Fe<sup>2+</sup> ions. In an experiment, it was found that 25.0 cm<sup>3</sup> of FA 1 required 18.00 cm<sup>3</sup> of 0.200 mol dm<sup>-3</sup> acidified KMnO<sub>4</sub> (aq) for reaction. What was the volume of 0.150 mol dm<sup>-3</sup> acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(aq) needed to react with 25.0 cm<sup>3</sup> of FA 1?

| Α | 18.00 cm <sup>3</sup> | В | 20.00 cm <sup>3</sup> |
|---|-----------------------|---|-----------------------|
| С | 24.00 cm <sup>3</sup> | D | 30.00 cm <sup>3</sup> |

**5** The diagram represents the melting points of four consecutive elements in the third period of the Periodic Table.



The sketches below represent another two properties, *m* and *n*, of the elements.



What are the properties *m* and *n*?

|   | Property <i>m</i>           | Property n               |  |  |
|---|-----------------------------|--------------------------|--|--|
| Α | third ionisation energy     | electronegativity        |  |  |
| в | number of valence electrons | boiling point            |  |  |
| С | ionic radius                | effective nuclear charge |  |  |
| D | electrical conductivity     | atomic radius            |  |  |

| 6 | Elements X and | Y have the following | successive ionisation | energies in kJ mol <sup>-1</sup> . |
|---|----------------|----------------------|-----------------------|------------------------------------|
| - |                |                      | eacecerre remeaner    |                                    |

|   | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup> | 4 <sup>th</sup> | 5 <sup>th</sup> | 6 <sup>th</sup> | 7 <sup>th</sup> |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| X | 580             | 1800            | 2700            | 11600           | 14800           | 18400           | 23300           |
| Y | 1310            | 3400            | 5300            | 7500            | 11000           | 13300           | 20300           |

What could be the formula of the compound formed by these two elements?

| Α | <b>XY</b> <sub>3</sub> | В | <b>X</b> <sub>2</sub> <b>Y</b> <sub>3</sub> | С | $X_3Y_2$ | D | <b>X</b> 4 <b>Y</b> 3 |
|---|------------------------|---|---------------------------------------------|---|----------|---|-----------------------|
|   |                        |   |                                             |   |          |   |                       |

- 7 Which pair of compounds meets the criteria below?
  - The first compound has a larger bond angle than the second compound.
  - The second compound is more polar than the first compound.

| A | CO2, BC <i>l</i> 3 | В | $IClF_2, ClO_2$ | С | HCN, SO <sub>3</sub> | D | $CO_2$ , $NCl_3$ |
|---|--------------------|---|-----------------|---|----------------------|---|------------------|
|---|--------------------|---|-----------------|---|----------------------|---|------------------|

8 When water is stirred with glucose, strong hydrogen bonds are initially formed between glucose molecules and water molecules, but as more water is added, these hydrogen bonds are broken.

Which graph best represents the observed temperature changes?



8872/01

**9** Use of the Data Booklet is relevant to this question.

A student dissolved 8.4 g of sodium fluoride in 250 g of water.

The enthalpy change of reaction is +71 kJ mol<sup>-1</sup>.

What would be the initial temperature of the water if the final temperature of the solution is 20.00 °C?

Assume that the specific heat capacity of sodium fluoride solution is 4.2 J  $g^{-1}$  K<sup>-1</sup>.

**A** 6.48 °C **B** 33.08 °C **C** 33.52 °C **D** 47.62 °C

**10** An energy cycle involving a metal oxide, M<sub>2</sub>O, is shown below.



Which expression represents the enthalpy change of formation of M<sub>2</sub>O(s)?

- **Α** ΔH<sub>1</sub>
- ${\bm B} \qquad \Delta {\bm H}_4 \Delta {\bm H}_5$
- $\mathbf{C} \qquad \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta H_4$
- $\mathbf{D} \qquad \Delta H_2 + \Delta H_3 + \Delta H_4 \Delta H_5$

- **11** For which of the following reactions does the enthalpy value represent **both** a standard enthalpy change of combustion **and** a standard enthalpy change of formation?
  - $\mathbf{A} \qquad \operatorname{CO}(g) + \frac{1}{2}\operatorname{O}_2(g) \to \operatorname{CO}_2(g)$
  - $\mathbf{B} \qquad 2\mathrm{C}(\mathrm{s}) + \mathrm{O}_2(\mathrm{g}) \rightarrow 2\mathrm{CO}(\mathrm{g})$
  - $\textbf{C} \qquad C(s) \ + \ O_2(g) \rightarrow CO_2(g)$
  - $\textbf{D} \qquad C(s) \ + \ 2O(g) \rightarrow CO_2(g)$
- 12 The graph below shows how the fraction of a substance, **X**, in an equilibrium mixture varies with temperature at pressures of  $2 \times 10^7$  Pa and  $5 \times 10^7$  Pa.



Which underlined compound represents X?

- $\mathbf{A} \qquad 2\mathsf{N}_2(\mathsf{g}) + 6\underline{\mathsf{H}}_2\mathsf{O}(\mathsf{g}) \ \rightleftharpoons \ 4\mathsf{N}\mathsf{H}_3(\mathsf{g}) + 3\mathsf{O}_2(\mathsf{g}) \ \Delta H = +1267 \text{ kJ mol}^{-1}$
- **B**  $C(s) + H_2O(g) \rightleftharpoons H_2(g) + \underline{CO}(g)$   $\Delta H = +131 \text{ kJ mol}^{-1}$
- **C**  $2SO_2(g) + O_2(g) \rightleftharpoons 2\underline{SO_3}(g)$   $\Delta H = -197 \text{ kJ mol}^{-1}$
- **D**  $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$   $\Delta H = -92 \text{ kJ mol}^{-1}$

**13** Nitrogen dioxide decomposes on heating according to the following equation.

$$2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$$

When 4 moles of nitrogen dioxide was put into a 1 dm<sup>3</sup> container and heated, the equilibrium mixture contained 0.8 moles of oxygen. What is the numerical value of the equilibrium constant,  $K_c$ , at the temperature of the experiment?

**A** 
$$\frac{0.8 \times 0.8}{2.4}$$
  
**B**  $\frac{0.8^2 \times 0.8}{4^2}$   
**C**  $\frac{1.6 \times 0.8}{2.4^2}$   
**D**  $\frac{1.6^2 \times 0.8}{2.4^2}$ 

- 14 Which combination of substances would give a buffer solution?
  - A 2 mol of NaOH and 1 mol of CH<sub>3</sub>CO<sub>2</sub>H
  - **B** 2 mol of CH<sub>3</sub>CO<sub>2</sub>H and 1 mol of NaOH
  - **C** 1 mol of HC*l* and 1 mol of CH<sub>3</sub>CO<sub>2</sub>Na
  - D 2 mol of NH<sub>3</sub> and 1 mol of CH<sub>3</sub>CO<sub>2</sub>Na
- **15** What is the final pH of the solution formed when two equal volumes of HC*l* solutions, one with pH 1.0 and the other with pH 3.0 are mixed?
  - **A** 1.0 **B** 1.3 **C** 2.0 **D** 2.5

**16** The kinetics of the reaction between iodide and peroxodisulfate can be investigated by varying the volume of the reactants used. The two reactants are mixed in the presence of a known amount of Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and a little starch. The time taken for an intense blue colour to be observed is then determined.

|            | Volume used/cm <sup>3</sup>    |                                                                             |                  |     |  |
|------------|--------------------------------|-----------------------------------------------------------------------------|------------------|-----|--|
| Experiment | 1.0 mol dm <sup>-3</sup><br>KI | 0.040 mol dm <sup>-3</sup><br>Na <sub>2</sub> S <sub>2</sub> O <sub>8</sub> | H <sub>2</sub> O | t/s |  |
| 1          | 10.0                           | 5.0                                                                         | 25.0             | 170 |  |
| 2          | 15.0                           | 5.0                                                                         | 20.0             | 113 |  |
| 3          | 15.0                           | 10.0                                                                        | 15.0             | 57  |  |
| 4          | 20.0                           | 20.0                                                                        | 0.0              | х   |  |

What is the value of x?

| Α | 21 | В | 28 | С | 85 | D | 63 |
|---|----|---|----|---|----|---|----|
|   |    |   |    |   |    |   |    |

17 Which one of the following is a correct statement about the effect of a catalyst?

A It provides an alternative route with a lower activation energy for a reaction.

**B** It increases the equilibrium constant for a forward reaction.

**C** It increases the yield of product in equilibrium.

**D** It increases the rate of the forward reaction only.

18 L, M and N react to form P and Q as shown.

 $\textbf{L} + \textbf{M} + \textbf{N} \rightarrow \textbf{P} + \textbf{Q}$ 

The rate equation for this reaction is rate =  $k[\mathbf{M}][\mathbf{N}]$ .

Which of the following graphs is correct of the above reaction, when N is in excess?



**19** Which one of the following best describes the compounds formed by aluminium?

|   | Oxide      | Chloride |
|---|------------|----------|
| Α | Basic      | basic    |
| в | Amphoteric | neutral  |
| С | Amphoteric | acidic   |
| D | Basic      | acidic   |

**20** The chloride of the following elements are dissolved in water. The chloride of element which produces the solution with the greatest pH is

10

- **A** A*l*
- B Na
- **C** Mg
- D P
- **21** Alkynes are a series of non-cyclic hydrocarbons with the general formula, C<sub>n</sub>H<sub>2n-2</sub> containing one carbon-carbon triple bond per molecule.

How many alkynes with 6 carbon atoms satisfies the above formula?

- **A** 5
- **B** 6
- **C** 7
- **D** 8





### **Compound A**

Which reagent will not react with compound A?

- A alkaline I<sub>2</sub> (aq)
- B alkaline Cu<sup>2+</sup> ions
- **C** LiAlH<sub>4</sub> in dry ether
- D cold alkaline KMnO<sub>4</sub>

23 The diagram shows a reaction.



What could be the final products, P?



- 24 Which of the following statements is false in the reaction of C<sub>2</sub>H<sub>6</sub> with Br<sub>2</sub>?
  - **A** Steamy fumes are produced in the reaction.
  - **B** A mixture of brominated alkanes is formed.
  - **C** High temperature can be used in place of UV light.
  - **D** The intermediate formed is highly reactive as it has a lone pair of electrons.

**25** An organic compound **Z** underwent the following successive reactions.

$$\mathbf{Z} \xrightarrow{\text{Br}_2 \text{ in } \text{CC}l_4} \mathbf{A} \xrightarrow{\text{Alcoholic}}_{\text{KCN}} \mathbf{B} \xrightarrow{\text{H}_2, \text{Ni}}_{\text{heat}} \mathbf{H}_2 \text{NCH}_2 \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{NH}_2$$

Which of the following compounds is Z likely to be?

- A CH<sub>2</sub>=CH<sub>2</sub>
- B ClCH=CHCl
- C CH<sub>3</sub>CH=CHCH<sub>3</sub>
- D CH<sub>2</sub>=CHCH=CH<sub>2</sub>

## Section B

For each of the questions in this section, one or more of the three numbered statements **1** to **3** may be correct.

Decide whether each of the statements is or is not correct (you may find it helpful to put a tick against the statements that you consider to be correct).

The responses A to D should be selected on the basis of

| Α                      | В                        | С                        | D                    |
|------------------------|--------------------------|--------------------------|----------------------|
| 1, 2 and 3 are correct | 1 and 2 only are correct | 2 and 3 only are correct | 1 only is<br>correct |

No other combination of statements is used as a correct response.

26 Which of the following statements about the carbonate ion,  $CO_3^{2-}$ , are correct?

8872/01

- 1 The carbon atom is the central atom.
- **2** The carbon in  $CO_3^-$  has an octet electronic configuration.
- 3 It has the same bond angle as the nitrate ion, NO<sub>3</sub><sup>-</sup>.

27 Use of the Data Booklet is relevant to this question.

Species containing one or more unpaired electrons are said to be paramagnetic as they can be attracted by an external magnetic field.

Which of the following species are paramagnetic?

- 1 Cr<sup>3+</sup>
- 2 Fe<sup>2+</sup>
- 3 Cu+
- **28** Deuterium is an isotope of hydrogen,  ${}_{1}^{2}H$ .

Which compound can be formed by the addition of  $D_2$  to another molecule, in the presence of platinum catalyst?



2 CH<sub>3</sub>CD<sub>2</sub>ND<sub>2</sub>



**29** During the preparation of many organic compounds, by-products are formed. This usually occurs because the reagents can react in more than one way, depending on the conditions used, or because the products formed may react with the reactants.

2-bromobutane may be prepared by slowly adding concentrated sulfuric acid to sodium bromide to form hydrogen bromide which reacts with butan-2-ol. The reaction mixture is kept cool to optimise the reaction yield.

 $CH_3CH(OH)CH_2CH_3 + HBr \rightarrow CH_3CH(Br)CH_2CH_3 + H_2O$ 

What could be a by-product of this reaction if the temperature is allowed to rise?

- 1 CH<sub>2</sub>=CHCH<sub>2</sub>CH<sub>3</sub>
- 2 CH<sub>2</sub>BrCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
- 3 CH<sub>3</sub>CBr<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
- **30** A newly-discovered drug that is claimed to cure AIDS contains an active ingredient of the following structure:



Which of the following statements concerning its properties are correct?

- 1 It gives a white precipitate with silver nitrate after heating with aqueous sodium hydroxide.
- 2 It gives a white precipitate with aqueous bromine.
- 3 It gives a pale yellow precipitate with alkaline aqueous iodine.

8872/01

## Answers to Paper 1

| 1  | С | 11 | С | 21 | С |
|----|---|----|---|----|---|
| 2  | В | 12 | В | 22 | А |
| 3  | D | 13 | D | 23 | А |
| 4  | В | 14 | В | 24 | D |
| 5  | A | 15 | В | 25 | А |
| 6  | В | 16 | А | 26 | А |
| 7  | D | 17 | А | 27 | В |
| 8  | С | 18 | В | 28 | С |
| 9  | С | 19 | С | 29 | В |
| 10 | D | 20 | С | 30 | D |



# **RIVER VALLEY HIGH SCHOOL** YEAR 6 PRELIMINARY EXAMINATION II

| H1 CHEN           | <b>/IIST</b> | RY |   |   |   |   |                 |   |   | 887 | 72/0 | 2 |
|-------------------|--------------|----|---|---|---|---|-----------------|---|---|-----|------|---|
| CENTRE<br>NUMBER  | S            | 3  | 0 | 4 | 4 | ] | INDEX<br>NUMBER | 0 | 0 |     |      | ] |
| CLASS             |              |    | ] |   |   |   |                 |   |   |     |      |   |
| CANDIDATE<br>NAME |              |    |   |   |   |   |                 |   |   |     |      |   |

Paper 2 Structured and Free Response Questions

13 Sep 2017

2 hours

Additional Materials: Ruled paper, Graph Paper, Section B Cover Page, Data Booklet

#### **READ THESE INSTRUCTIONS FIRST.**

### DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Write your name, class and index number in the spaces at the top of this page. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

#### Section A

Answer **all** questions on the Question Paper.

#### Section B

Answer **all** questions on separate ruled paper. Begin each question on a fresh sheet of ruled paper. At the end of the examination, fasten all ruled paper securely, with the cover page for Section B on top.

Hand in the Question Paper and answers to Section B separately.

The number of marks is given in brackets [] at the end of each question or part question.

|              | For Examiner's Use |    |   |   |              |       |          |         |
|--------------|--------------------|----|---|---|--------------|-------|----------|---------|
| Paper 2      |                    |    |   |   |              |       |          |         |
|              | 1                  | 2  | 3 | 4 |              | 5/6/7 | Total (F | aper 2) |
| Section<br>A | 15                 | 11 | 7 | 7 | Section<br>B | 40    |          | 80      |
| Paper 1      | 30                 |    |   |   | Total        | 110   | Grade    |         |

This paper consists of 17 printed pages.

#### 2 Section A (40 marks)

Answer **all** the questions in this section in the spaces provided.

1 Among the many pharmaceutical drugs manufactured worldwide, one of the most important types is the painkillers. The structures of three such painkillers are shown.



Ibuprofen is used to treat arthritis and relieve pain, fever and swelling. It is available over-the-counter in 200 and 400 mg tablets. The recommended dosage varies with body mass and indication, but 1.20 g is considered the maximum daily adult dosage. Long term use of ibuprofen can lead to stomach ulcers.

Ibuprofen can be synthesised via the following process:



(a) A man bought some ibuprofen tablets of dosage 200 mg over the counter and consumed one pill 4 times a day. Explain if this level of consumption safe for the man.



(c) In the laboratory, Compound C can be converted to ibuprofen using a 3-step synthesis route.

Suggest reagents and conditions for each step, and draw the structures of all intermediates.

(d) Young children often find it difficult to swallow tablets. Thus, ibuprofen is supplied as an "infant formula" emulsion.

Given that ibuprofen and water are immiscible, an emulsifier such as polysorbate 80 is used to create a homogeneous mixture.



#### polysorbate 80

Explain why this molecule is able to act as an emulsifier.

.....[1]

River Valley High School 2017 Preliminary Examinations II 8872/02

[Turn over

(e) A certain pharmaceutical brand claims that the ibuprofen tablets it manufactures are 95.0% pure by mass.

To investigate this claim, 5.00 g of a sample was crushed and dissolved in 250 cm<sup>3</sup> of 0.450 mol dm<sup>-3</sup> aqueous KOH. 25.0 cm<sup>3</sup> of this solution was withdrawn and titrated against sulfuric acid. The unreacted KOH in this solution required 25.50 cm<sup>3</sup> of 0.180 mol dm<sup>-3</sup> of sulfuric acid for complete neutralisation.

Showing relevant calculations, deduce if the claim is valid.

(f) Compare the acidity of ibuprofen and aspirin. Explain your answer.

(g) Describe a simple chemical test to distinguish between ibuprofen and aspirin.

.....

[Total: 15]

[2]

2 (a) The first ionisation energies of the elements lithium to fluorine are shown below.



[Turn over

Across Period 3, the nature of elements changes from metallic to non-(b) metallic. The difference in electronegativity between the elements and the oxide decreases correspondingly, giving rise to different types of oxides.

Choose and describe three oxides which are different in terms of structure and bonding. For each type of oxide, write equations for the reactions with water when applicable, and give the approximate pH of resultant solutions.

..... ..... ..... ..... ..... ..... ..... ..... ..... [6] ..... [Total: 11]

8872/02

7

- **3 (a)** Some important uses of hydrocarbons include fuels, plastics, paints and solvents. In some countries, where crude oil is either scarce or expensive, biofuels such as ethanol are also increasingly being used for fuels instead of hydrocarbons.
  - (i) James carried out an experiment to determine the enthalpy change of combustion of octane, C<sub>8</sub>H<sub>18</sub>, using the apparatus shown in the diagram.



These are the results that James obtained:

Volume of water =  $1000 \text{ cm}^3$ 

Initial temperature of water = 29.6 °C

Highest temperature of water = 50.0 °C

Initial mass of burner and octane = 59.35 g

Final mass of burner and octane = 53.77 g

Specific heat capacity of water =  $4.18 \text{ J g}^{-1} \text{ K}^{-1}$ 

Heat capacity of calorimeter =  $385 \text{ J K}^{-1}$ 

Use these results to determine the experimental enthalpy change of combustion of octane.

(ii) Define the standard enthalpy change of combustion.

.....

(b) Liquid hydrazine reacts with oxygen to form nitrogen and steam which could involve the following energy cycle shown below.



(i) Given that the enthalpy change of vapourisation of hydrazine is +58.0 kJ mol<sup>-1</sup>, use appropriate bond energies from the *Data Booklet* to calculate the enthalpy change of reaction between liquid hydrazine and oxygen.

[2]

[1]

(ii) Suggest a reason to account for the discrepancy between the theoretical enthalpy change of reaction between liquid hydrazine and oxygen and your answer in (b)(i).

[1] [Total: 7]

- 4 Under suitable conditions, SCl<sub>2</sub> reacts with water to produce a yellow precipitate of sulfur and an acidic solution **G**. Solution **G** contains a mixture of SO<sub>2</sub>(aq) and another compound.
  - (a) State the oxidation number of S in  $SCl_2$ .

.....[1]

(b) Construct an equation for the reaction between SCl<sub>2</sub> and water.

```
.....[1]
```

(c) In the Contact Process, one important step is the conversion of SO<sub>2</sub> to SO<sub>3</sub> as shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

2.00 L flask was filled with 0.0400 mol  $SO_2$  and 0.0200 mol  $O_2$ . At equilibrium, at 900 K, the flask contained 0.0296 mol of  $SO_3$ . Determine the value of  $K_c$ .

[3]

(d) State and explain how the position of equilibrium and equilibrium constant,  $K_c$ , will change when the volume of the flask is doubled. ..... ..... ..... [2]

### [Total: 7]

[Turn over

#### 11 Section B (40 marks)

Answer **two** questions from this section on separate answer paper.

**5** (a) Carbon also forms compounds with other Group 16 elements like sulfur and selenium. The properties of some of these compounds, along with CO<sub>2</sub>, are given in Table 5.1.

| Compound        | Structure | Dipole moment | Boiling point / °C |
|-----------------|-----------|---------------|--------------------|
| CO <sub>2</sub> | 0=C=0     | 0             | sublimes           |
| CS <sub>2</sub> | S=C=S     | 0             | 46                 |
| COS             | S=C=O     | 0.71          | -50                |
| COSe            | Se=C=O    | 0.73          | -22                |

#### Table 5.1

- Explain, in terms of structure and bonding, the difference in the boiling point of CS<sub>2</sub> and COS.
   [2]
- (ii) Explain why
  - CO<sub>2</sub> has no overall dipole moment.
  - COSe has a greater dipole moment than COS.
- (b) Aside from the common oxides, carbon forms a series of reactive oxocarbons. One such compound is tricarbon monoxide, C<sub>3</sub>O, a reactive molecule found in space.
  - Suggest a structure of tricarbon monoxide. Indicate clearly any lone pairs present. [1]

Tricarbon monoxide is isoelectronic to cyanogen, (CN)<sub>2</sub>. The molecule of cyanogen contains a C–C single bond.

- (ii) Draw the dot-and-cross diagram of cyanogen. In your diagram, you should distinguish the electrons originating from the two carbon atoms and those from the two nitrogen atoms.
   [1]
- (iii) Suggest the shapes of tricarbon monoxide and cyanogen. [1]

[2]

(c) Another oxycarbon is pentacarbon dioxide,  $C_5O_2$ . It can be obtained by heating compound **X**,  $C_6H_6O_3$ , at a high temperature.

**X** also gives an orange precipitate with 2,4-DNPH but does not give a silver mirror with Tollens' reagent. **X** reacts with hydrogen in the presence of platinium catalyst under suitable conditions to for **Y**,  $C_6H_{12}O_3$ . When reacted with limited bromine under ultraviolet light, **X** produced **only one** monobromo compound.

**Y** reacts with ethanolic sodium hydroxide to form **Z**, C<sub>6</sub>H<sub>6</sub>.

Suggest the structures of compounds X, Y and Z. Explain your reasoning. [8]

- (d) (i) Define the term *Bronsted acid*.
  - (ii) The concentration of a monobasic acid, HY is 0.01 mol dm<sup>-3</sup>, while the pH of the solution is 3.5.

Calculate the concentration of H<sup>+</sup> in this solution. State, with reasoning, if HY is a strong or weak acid.

(e) Values for the ionic product of water,  $K_w$ , at two different temperatures are given in Table 5.2.

| Temperature / °C | K <sub>w</sub> / mol <sup>2</sup> dm <sup>-6</sup> |  |  |
|------------------|----------------------------------------------------|--|--|
| 25               | 1.00 × 10 <sup>-14</sup>                           |  |  |
| 50               | 5.48 × 10 <sup>-14</sup>                           |  |  |

Using Le Chatelier's Principle, explain whether the ionisation of water is an endothermic or exothermic process.

[Total: 20]

[2]

[1]

[2]

8872/02

6 In the late 1940s, Willard Libby developed the radiocarbon dating method for determining the age of an object containing organic material by using the properties of radiocarbon (<sup>14</sup>C), a radioactive isotope of carbon. The principle of carbon dating is as such:

During its life, a plant or animal is exchanging carbon with its surroundings, so the carbon it contains will have the same proportion of <sup>14</sup>C as the atmosphere. Once it dies, it ceases to acquire <sup>14</sup>C, but the <sup>14</sup>C within its biological material at that time will continue to decay, and so the ratio of <sup>14</sup>C to <sup>12</sup>C in its remains will gradually decrease.

Because <sup>14</sup>C decays with first order kinetics, the proportion of radiocarbon can be used to determine how long it has been since a given sample stopped exchanging carbon – the older the sample, the less <sup>14</sup>C will be left.

- (a) A sample of carbon dioxide gas (that contained both  ${}^{12}CO_2$  and  ${}^{14}CO_2$ ) was analysed to determine the proportion of  ${}^{14}CO_2$  found within. Analysis results showed that there is one  ${}^{14}CO_2$  molecule for every  $10^{12}$  CO<sub>2</sub> molecules.
  - (i) Calculate the number of <sup>14</sup>CO<sub>2</sub> molecules in a 10.0 dm<sup>3</sup> carbon dioxide gas sample, measured under s.t.p.
     [2]
  - (ii) Calculate the mass of  ${}^{14}CO_2$  in the 10.0 dm<sup>3</sup> sample. [1]
  - (iii) Hence, explain why it would be difficult to determine the proportion of <sup>14</sup>CO<sub>2</sub> by means of mass measurement. [1]
- (b) To more accurately determine the proportion of <sup>14</sup>C in a sample of graphite, the graphite is vaporised and ionised to C<sup>+</sup>(g) ions. These ions were then passed through two electric plates.

Given that  $H^+$  is deflected with an angle of 8.4°, what is the angle of deflection for <sup>14</sup>C<sup>+</sup> ions under the same experimental set-up? [1]

(c) The half-life of <sup>14</sup>C is 5730 years. Determine the time that has elapsed for a piece of wood from a dead tree to contain 30.0% of its original <sup>14</sup>C.
 [2]

(d) Benzene is obtained from the fractional distillation of crude oil. It can be converted to a series of different useful chemicals such as phenylamine. The formation of phenylamine involves the direct reaction of nitrobenzene and hydrogen gas in the presence of a heterogeneous catalyst.

A series of experiments were carried out at a specific temperature to study the kinetics of this reaction, and the results are shown in Table 6.1.

| Experiment | [nitrobenzene] /<br>mol dm <sup>-3</sup> | [H <sub>2</sub> ] / mol dm <sup>-3</sup> | Initial rate /<br>mol dm <sup>-3</sup> s <sup>-1</sup> |
|------------|------------------------------------------|------------------------------------------|--------------------------------------------------------|
| 1          | 0.010                                    | 0.010                                    | 4.50 × 10 <sup>−5</sup>                                |
| 2          | 0.015                                    | 0.010                                    | 6.74 × 10 <sup>–₅</sup>                                |
| 3          | 0.020                                    | 0.020                                    | 1.80 × 10 <sup>-4</sup>                                |
| 4          | 0.030                                    | X                                        | 4.05 × 10 <sup>-4</sup>                                |

#### Table 6.1

- (i) Define the term *catalyst*.
- (ii) Determine the order of reaction with respect to nitrobenzene and hydrogen.
   [2]
- (iii) Calculate the rate constant, stating its units.
- (iv) Hence, determine the value of x.

[1]

[2]

[1]

(e) Ethylenediamine tetraacetate, [EDTA]<sup>4–</sup>, is a ligand that acts as a chelating agent. It is widely used to remove transition metal ions such as those of chromium from aqueous solutions.

A possible reaction scheme used to synthesise [EDTA]<sup>4–</sup> from methanal is given below.



(i) Suggest the reagents and conditions in steps I, II and III. [3]
(ii) Draw the displayed formulae of intermediates Q and R. [2]
(iii) State the type of reaction when T is converted to [EDTA]<sup>4-</sup>. Give a reason why a limited amount of 1,2-diaminoethane is used. [2]
[Total: 20]

7

(a) 2-chlorobutane undergoes a substitution reaction with hot aqueous sodium hydroxide. Two separate experiments with different concentrations of 2-chlorobutane were carried out to investigate the kinetics of the reaction.

16

The obtained results are presented in Table 7.1.

|               | Experiment 1<br>[2-chlorobutane] = 0.05 mol dm <sup>-3</sup> | Experiment 2<br>[2-chlorobutane] = 0.10 mol dm <sup>-3</sup> |
|---------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Time /<br>min | [NaOH] / mol dm <sup>-3</sup>                                | [NaOH] / mol dm <sup>-3</sup>                                |
| 0             | 0.0050                                                       | 0.0050                                                       |
| 15            | 0.0045                                                       | 0.0040                                                       |
| 30            | 0.0040                                                       | 0.0032                                                       |
| 45            | 0.0036                                                       | 0.0026                                                       |
| 60            | 0.0032                                                       | 0.0021                                                       |
| 75            | 0.0029                                                       | 0.0017                                                       |
| 90            | 0.0026                                                       | 0.0014                                                       |

| Та | ble | 7. | 1 |
|----|-----|----|---|
|    |     |    | - |

- (i) On the same axes, plot graphs of [2-chlorobutane] against time for both Experiments 1 and 2. Label each curve clearly.[2]
- (ii) Use your graphs to determine the order of reaction with respect to 2-chlorobutane and NaOH. Justify your answer in each case. [4]
- (iii) Hence, write a rate equation for the reaction. [1]
- (iv) With the aid of a Maxwell-Boltzmann distribution curve, explain how an increase in temperature affects the rate of reaction in Experiment 2.
   [3]

(b) Fumaric acid is a dibasic acid. When fumaric acid and its potassium salt are added to foods, they act as an acidity regulator and flavouring agent.



fumaric acid

- (i) Identify the type of isomerism fumaric acid exhibits, and explain how it arises.
   [2]
- (ii) When 25 cm<sup>3</sup> of fumaric acid was titrated against 0.15 mol dm<sup>-3</sup> potassium hydroxide, the volume of potassium hydroxide required for complete neutralisation was 27 cm<sup>3</sup>. The pH at this end point was approximately 8.2.

Calculate the concentration of fumaric acid used in the titration. [2]

- (iii) Suggest an indicator that is suitable for the titration of fumaric acid with potassium hydroxide.
- (c) The buffer system of lactic acid, CH<sub>3</sub>CH(OH)COOH, and sodium lactate, CH<sub>3</sub>CH(OH)COO<sup>-</sup>Na<sup>+</sup>, can also be used as acidity regulators in food.

The following equilibrium is established in the buffer system:

$$CH_{3}CH(OH)COOH(aq) \rightleftharpoons CH_{3}CH(OH)COO^{-}(aq) + H^{+}(aq)$$

The numerical value of the equilibrium constant,  $K_a$ , is 1.38 × 10<sup>-4</sup>.

- (i) Write the  $K_a$  expression for the equilibrium shown above.
- (ii) The pH of a buffer solution is deduced using the formula:

$$pH = -Ig K_a + Ig \frac{[salt]}{[acid]}$$

Given that the equilibrium concentrations of lactic acid and sodium lactate are  $0.35 \text{ mol } \text{dm}^{-3}$  and  $0.20 \text{ mol } \text{dm}^{-3}$  respectively, calculate the pH of this buffer solution. [1]

(iii) Write two equations to show how this buffer solution controls pH when a small amount of acid or base is added. [2]

[Total: 20]

## END OF PAPER

[2]

[1]



# **RIVER VALLEY HIGH SCHOOL** YEAR 6 PRELIMINARY EXAMINATION II

| CANDIDATE<br>NAME   | MARK SCHEME                     |                 |             |  |
|---------------------|---------------------------------|-----------------|-------------|--|
| CLASS               |                                 |                 |             |  |
| CENTRE<br>NUMBER    | S 3 0 4 4                       | INDEX<br>NUMBER | 0 0         |  |
| H1 CHEMISTRY 8872/0 |                                 |                 |             |  |
| Paper 2 Structu     | red and Free Response Questions |                 | 13 Sep 2017 |  |

2 hours

Additional Materials: Ruled paper, Graph Paper, Section B Cover Page, Data Booklet

## READ THESE INSTRUCTIONS FIRST.

## DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO.

Write your name, class and index number in the spaces at the top of this page. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

#### Section A

Answer **all** questions on the Question Paper.

#### Section B

Answer **all** questions on separate ruled paper. Begin each question on a fresh sheet of ruled paper. At the end of the examination, fasten all ruled paper securely, with the cover page for Section B on top.

Hand in the Question Paper and answers to Section B separately.

The number of marks is given in brackets [] at the end of each question or part question.

| For Examiner's Use |    |    |   |   |              |       |          |         |
|--------------------|----|----|---|---|--------------|-------|----------|---------|
| Paper 2            |    |    |   |   |              |       |          |         |
|                    | 1  | 2  | 3 | 4 |              | 5/6/7 | Total (F | aper 2) |
| Section<br>A       | 15 | 11 | 7 | 7 | Section<br>B | 40    |          | 80      |
| Paper 1            | 30 |    |   |   | Total        | 110   | Grade    |         |

## 2

This paper consists of **17** printed pages.

3 Section A (40 marks)

Answer **all** the questions in this section in the spaces provided.





|     | 5                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|     | To investigate this claim, 5.00 g of a sample was crushed and dissolved in 250 cm <sup>3</sup> of 0.450 mol dm <sup>-3</sup> aqueous KOH. 25.0 cm <sup>3</sup> of this solution was withdrawn and titrated against sulfuric acid. The unreacted KOH in this solution required 25.50 cm <sup>3</sup> of 0.180 mol dm <sup>-3</sup> of sulfuric acid for complete neutralisation. |     |  |  |
|     | Showing relevant calculations, deduce if the claim is valid.                                                                                                                                                                                                                                                                                                                    |     |  |  |
|     | Amount of H <sub>2</sub> SO <sub>4</sub> = $\frac{25.50}{1000} \times 0.180$                                                                                                                                                                                                                                                                                                    |     |  |  |
|     | = 0.00459 mol                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |
|     | Amount of unreacted KOH = $0.00459 \times 2$                                                                                                                                                                                                                                                                                                                                    |     |  |  |
|     | = 0.00918 mol                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |
|     | Amount of unreacted KOH (in 250 $cm^3$ ) = 0.0918 mol                                                                                                                                                                                                                                                                                                                           |     |  |  |
|     | Amount of KOH reacted with ibuprofen sample = $\frac{250}{1000} \times 0.450 - 0.0918$                                                                                                                                                                                                                                                                                          |     |  |  |
|     | = 0.0207 mol                                                                                                                                                                                                                                                                                                                                                                    |     |  |  |
|     | Since ibuprofen ≡ KOH,                                                                                                                                                                                                                                                                                                                                                          |     |  |  |
|     | Amount of ibuprofen = 0.0207 mol                                                                                                                                                                                                                                                                                                                                                |     |  |  |
|     | Mass of ibuprofen = 0.0207 x [13(12.0) + 18(1.0) + 2(16.0)]                                                                                                                                                                                                                                                                                                                     |     |  |  |
|     | = 4.26 g                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |
|     | $\frac{\text{Percentage purity}}{5.00} \times 100\%$                                                                                                                                                                                                                                                                                                                            |     |  |  |
|     | = 85.2%                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |
|     | Hence, the claim is invalid.                                                                                                                                                                                                                                                                                                                                                    |     |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                 | [3] |  |  |
| (f) | Compare the acidity of ibuprofen and aspirin. Explain your answer.                                                                                                                                                                                                                                                                                                              |     |  |  |
|     | Aspirin is a stronger acid than ibuprofen.                                                                                                                                                                                                                                                                                                                                      |     |  |  |
|     | The anion of aspirin, $\overset{\circ}{\smile} \overset{\circ}{\smile} \overset{\circ}{\smile}$ , is <u>more stable</u> than the anion of ibuprofen, $\overset{\circ}{\smile} \overset{\circ}{\smile} \overset{\circ}{\smile}$ , as the <u>negative charge is delocalised over</u>                                                                                              | 101 |  |  |
|     | the COO group and into the benzene ring.                                                                                                                                                                                                                                                                                                                                        | [2] |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                 |     |  |  |

|     | 6                                                                                                            |        |
|-----|--------------------------------------------------------------------------------------------------------------|--------|
| (g) | Describe a simple chemical test to distinguish between ibuprofen and aspirin.                                |        |
|     | Test: Heat with acidified KMnO₄(aq)                                                                          |        |
|     | Observations: Purple KMnO4 turns colourless for ibuprofen. KMnO4 remains purple for paracetamol and aspirin. | [2]    |
|     | [Tota                                                                                                        | l: 15] |

| 2 | (a) | The f<br>below | irst ionisa<br>v.                                                                                                                                                                                                                                                                                                                                                                                              | ation en                 | ergies                 | of the ele            | ements l           | lithium to         | o fluorin            | e are sł             | nown            |     |
|---|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|-----------------------|--------------------|--------------------|----------------------|----------------------|-----------------|-----|
|   |     |                | 1800 _                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                        |                       |                    |                    |                      | •                    | ]               |     |
|   |     |                | 1600 -                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                        |                       |                    |                    |                      |                      |                 |     |
|   |     |                | 1400 -                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                        |                       |                    |                    | $\checkmark$         |                      |                 |     |
|   |     |                | 1200 -                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                        |                       | *                  |                    |                      |                      |                 |     |
|   |     |                | <sup>1000</sup> ک                                                                                                                                                                                                                                                                                                                                                                                              |                          |                        |                       |                    |                    |                      |                      |                 |     |
|   |     |                | - 008 <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                 | /                        |                        | ~                     |                    |                    |                      |                      |                 |     |
|   |     |                | E 600 -                                                                                                                                                                                                                                                                                                                                                                                                        | •                        |                        |                       |                    |                    |                      |                      |                 |     |
|   |     |                | 400 -                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                        |                       |                    |                    |                      |                      |                 |     |
|   |     |                | 200 -                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                        |                       |                    |                    |                      |                      |                 |     |
|   |     |                | 0                                                                                                                                                                                                                                                                                                                                                                                                              | Li                       | Ве                     | В                     | С                  | N                  | Ο                    | F                    | 7               |     |
|   |     | (i)            | Using a                                                                                                                                                                                                                                                                                                                                                                                                        | n equat                  | ion, de                | fine the f            | irst ionis         | sation er          | nergy of             | boron.               |                 |     |
|   |     |                | $B(g) \rightarrow B^+(g) + e^-$                                                                                                                                                                                                                                                                                                                                                                                |                          |                        |                       |                    |                    | [1]                  |                      |                 |     |
|   |     | (ii)           | Describe and explain the general trend in first ionisation energies for the elements lithium to fluorine.                                                                                                                                                                                                                                                                                                      |                          |                        |                       |                    |                    |                      |                      |                 |     |
|   |     |                | There is a <u>general increase</u> in the first ionisation energies for<br>elements lithium to fluorine. Across a period, <u>nuclear charge</u><br>increases while <u>shielding effect remains approximately constant</u> .<br>Effective nuclear charge increases and <u>valence electrons are</u><br>increasingly attracted to the nucleus. Thus, more energy is required<br>to remove the valence electrons. |                          |                        |                       |                    | [2]                |                      |                      |                 |     |
|   |     | (iii)          | Stating<br>suggest<br>of nitrog                                                                                                                                                                                                                                                                                                                                                                                | the el<br>why th<br>jen. | ectronic<br>e first ic | c config<br>onisation | urations<br>energy | of oxy<br>of oxyge | /gen ar<br>en is lov | nd nitro<br>ver thar | ogen,<br>n that |     |
|   |     |                | O: 1s <sup>2</sup> 2s<br>N: 1s <sup>2</sup> 2s                                                                                                                                                                                                                                                                                                                                                                 | s²2p⁴<br>s²2p³           |                        |                       |                    |                    |                      |                      |                 | [2] |

| 7                                                                                                                                               |                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Due to <u>coulombic repulsion between</u><br>oxygen, less energy is required to rem                                                             | the paired 2p electrons in ove the 2p electron.                                             |
| (b) Across Period 3, the nature of elements characteristic. The difference in electronegativity be oxide decreases correspondingly, giving rise | anges from metallic to non-<br>etween the elements and the<br>to different types of oxides. |
| and bonding. For each type of oxide, write equivater when applicable, and give the approxim                                                     | uations for the reactions with ate pH of resultant solutions.                               |
| Na <sub>2</sub> O/MgO/Al <sub>2</sub> O <sub>3</sub> has giant ionic lattice struct<br>forces of attraction between its oppositely-cha          | <u>ture with strong electrostatic</u><br>arged ions.                                        |
| $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq)  pH = 12$                                                                                             |                                                                                             |
| $MgO(s) + H_2O(l) \neq Mg(OH)_2(aq)  pH = 8$                                                                                                    |                                                                                             |
| Al <sub>2</sub> O <sub>3</sub> is insoluble in water and hence gives a                                                                          | resultant solution of pH 7.                                                                 |
| SiO <sub>2</sub> has <u>giant covalent structure</u> with <u>strong</u><br><u>Si and O atoms</u> .                                              | covalent bonds between the                                                                  |
| SIO <sub>2</sub> is insoluble in water and hence gives a i                                                                                      | resultant solution of pH 7.                                                                 |
| P4O6/P4O10/SO2/SO3 has simple covalent s<br>Waals forces between molecules.                                                                     | <u>tructure</u> with <u>weak van der</u>                                                    |
| $P_4O_6(s) + 6H_2O(I) \rightarrow 4H_3PO_3(aq)  pH = 2$                                                                                         |                                                                                             |
| $P_4O_{10}(s) + 6H_2O(I) \rightarrow 4H_3PO_4(aq)  pH = 2$                                                                                      |                                                                                             |
| $SO_2(g) + H_2O(I) \rightarrow H_2SO_3(aq)  pH = 2$                                                                                             | [6]                                                                                         |
| $SO_3(I) + H_2O(I) \rightarrow H_2SO_4(aq)  pH = 2$                                                                                             | [6]                                                                                         |
|                                                                                                                                                 | [Total: 11]                                                                                 |

| 3 | (a) | Some important uses of hydrocarbons include fuels, plastics, paints and solvents. In some countries, where crude oil is either scarce or expensive, biofuels such as ethanol are also increasingly being used for fuels instead of hydrocarbons. |  |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|



|     |                 | 9                                                                                                                                                                                                                                         |         |
|-----|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| (b) | Liquic<br>could | hydrazine reacts with oxygen to form nitrogen and steam which involve the following energy cycle shown below.                                                                                                                             |         |
|     |                 | $N_{2}H_{4}(I) + O_{2}(g) \longrightarrow N_{2}(g) + 2H_{2}O(g)$ $\downarrow \qquad \qquad$                        |         |
|     | (i)             | Given that the enthalpy change of vapourisation of hydrazine is +58.0 kJ mol <sup>-1</sup> , use appropriate bond energies from the <i>Data Booklet</i> to calculate the enthalpy change of reaction between liquid hydrazine and oxygen. |         |
|     |                 | $\Delta H_{r} = \Delta H_{vap}(N_{2}H_{4}) + [BE(N-N) + 4BE(N-H) + BE(O=O)]$                                                                                                                                                              |         |
|     |                 | [BE(N≡N) + 4BE(O–H)]                                                                                                                                                                                                                      |         |
|     |                 | = +58 + [(+160) + 4(+390) + (+496)] – [(+944) + 4(+460)]                                                                                                                                                                                  |         |
|     |                 | = –510 kJ mol <sup>-1</sup>                                                                                                                                                                                                               | [2]     |
|     | (ii)            | Suggest a reason to account for the discrepancy between the theoretical enthalpy change of reaction between liquid hydrazine and oxygen and your answer in <b>(b)(i)</b> .                                                                |         |
|     |                 | The bond energy values obtained from the <i>Data Booklet</i> are <u>average values</u> and would not be representative of the specified reaction.                                                                                         | [1]     |
|     | •               | [Tot                                                                                                                                                                                                                                      | tal: 7] |

| 4 | Und<br>prec<br>SO <sub>2</sub> | Under suitable conditions, $SCl_2$ reacts with water to produce a yellow precipitate of sulfur and an acidic solution <b>G</b> . Solution <b>G</b> contains a mixture of $SO_2(aq)$ and another compound. |     |  |  |  |  |
|---|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|   | (a)                            | State the oxidation number of S in $SCl_2$ .                                                                                                                                                              |     |  |  |  |  |
|   |                                | <mark>+2</mark>                                                                                                                                                                                           | [1] |  |  |  |  |
|   | (b)                            | Construct an equation for the reaction between SCl <sub>2</sub> and water.                                                                                                                                |     |  |  |  |  |

|     | 2SC <i>l</i> 2 + 2H <sub>2</sub> C                                                                                                                                                                                                                                                                                                                                                        | $\rightarrow$ S + SO <sub>2</sub> | 2 + 4HCl                          |                      |            |                      | [1]      |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------|------------|----------------------|----------|--|
| (c) | In the Contact Process, one important step is the conversion of SO <sub>2</sub> to SO <sub>3</sub> as shown below.<br>$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ 2.00 L flask was filled with 0.0400 mol SO <sub>2</sub> and 0.0200 mol O <sub>2</sub> .<br>At equilibrium, at 900 K, the flask contained 0.0296 mol of SO <sub>3</sub> .<br>Determine the value of K <sub>c</sub> . |                                   |                                   |                      |            |                      |          |  |
|     | 2SO <sub>2</sub> + O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                         |                                   |                                   |                      |            |                      |          |  |
|     | <mark>l / mol</mark>                                                                                                                                                                                                                                                                                                                                                                      | <mark>0.0400</mark>               |                                   | <mark>0.0200</mark>  |            | O                    |          |  |
|     | <mark>C / mol</mark>                                                                                                                                                                                                                                                                                                                                                                      | <mark>-0.0296</mark>              |                                   | <mark>–0.0148</mark> |            | <mark>+0.0296</mark> |          |  |
|     | <mark>E / mol</mark>                                                                                                                                                                                                                                                                                                                                                                      | <mark>0.0104</mark>               |                                   | <mark>0.00520</mark> |            | <mark>0.0296</mark>  |          |  |
|     | $\frac{K_{\rm c} \text{ (where V = }}{\frac{[^{0.0296}/v]}{[^{0.0104}/v]^2[^{0.00}]}}$<br>= 3116                                                                                                                                                                                                                                                                                          | <mark>2)</mark><br>2005<br>2/VI   |                                   |                      |            |                      |          |  |
|     | <mark>= 3120 mol<sup>-1</sup></mark>                                                                                                                                                                                                                                                                                                                                                      | <mark>dm³</mark>                  |                                   |                      |            |                      | [3]      |  |
| (d) | State and explain how the position of equilibrium and equilibrium constant, $K_c$ , will change when the volume of the flask is doubled.                                                                                                                                                                                                                                                  |                                   |                                   |                      |            |                      |          |  |
|     | When the volume of flask is doubled, <u>concentration of all gases will be</u> <u>halved</u> . Since there are <u>more concentration terms on the left hand side of</u> the equation, equilibrium position will shift left.                                                                                                                                                               |                                   |                                   |                      |            |                      |          |  |
|     | There will be                                                                                                                                                                                                                                                                                                                                                                             | <u>no change t</u>                | <u>o <i>K</i>c</u> as <u>terr</u> | nperature re         | mains unch | nanged.              | [2]      |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                   |                      |            | [To                  | otal: 7] |  |

# Section B (40 marks)

Answer **two** questions from this section on separate answer paper.

| 5 | (a) | Carbo<br>selen<br>given                             | on also f<br>ium. The<br>in Table                                                                                                                                                                                                                                                                                                                                                                                                                                            | orms compounds<br>e properties of so<br>e 5.1.                  | s with other Group 16 one of these compour                                          | elements like sulfur and<br>nds, along with CO <sub>2</sub> , are |     |  |  |
|---|-----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|--|--|
|   |     |                                                     | Table 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |                                                                                     |                                                                   |     |  |  |
|   |     | Compound Structure Dipole moment Boiling point / °C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                                     |                                                                   |     |  |  |
|   |     | (                                                   | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0=C=0                                                           | 0                                                                                   | sublimes                                                          |     |  |  |
|   |     | (                                                   | CS <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S=C=S                                                           | 0                                                                                   | 46                                                                |     |  |  |
|   |     | C                                                   | COS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S=C=O                                                           | 0.71                                                                                | -50                                                               |     |  |  |
|   |     | С                                                   | OSe                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Se=C=O                                                          | 0.73                                                                                | -22                                                               |     |  |  |
|   |     | (i)                                                 | Explain, in terms of structure and bonding, the difference in the boiling point of CS <sub>2</sub> and COS.                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                                                                     |                                                                   | [2] |  |  |
|   |     |                                                     | Both CS <sub>2</sub> and COS have <u>simple covalent structures</u> . CS <sub>2</sub> has a <u>larger</u><br><u>number of electrons</u> (or larger electron cloud) than COS. More<br>energy is required to overcome the <u>stronger instantaneous dipole-<br/>induced dipole interactions between CS<sub>2</sub> molecules than the weaker<br/>permanent dipole-induced dipole interactions between COS<br/>molecules. Hence, CS<sub>2</sub> has a higher boiling point.</u> |                                                                 |                                                                                     |                                                                   |     |  |  |
|   |     | (ii)                                                | <ul> <li>i) Explain why</li> <li>• CO<sub>2</sub> has no overall dipole moment.</li> <li>• COSe has a greater dipole moment than COS.</li> </ul>                                                                                                                                                                                                                                                                                                                             |                                                                 |                                                                                     |                                                                   |     |  |  |
|   |     |                                                     | CO <sub>2</sub> is<br>C=S b<br>betwee<br>and C=                                                                                                                                                                                                                                                                                                                                                                                                                              | linear and hence<br>ond is more po<br>on the dipole mon<br>=Se. | e the <u>dipoles cancel o</u><br>l <u>lar_than_C=O</u> There<br>nent of C=O and C=S | <u>ut.</u><br>e is smaller difference<br>than that between C=O    |     |  |  |
|   | (b) | Aside<br>oxoca<br>mole                              | <br>ide from the common oxides, carbon forms a series of reactive<br>ocarbons. One such compound is tricarbon monoxide, C <sub>3</sub> O, a reactive<br>olecule found in space.                                                                                                                                                                                                                                                                                              |                                                                 |                                                                                     |                                                                   |     |  |  |
|   |     | (i)                                                 | Sugge:<br>pairs p                                                                                                                                                                                                                                                                                                                                                                                                                                                            | st a structure of t<br>resent.                                  | ricarbon monoxide. Ir                                                               | ndicate clearly any lone                                          | [1] |  |  |

| 1   | n                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |                                                                        | <mark>:c==c==ö:</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | Trica<br>cyano                                                         | ricarbon monoxide is isoelectronic to cyanogen, (CN) <sub>2</sub> . The molecule of vanogen contains a C–C single bond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (ii)                                                                   | Draw the dot-and-cross diagra<br>should distinguish the electro<br>atoms and those from the two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Draw the dot-and-cross diagram of cyanogen. In your diagram, you should distinguish the electrons originating from the two carbon atoms and those from the two nitrogen atoms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                                                        | N X C X C X N X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (iii)                                                                  | Suggest the shapes of tricarbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n monoxide and cyanogen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     |                                                                        | They are both <u>linear</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| (c) | Anoth<br>heatin<br>X also<br>mirro<br>platin<br>react<br>mono<br>Y rea | Ther oxycarbon is pentacarbon dioxide, $C_5O_2$ . It can be obtained by<br>ing compound <b>X</b> , $C_6H_6O_3$ , at a high temperature.<br>To gives an orange precipitate with 2,4-DNPH but does not give a silver<br>r with Tollens' reagent. <b>X</b> reacts with hydrogen in the presence of<br>itum catalyst under suitable conditions to for <b>Y</b> , $C_6H_{12}O_3$ . When<br>ed with limited bromine under ultraviolet light, <b>X</b> produced <b>only one</b><br>obromo compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | Sugg                                                                   | uggest the structures of compounds <b>X</b> , <b>Y</b> and <b>Z</b> . Explain your reasoning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | <mark>Info</mark>                                                      | rmation/Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | X/Y                                                                    | has <u>C:H ratio of 1:1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>X/Y</b> might contain a <u>benzene ring</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | <mark>X</mark> ur<br>2,4-<br><u>oxid</u>                               | ndergoes <u>condensation</u> with<br>DNPH but does not undergo<br><u>ation</u> with Tollens' reagent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mark>X</mark> is a <u>ketone</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | X ur                                                                   | X undergoes reduction with H₂ [✓]Y has 3 OH group.Y is a 2º alcohol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | X ur<br><u>subs</u><br>one                                             | ndergoes <u>free-radical</u> <b>X</b> is <u>highly symmetrical</u> .<br><u>stitution</u> with Br <sub>2</sub> to give only<br>monobromo compound.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | <mark>Y</mark> ur<br>NaC                                               | Y undergoes <u>elimination</u> with<br>NaOH(alc) to form Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | (c)                                                                    | Image: state s | 12         :C==C=:O:         Tricarbon monoxide is isoelectronic for cyanogen contains a C-C single born about distinguish the electron atoms and those from the two for atoms and those for for atoms at a high at the atoms and the electron atoms at the electron atom at the electron atom atom at the electron atom atom at the electron atom at the electron atom at the electron atom atom atom at the electron atom atom at the electron atom at the electron atom at the electron atom atom atore atom atom atom atom atom atom atom atom | 12         iC==C==O:         Tricarbon monoxide is isoelectronic to cyanogen, (CN)2. The molecule of cyanogen contains a C–C single bond.         (ii)       Draw the dot-and-cross diagram of cyanogen. In your diagram, you should distinguish the electrons originating from the two carbon atoms and those from the two nitrogen atoms.         (iii)       Draw the dot-and-cross diagram of cyanogen. In your diagram, you should distinguish the electrons originating from the two carbon atoms and those from the two nitrogen atoms.         (iii)       Suggest the shapes of tricarbon monoxide and cyanogen.         They are both linear.       They are both linear.         (c)       Another oxycarbon is pentacarbon dioxide, CsO2. It can be obtained by heating compound X, CsH6O3, at a high temperature.         X also gives an orange precipitate with 2,4-DNPH but does not give a silver mirror with Tollens' reagent. X reacts with hydrogen in the presence of platinium catalyst under suitable conditions to for Y, CsH12O3. When reacted with limited bromine under ultraviolet light, X produced only one monobromo compound.         Y reacts with ethanolic sodium hydroxide to form Z, CsH8.       Suggest the structures of compounds X, Y and Z. Explain your reasoning.         Information/Reaction       Deduction         XU ndergoes reduction with T2 [Y]       Y has 3 OH group.         X undergoes reduction with H2 [Y]       Y has 3 OH group.         X undergoes free-radical substitution with B2 to give only one monobromo compound.       X is highly symmetrical. |  |  |  |

| <br> |                                                             |                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                |     |  |
|------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----|--|
|      | Structures:                                                 |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                |     |  |
|      | OH<br>OOH<br>HOOOH<br>OH<br>OOH<br>OOH<br>OOH<br>OOH<br>OOH |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                |     |  |
|      |                                                             | X                                                                                      | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | Z                                                                                              |     |  |
| (d)  | (i)                                                         | Define the term I                                                                      | Bronsted acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |                                                                                                | [1] |  |
|      |                                                             | A Bronsted acid                                                                        | <mark>is a <u>proton dor</u></mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>)Or</mark> .                                                 |                                                                                                |     |  |
|      | (ii)                                                        | The concentration the pH of the sol                                                    | on of a monoba<br>ution is 3.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | asic acid, H                                                       | IY is 0.01 mol dm <sup>-3</sup> , while                                                        |     |  |
|      |                                                             | reasoning, if HY                                                                       | is a strong or v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | veak acid.                                                         | his solution. State, with                                                                      | [2] |  |
|      | pH = 3.5                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                |     |  |
|      |                                                             | $[H^+] = 10^{-3.5} = 3.1$                                                              | 16 x 10 <sup>-4</sup> mol d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m <sup>-3</sup>                                                    |                                                                                                |     |  |
|      |                                                             | Given that the co<br>larger than the c<br>partially.                                   | concentration of concen | f HY is 0.0 <sup>°</sup><br>of H <sup>+</sup> , it is              | 1 mol dm <sup>-3</sup> which is much<br>a <u>weak acid as it ionises</u>                       |     |  |
| (e)  | Valı<br>give                                                | ues for the ionic pro<br>en in Table 5.2.                                              | duct of water,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $K_{\rm w}$ , at two                                               | different temperatures are                                                                     |     |  |
|      |                                                             |                                                                                        | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e 5.2                                                              |                                                                                                |     |  |
|      | Temperature / °C   Kw / mol <sup>2</sup> dm <sup>-6</sup>   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                |     |  |
|      | 25 1.00 × 10 <sup>-14</sup>                                 |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                                                                                                |     |  |
|      |                                                             | 50                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł                                                                  | 5.48 × 10 <sup>-14</sup>                                                                       |     |  |
|      | Usii<br>end                                                 | ng Le Chatelier's Pr<br>lothermic or exother                                           | inciple, explair<br>mic process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | whether th                                                         | ne ionisation of water is an                                                                   | [2] |  |
|      | Whe<br>equination<br>remeters<br>end                        | en temperature incr<br>ilibrium position of<br>ove some of the a<br>lothermic process. | eases, the val<br><u>H₂O(I) ⇒_H⁺(ao</u><br>added heat <mark>.</mark> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ue of <i>K</i> <sub>w</sub> in<br><u>a) + OH⁻(ac</u><br>lence, the | creases. This implies that<br><u>q) lies more to the right to</u><br>ionisation of water is an |     |  |

|            | 14 |  |
|------------|----|--|
| [Total: 20 |    |  |

| 6 | In the<br>deter<br>prop<br>carb<br>Duri<br>the<br>Onc<br>that<br>grac | In the late 1940s, Willard Libby developed the radiocarbon dating method for determining the age of an object containing organic material by using the properties of radiocarbon ( <sup>14</sup> C), a radioactive isotope of carbon. The principle of carbon dating is as such:<br>During its life, a plant or animal is exchanging carbon with its surroundings, so the carbon it contains will have the same proportion of <sup>14</sup> C as the atmosphere.<br>Once it dies, it ceases to acquire <sup>14</sup> C, but the <sup>14</sup> C within its biological material at that time will continue to decay, and so the ratio of <sup>14</sup> C to <sup>12</sup> C in its remains will gradually decrease. |                                                                                                                                                                                                                                                                               |     |  |  |
|---|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|   | Bec<br>be u<br>excł                                                   | ause <sup>14</sup> C decays with first order kinetics, the proportion of radiocarbon can used to determine how long it has been since a given sample stopped hanging carbon – the older the sample, the less <sup>14</sup> C will be left.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                               |     |  |  |
|   | (a)                                                                   | A san<br>analy<br>show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A sample of carbon dioxide gas (that contained both ${}^{12}CO_2$ and ${}^{14}CO_2$ ) was analysed to determine the proportion of ${}^{14}CO_2$ found within. Analysis results showed that there is one ${}^{14}CO_2$ molecule for every $10^{12}$ CO <sub>2</sub> molecules. |     |  |  |
|   |                                                                       | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calculate the number of <sup>14</sup> CO <sub>2</sub> molecules in a 10.0 dm <sup>3</sup> carbon dioxide gas sample, measured under s.t.p.                                                                                                                                    | [2] |  |  |
|   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number of moles of CO <sub>2</sub> = $\frac{10}{22.7}$<br>= 0.441 mol<br>Number of <sup>14</sup> CO <sub>2</sub> molecules = 0.441 × $\frac{6.02 \times 10^{23}}{10^{12}}$<br>= 2.65 × 10 <sup>11</sup> molecules                                                             |     |  |  |
|   |                                                                       | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Calculate the mass of $^{14}CO_2$ in the 10.0 dm <sup>3</sup> sample.                                                                                                                                                                                                         | [1] |  |  |
|   |                                                                       | (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mass of <sup>14</sup> CO <sub>2</sub> = $\frac{2.65 \times 10^{11}}{6.02 \times 10^{23}} \times (14.0 + 16.0 \times 2)$<br>= 2.03 × 10 <sup>-11</sup> g                                                                                                                       |     |  |  |
|   |                                                                       | (111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of ${}^{14}\text{CO}_2$ by means of mass measurement.                                                                                                                                                                                                                         | [1] |  |  |
|   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The amount/mass of <sup>14</sup> CO <sub>2</sub> is too small to be accurately measured.                                                                                                                                                                                      |     |  |  |
|   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                               |     |  |  |
|   | (b)                                                                   | To more accurately determine the proportion of $^{14}C$ in a sample of graphite, the graphite is vaporised and ionised to C <sup>+</sup> (g) ions. These ions were then passed through two electric plates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                               |     |  |  |
|   |                                                                       | deflec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Given that H <sup>+</sup> is deflected with an angle of 8.4°, what is the angle of deflection for <sup>14</sup> C <sup>+</sup> ions under the same experimental set-up? [1                                                                                                    |     |  |  |

| <br>15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                  |                                          |                                          |                                                        |     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------|-----|
|        | Ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Angle of deflection of ${}^{14}C^+ = \left(\frac{1}{14}\right)(8.4)$                                                                                                       |                  |                                          |                                          |                                                        |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                  | = 0.60*                                  |                                          |                                                        |     |
| (c)    | Tł<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The half-life of <sup>14</sup> C is 5730 years. Determine the time that has elapsed for a piece of wood from a dead tree to contain 30.0% of its original <sup>14</sup> C. |                  |                                          |                                          |                                                        |     |
|        | Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | et th                                                                                                                                                                      | e number o       | of half-life be n.                       |                                          |                                                        |     |
|        | $\frac{30.0}{100} = \left(\frac{1}{2}\right)^n$                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                  |                                          |                                          |                                                        |     |
|        | $n = \frac{lg\left(\frac{30.0}{100}\right)}{lg\left(\frac{1}{2}\right)}$                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            |                  |                                          |                                          |                                                        |     |
|        | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>= 1</mark>                                                                                                                                                           | <mark>.74</mark> |                                          |                                          |                                                        |     |
|        | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | me                                                                                                                                                                         | taken = 573      | 30 × 1.74 = <u>9970 y</u>                | ears                                     |                                                        |     |
| (d)    | <ul> <li>Benzene is obtained from the fractional distillation of crude oil. It can be converted to a series of different useful chemicals such as phenylamine. The formation of phenylamine involves the direct reaction of nitrobenzene and hydrogen gas in the presence of a heterogeneous catalyst.</li> <li>A series of experiments were carried out at a specific temperature to study the kinetics of this reaction, and the results are shown in Table 6.1.</li> </ul> |                                                                                                                                                                            |                  |                                          |                                          |                                                        |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                  |                                          |                                          |                                                        |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                                                                                                                                                                          | xperiment        | [nitrobenzene] /<br>mol dm <sup>-3</sup> | [H <sub>2</sub> ] / mol dm <sup>-3</sup> | Initial rate /<br>mol dm <sup>-3</sup> s <sup>-1</sup> |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | 1                | 0.010                                    | 0.010                                    | 4.50 × 10 <sup>−5</sup>                                |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | 2                | 0.015                                    | 0.010                                    | 6.74 × 10 <sup>−5</sup>                                |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | 3                | 0.020                                    | 0.020                                    | 1.80 × 10 <sup>-4</sup>                                |     |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | 4                | 0.030                                    | x                                        | 4.05 × 10 <sup>-4</sup>                                |     |
|        | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                                                                          | Define the       | e term <i>catalyst</i> .                 |                                          |                                                        | [1] |
|        | A catalyst is a substance that <u>increases the rate of reaction</u> by providing an <u>alternative reaction pathway of lowered activation</u> energy, and is regenerated at the end of the reaction.                                                                                                                                                                                                                                                                         |                                                                                                                                                                            |                  |                                          |                                          |                                                        |     |
|        | (ii) Determine the order of reaction with respect to nitrobenzene and hydrogen.                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                  |                                          | [2]                                      |                                                        |     |

| 16 |     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |
|----|-----|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    |     |                          | Comparing Experiment 1 and 2, when [nitrobenzene] is increased to 1.5 times, rate is increased to 1.5 times. Hence, the reaction is first order with respect to nitrobenzene.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |
|    |     |                          | Let the rate equation be Rate = k[nitrobenzene][H <sub>2</sub> ] <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |
|    |     |                          | Comparing Experiment 2 and 3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |
|    |     |                          | $\frac{\frac{6.74 \times 10^{-5}}{1.80 \times 10^{-4}}}{\frac{1}{k}(0.02)(0.02)^a} = \frac{k(0.015)(0.01)^a}{k(0.02)(0.02)^a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |
|    |     |                          | $\left(\frac{6.74 \times 10^{-5}}{1.80 \times 10^{-4}}\right) \left(\frac{0.02}{0.015}\right) = \left(\frac{0.01}{0.02}\right)^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |
|    |     |                          | a = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
|    |     | (iii)                    | Calculate the rate constant, stating its units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [2] |  |
|    |     |                          | Using Experiment 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |
|    |     |                          | $4.50 \times 10^{-5} = k(0.01)(0.01)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
|    |     |                          | <mark>k = 0.450 mol<sup>-1</sup> dm<sup>3</sup> s<sup>-1</sup></mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
|    |     | (iv)                     | Hence, determine the value of x.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1] |  |
|    |     |                          | $4.05 \times 10^{-4} = (0.45)(0.03)x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
|    |     |                          | $x = 0.0300 \text{ (mol dm}^{-3}\text{)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
|    | (e) | Ethyle<br>agent<br>chron | enediamine tetraacetate, [EDTA] <sup>4–</sup> , is a ligand that acts as a chelating<br>t. It is widely used to remove transition metal ions such as those of<br>nium from aqueous solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |
|    |     | A pos<br>given           | ssible reaction scheme used to synthesise [EDTA] <sup>4–</sup> from methanal is below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |  |
|    |     | н                        | $ \begin{array}{c} H \\ \hline \\ I \end{array} \qquad Q \xrightarrow{II} \qquad R \xrightarrow{III} \qquad H \xrightarrow{Cl} H \\ \hline \\ COOH \qquad COO- \\ COOH \qquad COO- \\ COO- \\$ |     |  |
|    |     |                          | limited<br>1,2-diaminoethane,<br>heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |
|    |     |                          | $\begin{array}{c} 0 \\ 0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ -0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |
|    |     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |

| 17 |       |                                                                                                                                                                                                     |         |  |  |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|    | (i)   | Suggest the reagents and conditions in steps I, II and III.                                                                                                                                         | [3]     |  |  |
|    |       | Step I: HCN with small amount of NaCN<br>Step II: PC <i>l</i> <sub>5</sub> /PC <i>l</i> <sub>3</sub> /SOC <i>l</i> <sub>2</sub><br>Step III: H <sub>2</sub> SO <sub>4</sub> (aq), heat under reflux |         |  |  |
|    | (ii)  | Draw the displayed formulae of intermediates <b>Q</b> and <b>R</b> .                                                                                                                                | [2]     |  |  |
|    |       | $ \begin{array}{c}                                     $                                                                                                                                            |         |  |  |
|    | (iii) | State the type of reaction when <b>T</b> is converted to [EDTA] <sup>4–</sup> .<br>Give a reason why a limited amount of 1,2-diaminoethane is used.                                                 | [2]     |  |  |
|    |       | (Nucleophilic) substitution<br>To enable multiple substitution on the amine group.                                                                                                                  |         |  |  |
|    |       | [Tota                                                                                                                                                                                               | al: 20] |  |  |

| 7 | (a) | 2-chlorobutane undergoes a substitution reaction with hot aqueous sodium hydroxide. Two separate experiments with different concentrations of 2-chlorobutane were carried out to investigate the kinetics of the reaction. |  |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |     | The obtained results are presented in Table 7.1.                                                                                                                                                                           |  |

|   |               | 18                                                                             |                                                                       |     |
|---|---------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----|
|   |               | Table 7.                                                                       | 1                                                                     |     |
|   |               | Experiment 1                                                                   | Experiment 2                                                          |     |
|   |               | $[2-chlorobutane] = 0.05 \text{ mol } dm^{-3}$                                 | [2-chlorobutane] = 0.10 mol dm <sup>-</sup>                           | -3  |
|   | Time /<br>min | [NaOH] / mol dm <sup>-3</sup>                                                  | [NaOH] / mol dm <sup>−3</sup>                                         |     |
|   | 0             | 0.0050                                                                         | 0.0050                                                                |     |
| - | 15            | 0.0045                                                                         | 0.0040                                                                |     |
|   | 30            | 0.0040                                                                         | 0.0032                                                                |     |
| - | 45            | 0.0036                                                                         | 0.0026                                                                |     |
|   | 60            | 0.0032                                                                         | 0.0021                                                                |     |
|   | 75            | 0.0029                                                                         | 0.0017                                                                |     |
|   | 90            | 0.0026                                                                         | 0.0014                                                                |     |
|   | (i)           | On the same axes, plot graphs of both Experiments 1 and 2. Label e             | [2-chlorobutane] against time for ach curve clearly.                  | [2] |
|   |               | <mark>See graph</mark>                                                         |                                                                       |     |
|   | (ii)          | Use your graphs to determine the 2-chlorobutane and NaOH. Justify              | order of reaction with respect to your answer in each case.           | [4] |
|   |               | Using graph of Experiment 2, t <sub>1/2</sub> is                               | constant at 48 min.                                                   |     |
|   |               | Hence, order of reaction with respe                                            | ect to NaOH is 1.                                                     |     |
|   |               | For Experiment 1, initial rate = -gra                                          | adient                                                                |     |
|   |               | = 3.64                                                                         | $1 \times 10^{-5} \text{ mol dm}^{-3} \text{ min}^{-1}$               |     |
|   |               | For Experiment 2, initial rate = $-graphical rate$                             | adient                                                                |     |
|   |               | When [2-chlorobutane] is doubled                                               | rate is doubled. Hence, order of                                      |     |
|   |               | reaction with respect to 2-chlorobu                                            | tane is 1.                                                            |     |
|   | (iii)         | Hence, write a rate equation for the                                           | e reaction.                                                           | [1] |
|   |               | Rate = k[2-chlorobutane][NaOH]                                                 |                                                                       |     |
|   | (iv)          | With the aid of a Maxwell-Boltzmar<br>an increase in temperature affects<br>2. | nn distribution curve, explain how the rate of reaction in Experiment | [3] |



| 20                                                                                                                                                   |        |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                      | (iii)  | Suggest an indicator that is suitable for the titration of fumaric acid with potassium hydroxide.                                                                                                                         | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                      |        | <u>Phenolphthalein, because its working pH range (8-10) lies within the</u><br>sharp pH change near the equivalence point of the titration.                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| (c) The buffer system of lactic acid, $CH_3CH(OH)COOH$ , and sodium lactate, $CH_3CH(OH)COO^-Na^+$ , can also be used as acidity regulators in food. |        |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      | The fo | ollowing equilibrium is established in the buffer system:                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      |        | $CH_3CH(OH)COOH(aq) \rightleftharpoons CH_3CH(OH)COO^-(aq) + H^+(aq)$                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      | The n  | umerical value of the equilibrium constant, $K_a$ , is 1.38 × 10 <sup>-4</sup> .                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      | (i)    | Write the $K_a$ expression for the equilibrium shown above.                                                                                                                                                               | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                      |        | $\kappa_{a} = \frac{[CH_{3}CH(OH)COO^{-}][H^{+}]}{[CH_{3}CH(OH)COOH]}$                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      | (ii)   | The pH of a buffer solution is deduced using the formula:                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      |        | $pH = -Ig \ \mathcal{K}_a + Ig \ \frac{[salt]}{[acid]}$                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      |        | Given that the equilibrium concentrations of lactic acid and sodium lactate are 0.35 mol dm <sup><math>-3</math></sup> and 0.20 mol dm <sup><math>-3</math></sup> respectively, calculate the pH of this buffer solution. | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                      |        | $pH = -lg(1.38 \times 10^{-4}) + lg\left(\frac{0.20}{0.35}\right)$                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      |        | = 3.62                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      | (iii)  | Write two equations to show how this buffer solution controls pH when a small amount of acid or base is added.                                                                                                            | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                      |        | CH₃CH(OH)COO <sup>-</sup> + H <sup>+</sup> → CH₃CH(OH)COOH                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      |        | $CH_{3}CH(OH)COOH + OH^{-} \rightarrow CH_{3}CH(OH)COO^{-} + H_{2}O$                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                      |        | [Total                                                                                                                                                                                                                    | l: 20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                      | (c)    | (iii)<br>(c) The b<br>CH3C<br>The fo<br>(i)<br>(i)<br>(ii)<br>(iii)                                                                                                                                                       | 20(iii)Suggest an indicator that is suitable for the titration of fumaric acid<br>with potassium hydroxide.(iii)Phenolphthalein, because its working pH range (8-10) lies within the<br>sharp pH change near the equivalence point of the titration.(c)The buffer system of lactic acid, CH <sub>3</sub> CH(OH)COOH, and sodium lactate,<br>CH <sub>3</sub> CH(OH)COO <sup>-</sup> Na <sup>+</sup> , can also be used as acidity regulators in food.<br>The following equilibrium is established in the buffer system:<br>CH <sub>3</sub> CH(OH)COOH(aq) $\rightleftharpoons$ CH <sub>3</sub> CH(OH)COO <sup>-</sup> (aq) + H <sup>+</sup> (aq)<br>The numerical value of the equilibrium constant, Ka, is 1.38 × 10 <sup>-4</sup> .(i)Write the Ka expression for the equilibrium shown above.(ii)Write the Ka expression for the equilibrium shown above.(iii)The pH of a buffer solution is deduced using the formula:<br>$pH = -lg K_{a} + lg \frac{[satt]}{[acid]}$ Given that the equilibrium concentrations of lactic acid and sodium<br>lactate are 0.35 mol dm <sup>-3</sup> and 0.20 mol dm <sup>-3</sup> respectively, calculate<br>the pH of this buffer solution.(iii)Write two equations to show how this buffer solution controls pH<br>when a small amount of acid or base is added.(iiii)CH <sub>3</sub> CH(OH)COO <sup>+</sup> + H <sup>+</sup> $\rightarrow$ CH <sub>3</sub> CH(OH)COO <sup>+</sup> + H <sub>2</sub> O(iiii)CH <sub>3</sub> CH(OH)COO <sup>+</sup> + H <sup>+</sup> $\rightarrow$ CH <sub>3</sub> CH(OH)COO <sup>+</sup> + H <sub>2</sub> O |  |  |

### **END OF PAPER**