ANDERSON JUNIOR COLLEGE

2017 JC 2 PRELIMINARY EXAMINATIONS

CHEMISTRY

9729/01
Paper 1 Multiple Choice
18 September 2017
1 hour

Additional Materials: Multiple Choice Answer Sheet
Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the Multiple Choice Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
The use of an approved scientific calculator is expected, where appropriate.

```
Multiple Choice Answer Sheet
Write your name, PDG and NRIC / FIN number, including the reference letter.
Shade the NRIC / FIN number.
Exam Title: JC2 PRELIM
Exam Details: H2 Chemistry / Paper 1
Date: 18/09/2017
```

1 Use of the Data Booklet is relevant to this question.
Tritium, ${ }_{1}^{3} \mathrm{H}$, a radioactive isotope of hydrogen, slowly turns into a helium isotope ${ }_{2}^{3} \mathrm{He}$.

Which statements about the two isotopes are incorrect?
1 Both isotopes have more neutrons than electrons.
2 Both isotopes have the same number of protons in their nuclei.
3 Both isotopes have the same number of charged sub-atomic particles.
A 2 only
B 1 and 3 only
C 2 and 3 only
D 1, 2 and 3

2 When passed through an electric field, the ${ }^{1} \mathrm{H}$ nucleus is deflected as shown below.

Which of the above beams represents the deflection for an ion ${ }^{2} X^{2-}$?

3 Which of the following molecules / ions has the smallest bond angle?
A $\quad \mathrm{SF}_{2}$
B $\quad \mathrm{XeF}_{2}$
C $\quad \mathrm{SO}_{3}{ }^{2-}$
D AlH_{4}^{-}

4 Compounds \mathbf{F}, \mathbf{G} and \mathbf{H} are cyclic compounds.

F

G

H

Which bond is not present in the compounds above?
A a σ bond formed by $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ overlap between two C atoms in \mathbf{F}
B a σ bond formed by $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ overlap between C and N atoms in \mathbf{G}
C a σ bond formed by $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ overlap between two \mathbf{C} atoms in \mathbf{H}
D a σ bond formed by $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ overlap between C and N atoms in \mathbf{H}

5 Two glass vessels \mathbf{J} and \mathbf{K} are connected by a closed valve.

\mathbf{J} contains helium gas at $20^{\circ} \mathrm{C}$ and a pressure of $1 \times 10^{5} \mathrm{~Pa}$. \mathbf{K} has been evacuated, and has three times the volume of \mathbf{J}. In an experiment, the valve is opened and the temperature of the whole apparatus is raised to $100^{\circ} \mathrm{C}$.

What is the final pressure in the system?
A $3.18 \times 10^{4} \mathrm{~Pa}$
B $\quad 4.24 \times 10^{4} \mathrm{~Pa}$
C $\quad 1.25 \times 10^{5} \mathrm{~Pa}$
D $\quad 5.09 \times 10^{5} \mathrm{~Pa}$

6 The graphs below show the variation of two properties of some period 3 elements and/or their compounds.

Which of the following correctly describes properties 1 and 2?

	Property 1 Property 2	
A	atomic radius of the elements	electrical conductivity of the elements
B	melting point of the chlorides	pH of oxides when added to water
C	melting point of the elements	first ionisation energies of the elements
D	electrical conductivity of elements	pH of chlorides when added to water

7 Use of the Data Booklet is relevant to this question.
If iron is heated separately with chlorine, bromine and iodine, what are the likely products?

	chlorine	bromine	iodine
A	FeCl_{2}	FeBr_{2}	FeI_{2}
B	FeCl_{3}	FeBr_{2}	FeI_{2}
C	FeCl_{3}	FeBr_{3}	FeI_{2}
D	FeCl_{3}	FeBr_{3}	FeI_{3}

8 When $10 \mathrm{~cm}^{3}$ of a hydrocarbon was burnt in $100 \mathrm{~cm}^{3}$ of excess oxygen, the volume of the residual gas mixture contracted by $20 \mathrm{~cm}^{3}$ after passing through a solution of aqueous sodium hydroxide. The remaining volume of gas was just sufficient to completely burn exactly $30 \mathrm{~cm}^{3}$ of the same hydrocarbon. All volumes were measured at room temperature and pressure conditions.

What is the formula of the hydrocarbon?
A $\mathrm{C}_{2} \mathrm{H}_{2}$
B $\mathrm{C}_{2} \mathrm{H}_{3}$
C $\mathrm{C}_{2} \mathrm{H}_{4}$
D $\mathrm{C}_{2} \mathrm{H}_{6}$

9 Sulfuric acid, one of the most important industrial chemicals, can carry out several functions in chemical reactions.

Three examples of industrial reactions in which sulfuric acid is used are shown below.

$$
\begin{array}{ll}
\text { reaction 1 } & \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
\text { reaction 2 } & \mathrm{Cu}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuO}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { reaction 3 } & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

What is the function of sulfuric acid in each reaction?

	reaction 1	reaction 2	reaction 3
A	acidic	oxidising	dehydrating
B	acidic	acidic	dehydrating
C	dehydrating	oxidising	catalytic
D	dehydrating	acidic	catalytic

10 Some of these data are also relevant to question 14.
Given the following enthalpy change

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$	\longrightarrow	$2 \mathrm{NH}_{3}(\mathrm{~g})$		
$\mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	\longrightarrow	$2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	\quad	$\Delta H^{\ominus}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
:---				
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$	$\longrightarrow \quad$	$\Delta H^{\ominus}=-629 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
:---	:---			
	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	\quad	$\Delta H^{\ominus}=-176 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
---:	:---			

What is the standard enthalpy change of formation of gaseous hydrogen chloride?
A $\quad-361 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $\quad-185 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad-92.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad-46.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$

11 Use of the Data Booklet is relevant to this question.
A student carried out an experiment to determine the enthalpy change of combustion of ethanol.

The following results were obtained by the student.

initial temperature of the water	$25^{\circ} \mathrm{C}$
final temperature of the water	$68^{\circ} \mathrm{C}$
mass of alcohol burner before burning	260.65 g
mass of alcohol burner after burning	259.65 g
mass of glass beaker plus water	160.00 g
mass of glass beaker	60.00 g

Given that the enthalpy change of combustion of ethanol is $-1370 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the efficiency of heat transferred to the water?
A 46%
B 60%
C 81%
D 97%

12 An example of a three-way honeycomb type catalytic converter is shown below.
The catalytic converter involves three simultaneous reactions. In the first, NO_{x} gases get reduced; in the second and third, unburnt hydrocarbon and carbon monoxide are completely oxidised.

Engine Emissions: Hydrocarbons Carbon Monoxide Nitrogen Oxides

Which of the following equations does not represent the reactions that took place in the catalytic converter?

A $\quad \mathrm{C}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
B $\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
C $\quad 2 \mathrm{NO}(\mathrm{g})+2 \mathrm{CO}(\mathrm{g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g})$
D $\quad 2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

13 A radioactive element has two isotopes, \mathbf{L} and \mathbf{M}, with half-lives of 3 min and 9 min respectively.

An experiment starts with n times as many atoms of \mathbf{L} as of \mathbf{M}. After 9 min, the number of atoms of \mathbf{L} and \mathbf{M} are both equal.

Given that radioactive decay is a first order reaction, what is the value of n ?
A 0.5
B 2
C 4
D 8

14 Use of the data in question 10 is relevant to this question.
Which of the following statement is true about the Haber process for the manufacture of ammonia?

A Adding a catalyst increases the equilibrium yield of ammonia but the rate of production of ammonia is faster.
B Adding neon gas at constant pressure increases the equilibrium yield of ammonia but the rate of production of ammonia is slower.

C Decreasing the temperature increases the equilibrium yield of ammonia but the rate of production of ammonia is slower.
D Removing nitrogen gas at constant volume increase the equilibrium yield of ammonia but the rate of production of ammonia is slower.

15 The Gibbs free energy change of reaction, ΔG^{\ominus}, for the contact process is shown below.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta G^{\ominus}=-142 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Which statement about the equilibrium constant, K_{p} at $25^{\circ} \mathrm{C}$ is true?
A K_{p} is less than 1.
B $\quad K_{\mathrm{p}}$ is greater than 1 .
C $\quad K_{\mathrm{p}}$ is equal to 1 .
D No conclusion can be drawn about K_{p}.

16 What is the pH of the final solution formed when $30 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$ is added to $20 \mathrm{~cm}^{3}$ of $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonia?
$\left[K_{\mathrm{b}}\right.$ of ammonia $\left.=1.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right]$
A 4.3
B 5.2
C 8.8
D 10.8

17 The diagram below shows the change of pH produced by gradually adding aqueous \mathbf{Q} to a certain volume of aqueous \mathbf{P}. The concentration of each constituent of the aqueous solutions \mathbf{P} and \mathbf{Q} is $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

What could \mathbf{P} and \mathbf{Q} be?

	P	Q
A	$\mathrm{NaOH}+\mathrm{KOH}$	HCl
B	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$	HCl
C	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{2}(\mathrm{COOH})_{2}$
D	KOH	$\mathrm{CH}_{3} \mathrm{COOH}$

18 When heated with chlorine, the hydrocarbon 2-methylbutane, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, undergoes free radical substitution.

In a propagation step, which free radical will be formed most readily?
A $\stackrel{\bullet}{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
B $\mathrm{CH}_{3} \stackrel{\bullet}{\mathrm{C}} \mathrm{HCH}\left(\mathrm{CH}_{3}\right)_{2}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{\bullet}{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}$
D

19 Use of the Data Booklet is relevant to this question.
The longest acene, decacene, comprising of 10 linearly fused benzene ring, has been made for the first time in 2017.

Which statements about the molecule are correct?

1 Each of the C-C-C bond angle is 120°.
2 The π electrons are delocalised.
3 The bond energy of each carbon-carbon bond in the molecule is equal to $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

4 Each C atom has a valency of 3.

A 1, 3 and 4 only
B 2, 3 and 4 only
C 1 and 2 only
D 1 and 3 only

20 Ozone depletion potential (ODP) is a measure of the effectiveness of chlorofluoroalkanes in destroying stratospheric ozone.

In which sequence are compounds listed in increasing order of their ODPs?
A $\mathrm{CHClF}_{2}<\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F}<\mathrm{CCl}_{2} \mathrm{FCClF}_{2}$
B $\mathrm{CHClF}_{2}<\mathrm{CCl}_{2} \mathrm{FCClF}_{2}<\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F}$
C $\mathrm{CCl}_{2} \mathrm{FCClF}_{2}<\mathrm{CHClF}_{2}<\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F}$
D $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{~F}<\mathrm{CCl}_{2} \mathrm{FCClF}_{2}<\mathrm{CHClF}_{2}$

The following information is relevant to questions 21 and 22.
Most of the chemistry of magnesium relates to its ionic compounds. However, magnesium does form an important group of covalent compounds which are known as Grignard reagents. Many Grignard reagents, with different alkyl or aryl groups, are widely used in organic syntheses.

The following reaction scheme shows a typical example of the use of a Grignard reagent.

21 What are the types of reaction shown in this reaction scheme?

	I	II
A	electrophilic addition	acid-base
B	nucleophilic substitution	elimination
C	nucleophilic addition	acid-base
D	nucleophilic addition	hydrolysis

22 Which of the following sets show the correct reactants and products obtained upon undergoing the same reaction scheme?

	reactants	products
1		
2	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CH}_{3} \mathrm{COCH}_{3}$	
3	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CO}_{2}$	

A 2 only
B 3 only
C 1 and 2 only
D 1 and 3 only

23 Compound T has the structure as shown below.

1 mol of compound \mathbf{T} is warmed with aqueous sodium hydroxide. The resulting solution is cooled and acidified with dilute nitric acid. Excess aqueous silver nitrate is then added to it.

How many moles of silver chloride is precipitated out?
A 1
B 2
C 3
D 4

24 The pigment Indian Yellow, which first appeared in the 14th century and then vanished at the end of the Victorian era, was made famous by artist Joseph Mallord William Turner.

In the following reactions, $\mathrm{R}-\mathrm{O}-\mathrm{R}$ remains unaltered.
Which of the following observation is correct?
A It reacts with hot, alkaline aqueous iodine to give a yellow solid.
B It reacts with hot, acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to give a compound with 3 carbonyl groups.
C It reacts with aqueous bromine to incorporate up to 6 atoms of bromine in each molecule.

D It reacts with excess sodium metal to produce 2.5 mol of hydrogen gas for each mole of the molecule.

25 Consider the following four carboxylic acids.

1

2

3

4

What is the relative order of decreasing $\mathrm{p} K_{\mathrm{a}}$?

A	3	2	1	4
B	1	2	3	4
C	4	1	2	3
D	2	1	4	3

26 The following compounds are responsible for the smell of tequila.

1

2

3

4

Which of the compounds can be oxidised by acidified potassium dichromate(VI) and can be reduced by sodium borohydride?

A 2 only
B 1 and 3 only
C 2 and 4 only
D 1, 3 and 4 only

27 Deuterium, D, is an isotope of hydrogen.
Which compounds will react to produce deuterophenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OD}$, in good yield?

A

B

+NaOD in $\mathrm{D}_{2} \mathrm{O}$, with heat

C

+DCl in $\mathrm{D}_{2} \mathrm{O}$, with heat

D

28 Members of an ethyl ester homologous series have the general formula

where $\mathrm{R}=\mathrm{C}_{n} \mathrm{H}_{2 n+1}$, and $n=0,1,2 \ldots$

Each member undergoes Claisen condensation with either itself or another member of the series to form a β-keto ester.

For example, the first member of the series, ethyl ethanoate, combines with itself in the presence of sodium ethanoate, followed by acidification, to form ethyl 3-oxobutanoate. Ethanol is eliminated in the process.

2

Which of the following is a possible product of the Claisen condensation between ethyl ethanoate and the fourth member of the series?

A

B

C

D

29 In 2011, farmers in Eastern China were hit by a spate of exploding watermelons. This was a result of the overuse of forchlorfenuron, a plant growth regulator.

forchlorfenuron
What are the organic products formed when forchlorfenuron is heated with dilute acid?
A

B

C

D

30 When excess of $\mathrm{NaOH}(\mathrm{aq})$ are added to $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, a dirty green precipitate is formed. On standing in air, the precipitate turns reddish brown.

Which process does not occur in this sequence?
A Acid-base
B Ligand exchange
C Oxidation
D Precipitation

ANDERSON JUNIOR COLLEGE
2017 JC 2 PRELIMINARY EXAMINATIONS

NAME:
PDG: \qquad /16

CHEMISTRY

9729/02
Paper 2 Structured Questions

Candidates answer on the Question Paper.
Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, PDG and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
	1	/ 15
	2	/ 13
	3	/ 16
	4	/ 14
	5	/ 17
Total		/ 75

Answer all the questions.
(a) Use of the Data Booklet will be relevant to this question.

Iron ore from different mines will contain different percentages by mass of iron. The percentage of iron in a sample of ore can be estimated by converting all of the iron present into $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions and then using a redox titration.

The sample of ore is crushed, weighed and then dissolved in aqueous acid. The $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions are then reduced to $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions by reaction with an excess of aqueous tin(II) chloride, SnCl_{2}.
(i) Construct an ionic equation for the reduction of $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions with aqueous $\operatorname{tin}(\mathrm{II})$ chloride solution.
(ii) Calculate the standard cell potential, $E_{\text {cell }}^{\bigcirc}$, for this reaction.
(iii) Explain why tin(II) chloride will reduce $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions to $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions, but will not reduce $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions to metallic iron.
\qquad
\qquad
\qquad
A sample of iron ore weighing 11.05 g was converted to $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions using the method described above. The resultant solution was then made up to a volume of $250 \mathrm{~cm}^{3}$ in a volumetric flask.
$25.0 \mathrm{~cm}^{3}$ portions of this solution were then titrated with $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of aqueous potassium dichromate(VI) using a suitable indicator. The results are shown below.

titration number	1	2	3
initial burette reading $/ \mathrm{cm}^{3}$	0.00	19.95	2.10
final burette reading $/ \mathrm{cm}^{3}$	19.95	40.05	22.15
titre $/ \mathrm{cm}^{3}$	19.95		

(iv) Complete the table on page 2 and use the results to determine the number of moles of potassium dichromate(VI) required to react with the Fe^{2+} ions in $25.0 \mathrm{~cm}^{3}$ of the solution.
(v) Write an ionic equation for the reaction of Fe^{2+} ions with acidified $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ions.
\qquad
(vi) Calculate the total number of moles of Fe^{2+} in the original solution made up from the iron ore, and hence calculate the percentage by mass of iron in the sample of iron ore.
(b) Iron and magnesium form iodate(V) compounds as shown, $\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$. Upon heating, each of the iodates decomposes to give a solid residue. Purple fumes and a gas that relights a glowing splint are also observed.
(i) Draw a dot-and-cross diagram to show the bonding in iodate(V) ion, IO_{3}^{-}. In your diagram use the symbols ' \bullet ' and ' x ' to distinguish electrons from iodine and oxygen atoms, and the symbol ' ' for any additional electrons responsible for the overall negative charge.
(ii) Write a balanced equation for the thermal decomposition of $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$.
(iii) $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$ is found to decompose at 900 K .

By quoting suitable data from the Data Booklet, suggest and explain if $\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{2}$ will decompose at a higher or lower temperature than $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$.
\qquad
\qquad
\qquad

The graph below shows the change in mass when 2.00 g of $\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}$ is heated at temperature, $\mathrm{T}^{\circ} \mathrm{C}$.

(iv) Determine the value of y.
(v) On the same axes, show clearly the sketch for the decomposition of 2.00 g of $\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{2}$ at the same temperature.

2 (a) Explain the meaning of the term homogenous catalyst and illustrate your answer by using one specific reaction involving a transition metal or its compound behaving as one.
\qquad
\qquad
\qquad
\qquad
(b) Use of the Data Booklet is relevant to this question.

Aqueous hydrogen peroxide is fairly stable but when a mixture of cobalt(II) salt and tartaric acid $\mathrm{HO}_{2} \mathrm{CCH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$ is added to aqueous hydrogen peroxide, the following changes take place.

The initial pink solution slowly turns into a green solution containing cobalt(III) species and then oxygen is vigorously evolved. Finally the solution turns pink again. Tartaric acid and the cobalt(II) salt can be recovered from the solution at the end.
(i) Write an equation for the overall reaction.
\qquad
(ii) State the role of cobalt(II) salt in this reaction and give evidence to support your answer.
\qquad
\qquad
\qquad
(iii) With the aid of relevant data in the Data Booklet, show that $\mathrm{Co}^{3+}(\mathrm{aq})$ is not stable in aqueous solution and hence comment on the role of tartaric acid in this reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The decomposition of hydrogen peroxide follows a first order kinetics.

A $100 \mathrm{~cm}^{3}$ of hydrogen peroxide undergoes complete decomposition to liberate $96 \mathrm{~cm}^{3}$ of oxygen gas. It is found that $48 \mathrm{~cm}^{3}$ of oxygen gas was collected in 35 minutes. All gaseous volumes were measured at room temperature and pressure.
(i) Calculate the initial concentration of hydrogen peroxide.
(ii) Estimate the time taken for $88 \mathrm{~cm}^{3}$ of oxygen gas to be collected.
(iii) Calculate the rate constant k, including the units for the reaction.
(iv) What percentage of the hydrogen peroxide in a solution of concentration $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ would decompose in 35 minutes at the same temperature?
(v) Outline a suitable method, other than the gas collection method, to find the order of reaction for the decomposition of hydrogen peroxide.
\qquad
\qquad
\qquad

3 The Pollutant Standards Index (PSI) is an air quality indicator. It is based on five pollutants: particulate matter (PM10), sulfur dioxide, carbon monoxide, ozone and nitrogen dioxide.

To calculate the overall PSI, the PSI value is first determined, using the following table, for each of the five pollutants.

\boldsymbol{i}	PSI value, $\mathbf{P}_{\boldsymbol{i}}$	CM10 $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$				
		$\mathbf{S O}_{2}$ $\left(\mu \mathrm{~g} \mathrm{~m}^{-3}\right)$	$\mathbf{C O}$ $\left(\mathbf{m g ~ m}^{-3}\right)$	Ozone $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$	$\mathbf{N O}_{\mathbf{2}}$ $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$	
1		50	80	5.0	118	-
2		150	365	10.0	157	-
3		350	800	17.0	235	1130
4		420	1600	34.0	785	2260
5	400	500	2100	46.0	980	3000
6	500	600	2620	57.5	1180	3750

$\left[1 \mu \mathrm{~g}=10^{-6} \mathrm{~g} ; 1 \mathrm{mg}=10^{-3} \mathrm{~g}\right]$
Given the concentration of a pollutant (with units as stated in the table above), where $\mathrm{C}_{i+1}>$ concentration of pollutant $>\mathrm{C}_{i}$,

PSI of pollutant $=\left[\left(\frac{\mathrm{P}_{i+1}-\mathrm{P}_{i}}{\mathrm{C}_{i+1}-\mathrm{C}_{i}}\right)\right.$ (concentration of pollutant $\left.\left.-\mathrm{C}_{i}\right)\right]+\mathrm{P}_{i}$
The overall PSI is then based on the maximum value out of the five calculated PSI pollutant values.

In Singapore, the 24-hr PSI is used by the National Environment Agency (NEA) to provide health advisory.

| 24-hr |
| :---: | :---: | :---: | :---: |
| PSI |\quad Healthy Persons $\left.\quad$| Elderly, Pregnant |
| :---: |
| women, Children | | Persons with |
| :---: |
| chronic lung disease, |
| heart disease, stroke | \right\rvert\,

(a) (i) In a $1 \mathrm{~m}^{3}$ sample of air, the mass of PM10 and carbon monoxide were found to be $320 \mu \mathrm{~g}$ and 20 mg respectively. Calculate the PSI values for each of the above pollutants, leaving your answers to 3 significant figures.
(ii) Given that the PSI value of sulfur dioxide, ozone and nitrogen dioxide are 150, 112 and 133 respectively for the same sample of gas, use these values and your answers to (a)(i) to determine the overall PSI.
(iii) Assuming that the current overall PSI level is your answer in (a)(ii), what advice would you give to a Physical Education (PE) teacher in Anderson Junior College who will be conducting a PE lesson soon?
\qquad
\qquad
(b) The amount of sulfur dioxide in a sample of air can be determined by first reacting it with sodium iodate, NaIO_{3}. lodine is one of the products in this reaction.
(i) Write an ionic equation for the reaction between sulfur dioxide and sodium iodate.
(ii) When a $1 \mathrm{~m}^{3}$ sample of air was bubbled through a solution of sodium iodate, the resulting solution was neutralised by $10.0 \mathrm{~cm}^{3}$ of $0.005 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.

Calculate the concentration of sulfur dioxide, in $\mu \mathrm{g} \mathrm{m}^{-3}$, in the sample of air.
(c) Some countries have set limits for particulates in the air. For example, the European Union has a daily average (24-hour) limit of $180 \mu \mathrm{~g} \mathrm{~m}^{-3}$ for PM10. Cities that violate this daily limit face a hefty financial penalty that is calculated with consideration of many factors such as the severity the violation has on the ecosystem, duration of the non-compliance and country's GDP etc.
(i) A collected sample of air from the German city of Leipzig contains $2 \times 10^{-5} \%$ by mass of PM10. Given that the density of air is $1 \mathrm{~kg} \mathrm{~m}^{-3}$, calculate the concentration of PM10 in the sample collected.
(ii) Hence, deduce whether the German city of Leipzig will be faced with any financial penalty.
\qquad
(d) A team of researchers at the National University of Singapore has come up with an ecofriendly and cost-effective solution to keep out the harmful PM2.5 particles found in haze. They created a nanofibre liquid solution by modifying phthalocyanine, a blue-green coloured aromatic compound commonly used in dyes for clothes. The solution can be applied to non-woven mesh to become thin, see-through air filters that block out up to 90% of PM2.5 particles.

(i) Give the molecular formula of phthalocyanine.
\qquad
(ii) Suggest why phthalocyanine can be described as aromatic.
\qquad
(e) Copper phthalocyanine dyes are artificial organic pigments derived from phthalocyanine. They are produced by introducing solubilising groups, such as methanesulfonic acid, $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$.

phthalocyanine blue

phthalocyanine green
(i) Name the type of bonds formed between copper and the nitrogen atoms numbered 1 and 2 in phthalocyanine blue.

N1 \qquad
N2
(ii) Give the electronic configuration of the copper in phthalocyanine blue.
\qquad
(iii) Deduce the number of electrons around the N 1 nitrogen atom.
\qquad
(iv) Account for the difference in the colour of the two copper phthalocyanine dyes given above.
\qquad
\qquad

4 The Oribatula tibialis mite uses hydrogen cyanide, HCN, a highly volatile and toxic substance, to poison its predators.

The HCN is stored in the form of mandelonitrile hexanoate, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$, in the mite's oil glands, to avoid poisoning itself.
(a) In order to confirm the identity of mandelonitrile hexanoate in mite's oil glands, synthetic mandelonitrile hexanoate was made in the laboratory and dissolved in hexane.

Both synthetic mandelonitrile hexanoate and the extracted oil gland from Oribatula tibialis mite were then sent for analysis using various analytical techniques.
(i) Suggest the reagents that can be used to prepare mandelonitrile hexanoate from benzaldehyde at low temperature conditions. Show the structure of the intermediate organic compound in the box below.

step 1
step 2
(ii) Suggest, in terms of the intermolecular forces involved, a reason why mandelonitrile hexanoate can dissolve in hexane.
\qquad

When attacked by predators, the Oribatula tibialis mite secretes mandelonitrile hexanoate, which then release HCN, when in contact with the moisture, for example, from the predators' saliva. The HCN can be released via two different chemical pathways.

Pathway I illustrates a two-step process.

In pathway II, benzaldehyde is produced instead of benzoic acid.

(b) (i) By considering the change in structural formula shown in pathway I, suggest two types of reaction that could have occurred in step 1.
\qquad
\qquad
(ii) In step 2 of pathway I, the intermediate benzoyl cyanide breaks down into benzoic acid and HCN.

It was reported that benzoyl cyanide is less reactive than benzoyl chloride when it is in contact with water. Suggest a possible reason for this.
\qquad
\qquad
(iii) Suggest a simple chemical test that could be carried out to confirm which chemical pathway has occurred.

You may assume that HCN has vapourised completely from the product mixture.
\qquad
\qquad
\qquad
(c) Benzaldehyde can be oxidised by peroxybenzoic acid, without consumption of oxygen, to give benzoic acid.

The standard enthalpy change of the reaction below is $-316 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(\mathrm{I})+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{3} \mathrm{H}(\mathrm{~s}) \longrightarrow 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}(\mathrm{~s})
$$

The standard enthalpy change of formation of peroxybenzoic acid and benzaldehyde are given in the table below.

Name	Formula	$\Delta H_{f}^{Q} / \mathrm{kJ} \mathrm{mol}^{-1}$
peroxybenzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{3} \mathrm{H}(\mathrm{s})$	-367
benzaldehyde	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}(\mathrm{I})$	-87

(i) Define the term standard enthalpy change of formation, ΔH_{f}° of a compound.
\qquad
\qquad
(ii) Use the data given above to calculate the enthalpy change of formation of benzoic acid.
(iii) Draw arrows on the energy diagram below to show each of the energy terms involved in the steps you have used in your calculation in (c)(ii).

Label each level with the appropriate formulae.

5 Scientists in the United States of America have come up with a simple 3-stage process to convert ethanol into butan-1-ol, in what could be an important step forward for renewable energy.

(a) (i) State the reagents and conditions required for stages I and III.
stage I
stage III
(ii) Write an equation for the incomplete combustion of butan-1-ol, giving CO_{2} and CO in a 3: 1 ratio.
(iii) Describe the type(s) of stereoisomerism shown by compound \mathbf{G}. Draw the displayed formula of the stereoisomers of \mathbf{G}.

Type of isomerism
(iv) \mathbf{G} reacts with a suitable reducing agent to give compound \mathbf{H}.

H effervesces with sodium metal but does not react with 2,4-dinitrophenylhydrazine. H also decolourises aqueous bromine.

Suggest the structure of \mathbf{H} and explain these observations.
\qquad
\qquad
\qquad
(b) The mechanism for stage II of the process in forming the α, β-unsaturated aldehyde \mathbf{G} is thought to involve three steps.

Step 1 The first step involves an acid-base reaction.

Step 2 This is followed by a nucleophilic addition reaction to form the intermediate 3-hydroxybutanal.

Step 3 Elimination of water is involved in the last step.

(i) Complete the diagram to suggest a mechanism to show how 3-hydroxybutanal intermediate is formed. Show all charges and relevant lone pairs and show the movement of electron pairs by using curly arrows.

(ii) A different product can be formed together with \mathbf{G}, in step 3, albeit in lower yield. Suggest a reason for this.
\qquad
\qquad
\qquad
(iii) Deduce the structures of suitable carbonyl compounds to synthesise each of the following α, β-unsaturated aldehyde.
(I)

(II)

(c) Butan-1-ol has a number of constitutional isomers.
(i) Draw the structural formula of the other three alcohols with the same molecular formula as butan-1-ol. Label your structures J, K and L. Classify these alcohols as primary, secondary or tertiary.
(ii) Identify which alcohol reacts with alkaline aqueous iodine and write a balanced equation for the reaction, showing the structural formula of the products.

ANDERSON JUNIOR COLLEGE

2017 JC 2 PRELIMINARY EXAMINATIONS

CHEMISTRYCandidates answer on separate paper.
Additional Materials: Answer Paper Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, PDG and register number on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Section A

Answer all the questions in this section.
1 (a) Scientists in Germany have developed a liquid crystal elastomers (LCE)-based adhesive that uses UV light to switch and control its level of stickiness within seconds.

To control adhesion, the team used azobenzene, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2}$ in the LCE as the light responsive molecule, which isomerises quickly from one state to another and changes size under UV light. This effect flexes the material enough to cause the microstructures to peel away from a surface and unstick, akin to how a gecko loses adhesion by moving its feet. When the light is removed, the material quickly recovers to its flat, sticky state.

azobenzene
(i) State the type of hybridisation that is present on the nitrogen atom and draw the shape of the hybrid orbitals around one of the nitrogen atom in azobenzene. Suggest the bond angle around this nitrogen atom.
(ii) State the type of isomerism that is present in azobenzene and draw the two structures that illustrate the isomerism.
(iii) Suggest, with a reason, the isomer that is responsible for the peeling of microstructures away from a surface.
(b) Use of the Data Booklet is relevant to this question.

Compound $\mathrm{U}, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ is not soluble in $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$. It gives 2 products when heated under reflux with acidified potassium dichromate. Orange potassium dichromate turns green during the process. Upon careful neutralisation of the resultant mixture, compounds \mathbf{V} and \mathbf{W} are formed.
$\mathrm{V}, \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ is a derivative of azobenzene, and has a proton $\left({ }^{1} \mathrm{H}\right)$ chemical shift value of 13.0 ppm.

W gives an orange precipitate when treated with 2,4-dinitrophenylhydrazine but it has no reaction with Tollens' reagent. It gives a yellow precipitate and compound \mathbf{X} when warmed with aqueous mixture of sodium hydroxide and iodine. Effervescence was observed when W was treated with aqueous sodium hydrogencarbonate.

When \mathbf{W} is heated with excess $\mathrm{CH}_{3} \mathrm{Cl}$, it gives compound $\mathbf{Y}, \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}$, as the major product.

Suggest structures for $\mathbf{U}-\mathbf{Y}$ and explain the reactions described above.
(The $-\mathrm{N}=\mathrm{N}$ - structure remains unaltered in this question)

2 Silver forms a series of halides of general formula $\operatorname{Ag} X$. The chloride, bromide and iodide of silver are sparingly soluble in water at room temperature.

Data about the solubilities in water and the solubility products of the chloride, bromide and iodide of silver at 298 K are given below.

Salt	Solubility $/ \mathrm{mol} \mathrm{dm}^{-3}$	Solubility product $/ \mathrm{mol}^{2} \mathrm{dm}^{-6}$
AgCl	1.4×10^{-5}	2.0×10^{-10}
AgBr	7.1×10^{-7}	5.0×10^{-13}
AgI	8.9×10^{-9}	to be calculated

In this question, give each of your numerical answers to one decimal place.
(a) (i) Write an expression for the solubility product, K_{sp} of silver iodide.
(ii) From the data above, calculate a value for $K_{\text {sp }}$ of silver iodide.
(iii) To a $2.0 \mathrm{dm}^{3}$ of saturated solution of $\mathrm{AgI}, 0.025 \mathrm{~g}$ of $\mathrm{AgNO}_{3}(\mathrm{~s})$ was added. Calculate the mass of precipitate formed.
(b) When a precipitate is formed, $\Delta G_{\text {ppt }}^{\ominus}$ is given by the following expression.

$$
\Delta G_{\mathrm{ppt}}^{\ominus}=2.303 R T \log _{10} K_{\mathrm{sp}}
$$

(i) Use the data above to calculate $\Delta G_{p p t}^{Q}$, for silver chloride.
(ii) When silver nitrate is added to solution containing chloride ions, a white precipitate is observed. The white precipitate dissolves when aqueous ammonia was added. Upon adding of aqueous sodium bromide to the resultant mixture, a cream precipitate is obtained.

With the aid of suitable equations, explain the chemistry that is occurring during these reactions.
(c) For silver fluoride, $\mathrm{AgF}, K_{\mathrm{sp}}=1.006 \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at 298 K .

Use the expression given in (b) to determine whether silver fluoride is soluble in water at 298 K.

Explain your answer.

3 (a) Great research efforts have been put into the production of sustainable fuels, such as hydrogen and synthetic hydrocarbons. One of particular interest is a solar-driven thermochemical process which utilises a metal oxide catalyst to produce carbon monoxide from carbon dioxide.

In the first stage, the metal oxide $\left(\mathrm{MO}_{2}\right)$ is reduced to release oxygen gas. In the second stage, carbon dioxide then oxidises the reduced metal oxide to generate carbon monoxide.

The 2-stage process is as shown below.
Stage 1: $\quad \mathrm{MO}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{MO}_{2-x}(\mathrm{~s})+\frac{x}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta H_{1}>0$
Stage 2: $\quad \mathrm{MO}_{2-x}(\mathrm{~s})+x \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{MO}_{2}(\mathrm{~s})+x \mathrm{CO}(\mathrm{g})$
(i) Stage 1 is carried out at a high temperature of $1500^{\circ} \mathrm{C}$.

State Le Chatelier's Principle and use it to explain why such a high temperature is necessary.
(ii) Give the equation, with state symbols, for the overall equilibrium reaction.
(iii) The ΔH^{\ominus} of the reaction in (a)(ii) is $+283 \mathrm{~kJ} \mathrm{~mol}^{-1}$ when $x=1$.

Using relevant data from the Data Booklet, calculate the carbon-oxygen bond energy in carbon monoxide.
(iv) Given that the standard Gibbs free energy change, ΔG^{\ominus}, of the reaction in (a)(ii) is $+237 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K , calculate the ΔS^{\ominus} for this reaction and comment on its sign with respect to the reaction.
(b) The conversion of carbon dioxide to carbon monoxide is also important in helping to slow down global warming. Another method that was developed by scientists involves the use of metal complexes as catalysts to capture carbon dioxide and reduce it to carbon monoxide using visible light.

The starting reagent for the method involves the conversion of Complex \mathbf{I}, $\mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3}(\mathrm{Br})$ to the catalyst for the process, Complex II, $\left[\mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3}\right]^{-}$.

Step 1: $\quad \mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3}(\mathrm{Br})+\mathrm{e}^{-} \longrightarrow\left[\mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3}(\mathrm{Br})\right]^{-}$
Step 2: $\quad\left[\mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3}(\mathrm{Br})\right]^{-}+\mathrm{e}^{-} \longrightarrow\left[\mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3}\right]^{-}+\mathrm{Br}^{-}$
Complex II then undergoes a catalytic reduction process with carbon dioxide as seen below.

(i) Using N to represent the bpy ligand, draw the structure of Complex I and state its shape.
(ii) State which of the six steps involve a decrease in the number of ligands bonded to the manganese ion.
(iii) Suggest the type of reaction which takes place in steps 1 and 4 .
(iv) A solution containing Complex III is orange in colour.

Explain how such a colour could arise.
(c) The CarbFix project in Iceland is also targeted at alleviating the global problem of increasing industrial carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions and climate change. All waters in contact with the atmosphere absorb CO_{2}, but this method speeds up the process by injecting waters containing CO_{2} into basaltic rocks which are rich in divalent cations such as calcium and magnesium. The method is called "stoning" as the CO_{2} is captured and stored in the rocks as insoluble carbonates.

Water containing CO_{2} reacts with the divalent cations present in basaltic rocks according to the following equilibrium.

$$
\begin{equation*}
\mathrm{M}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{MCO}_{3}+2 \mathrm{H}^{+} \tag{1}
\end{equation*}
$$

(i) Explain why the precipitation of the metal carbonate takes place at high pH .
(ii) Water containing CO_{2} also reacts with Group 2 carbonates to form the corresponding soluble hydrogencarbonates in the following equilibrium.

$$
\begin{equation*}
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{MCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{M}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \tag{2}
\end{equation*}
$$

These soluble compounds are then washed away by rainwater that percolates through rocks on hills and mountains and emerges as springs in the hillside. These are known as mineral waters and they often contain chlorides and hydrogencarbonates of Group 2 metals.

One such mineral water has the following composition.

ion	concentration $/ \mathrm{g} \mathrm{dm}^{-3}$
Ca^{2+}	0.0120
Mg^{2+}	0.0073
Cl^{-}	0.0284
$\mathrm{HCO}_{3}{ }^{-}$	0.0244

Calculate the concentrations of these ions in $\mathrm{mol} \mathrm{dm}^{-3}$ and hence suggest the formulae of the salts that could exist in the solution, and their relative amounts.
(iii) Suggest the composition of the rock through which the rainwater had percolated and use equation (2) to explain how the mineral water had been formed.

4 Redox flow batteries are rechargeable batteries that have received growing attention as a cost-effective energy storage solution. Compounds with iodine can be used to generate electrical energy in redox flow batteries. One such battery is the zinc-iodide battery shown below.

In the zinc-iodide flow cell, graphite is used as the electrodes and the two half-cells are separated by a cation exchange membrane which allows cations to flow through. The electrolyte, $\mathrm{ZnI}_{2}(\mathrm{aq})$, is stored in two external tanks. When required, the electrolyte is pumped into both half-cells.

During charging, metallic zinc is deposited on the negative electrode and iodine is formed at the positive electrode. When a light bulb is connected across the two electrodes, the bulb lights up as the battery discharges.
(a) (i) By reference to the Data Booklet, choose two half-equations to construct the balanced equation for the reaction that occurs during the discharging process.
(ii) Calculate the value for $E_{\text {cell }}^{\ominus}$ for this zinc-iodide battery.
(iii) Hence calculate the ΔG 和 this cell.
(iv) Suggest why there is a need for a cation exchange membrane in the battery.
(b) The iodine formed during charging can complex with the iodide ions in the electrolyte to form triiodide ions, $\mathrm{I}_{3}{ }^{-}$. This reduces the efficiency of the battery, as formation of triiodide ions reduces the amount of I^{-}available for redox reaction.

Recent research has shown that addition of bromide, Br^{-}, to the zinc-iodide battery frees up the iodide ions, as bromide can form a similar complex with iodine.

Draw a dot and cross diagram of the complex formed between iodine and bromide ion and state its shape.
(c) Compounds with a halogen and an alcohol group are known as halohydrins. Halohydrins are useful intermediates in organic synthesis as they contain two reactive functional groups.
(i) Halohydrins can be synthesised from the reaction of alkenes with aqueous bromine.

Describe the mechanism of the reaction between 1-methylcyclohexene and aqueous bromine to form bromohydrin. In your answer, show any relevant charges, lone pairs of electrons and movement of electrons.
(ii) The bromohydrin formed in (c)(i) exists as a mixture of stereoisomers. Draw the structure of each stereoisomers of the bromohydrin formed.
(iii) Suggest one simple test-tube reaction, other than aqueous bromine, to distinguish 1-methylcyclohexene and the bromohydrin formed in (c)(i), stating clearly the reagents and conditions required and the observations you would see.

Section B

Answer one question from this section.
5 The oxygen family, also called the chalcogens, consists of the elements found in Group 16 of the Periodic Table and is considered among the main group elements. It consists of the elements oxygen, sulfur, selenium, tellurium and polonium.
(a) State and explain the trend in the first ionisation energy of the Group 16 elements down the group.
(b) (i) State two assumptions of the kinetic theory of gases.
(ii) Sketch the expected variations of $p \mathrm{~V}$ with p for a given amount of an ideal gas at constant temperature.

In an experiment conducted at constant temperature, the volumes of separate samples containing equal amounts of gases \mathbf{D} and \mathbf{E} were measured at different pressures and the results are tabulated below. The two unknown gases \mathbf{D} and \mathbf{E} could be hydrogen or oxygen.

Experiment No.	Gas D		Gas E	
	$\boldsymbol{p} / \mathbf{P a}$	$\mathbf{V} / \mathbf{m}^{3}$	$\boldsymbol{p} / \mathbf{P a}$	$\mathbf{V} / \mathbf{m}^{3}$
1	3.5×10^{5}	6.50×10^{-3}	4.0×10^{5}	5.80×10^{-3}
2	7.0×10^{5}	3.14×10^{-3}	8.0×10^{5}	2.85×10^{-3}
3	14.0×10^{5}	1.50×10^{-3}	15.0×10^{5}	1.46×10^{-3}
4	21.0×10^{5}	9.30×10^{-4}	20.0×10^{5}	1.07×10^{-3}

(iii) Compute the $p V$ values for each of the above experiments and use them to identify gases \mathbf{D} and \mathbf{E}. Explain your reasoning.
(c) The diagram below shows the structure of chlorosulfuric acid, $\mathrm{HSO}_{3} \mathrm{Cl}$, which is a Lewis base.

chlorosulfuric acid
(i) What do you understand by the term Lewis base?
(ii) Chlorosulfuric acid is made by reacting sulfuric acid with phosphorus pentachloride, PC_{5}. Acidic white fumes are evolved during the reaction.

Write a balanced equation for the reaction between sulfuric acid and phosphorus pentachloride.
(iii) By comparing the structure of chlorosulfuric acid with that of sulfuric acid, explain why sulfuric acid is expected to be a stronger acid than chlorosulfuric acid.
(d) The following reaction scheme shows the synthesis of \mathbf{C}, a precursor to the sulfonamide antibacterial drugs.

(i) Explain why compound \mathbf{A} is neutral.
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHCH}_{3}$ is an isomer of \mathbf{A}. Describe a simple chemical test to distinguish between the two isomers, stating clearly how each compound behaves in the test. [2]

Step 1 is catalysed by concentrated sulfuric acid.
(iii) Write an equation to illustrate the reaction between concentrated sulfuric acid and chlorosulfuric acid, $\mathrm{HSO}_{3} \mathrm{Cl}$.
(iv) Hence, name and describe the mechanism for the reaction involved in the preparation of \mathbf{B}, including curly arrows to show the movement of electrons, and all charges.

Step 2 is carried out under anhydrous condition.
(v) What type of reaction is step 2?
(vi) Suggest why step 2 has to be carried out under anhydrous condition.

6 (a) In acidic solution, bromate(V) ions, $\mathrm{BrO}_{3}{ }^{-}$, slowly oxidise bromide ions to bromine. The progress of the reaction may be followed by adding a fixed amount of phenol together with some methyl red indicator.

The bromine produced during the reaction reacts very rapidly with phenol. When all the phenol is consumed, any further bromine bleaches the indicator immediately. The initial rate of formation of Br_{2} is indicated by the time for the bromine to bleach the indicator.

The total volume of the reaction mixture is the same in all four experiments and the following kinetic data are obtained at $25^{\circ} \mathrm{C}$.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Experiment } & \begin{array}{c}{\left[\mathrm{BrO}_{3}{ }^{-}\right]} \\ / \mathrm{mol} \mathrm{dm}^{-3}\end{array} & \begin{array}{c}{\left[\mathrm{Br}^{-}\right]} \\ / \mathrm{mol} \mathrm{dm}^{-3}\end{array} & \mathbf{p H} & \begin{array}{c}\text { Initial rate of } \\ \text { formation of } \mathrm{Br}_{2} / \\ \text { mol dm}\end{array} \\ \hline 1 & 0.10 & 0.10 & 1.00 & 8 \times 1 \mathbf{s}^{-1}\end{array}\right]$
(i) Write a balanced equation for the reaction between bromide ion and bromate(V) ion.
(ii) Determine the order of the reaction with respect to each of the following reactants

- $\mathrm{BrO}_{3}{ }^{-}$
- Br^{-}
- H^{+}.
(iii) Write the rate equation for this reaction.
(iv) Calculate the rate constant of the reaction at this temperature, stating its units.
(b) Describe, and explain in molecular terms, how the rate of reaction is affected by an increase in temperature. You should include a reference to the Boltzmann distribution in your answer.
(c) The effect of temperature on the rate constant, k, can be expressed by the following equation.

$$
\ln k \neq=\ddagger \ln \mathrm{A} \# \frac{E_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}\right)
$$

A is a constant;
E_{a} is the activation energy;
R is the molar gas constant ($8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$) and
T is the absolute temperature.
In a separate experiment to investigate the effect of temperature on the rate constant of the reaction between bromide ion and bromate(V) ion, the graph below was obtained.

$$
\text { Graph of } \ln k \text { against } \frac{1}{T}
$$

(i) Calculate the activation energy, E_{a}, of the reaction.
(ii) Suggest why the activation energy of the reaction is high.
(iii) Make a sketch of the graph shown above onto your writing paper. On the same axes, sketch the graph of $\ln k$ versus $\frac{1}{\mathrm{~T}}$ when the reaction proceeds in the presence of a catalyst. Label your graphs clearly. Explain your answer.
(d) This question is about compound $\mathbf{K}, \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ON}$, which is formed when phenylhydroxylamine, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHOH}$, is warmed with dilute sulphuric acid.

- Compound \mathbf{K} is not very soluble in water, but dissolves in $\mathrm{HCl}(\mathrm{aq})$.
- It also dissolves in $\mathrm{NaOH}(\mathrm{aq})$, but not in $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$.
- On reaction with 1 mol of ethanoyl chloride, $\mathrm{CH}_{3} \mathrm{COCl}, \mathbf{K}$ forms compound $\mathbf{L}, \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}$.

On reaction with $\mathrm{Br}_{2}(\mathrm{aq})$, \mathbf{L} produces compound $\mathbf{M}, \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{NBr}_{2}$. When \mathbf{K} is reacted with 2 mol of ethanoyl chloride, it produces compound $\mathbf{N}, \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$, which is not soluble in either $\mathrm{HCl}(\mathrm{aq})$ or $\mathrm{NaOH}(\mathrm{aq})$.

Compound \mathbf{K} can be synthesised by treating phenol with dilute nitric acid, followed by reaction with tin metal and hydrochloric acid.
(i) Deduce the structures of compounds K, L, M and \mathbf{N}. Explain the chemistry of the reactions described, writing equations where appropriate. [There is no need to comment on the chemistry of the formation of \mathbf{K} from phenylhydroxylamine.]
(ii) The reaction of \mathbf{K} to form \mathbf{L} produces a minor product \mathbf{P}, which is a constitutional isomer of \mathbf{L}. Suggest the structure of \mathbf{P} and explain this observation.

Question Number	Key	Question Number	Key
1	D	16	C
2	D	17	B
3	A	18	C
4	D	19	C
5	A	20	A
6	B	21	D
7	C	22	D
8	A	23	B
9	A	24	D
10	C	25	A
11	B	26	B
12	A	27	C
13	C	28	B
14	C	29	D
15	B	30	B

A	7
B	8
C	8
D	7

$1 \quad{ }_{1}^{3} \mathrm{H}$ contains 1 proton, 1 electron and $2(3-1)$ neutrons.
${ }_{2}^{3} \mathrm{He}$ contains 2 protons, 2 electrons and $1(3-2)$ neutron.
$1{ }^{3} \mathrm{He}$ has less neutrons than electrons.
$2{ }^{3} \mathrm{H}$ has one proton while ${ }^{3} \mathrm{He}$ has two protons.
$3{ }^{3} \mathrm{H}$ has two charged sub-atomic particles while ${ }^{3} \mathrm{He}$ has four charged sub-atomic particles.

2
angle of deflection $\alpha \frac{\text { charge size }}{\text { mass }}$
for ${ }^{1} \mathrm{H}^{+}, \frac{\mathrm{z}}{\mathrm{m}}=+\frac{1}{1}$
for ${ }^{2} X^{2-}, \frac{z}{m}=-\frac{2}{2}$
Hence, angle of deflection for ${ }^{2} \mathrm{X}^{2-}=-4^{\circ}$
3
shape / angle
A $\quad \mathrm{SF}_{2}$ bent/ $\sim 104.5^{\circ}$
B XeF_{2} linear/ 180°
C $\quad \mathrm{SO}_{3}{ }^{2-}$ trigonal pyramidal / $\sim 107^{\circ}$
D $\mathrm{AlH}_{4}{ }^{-}$tetrahedral/ 109.5°
4 The hybridisation state of N atom can be determined using similar approach as that for C atoms, except the lone pair of electrons on N can sometimes be occupying a $s p^{2}$ (norm) or $s p^{3}$ hybrid orbital. The question will likely provide information on the shape of the molecule with respect to N atom to link it to the hybridisation state - planar (sp^{2}) and tetrahedral (sp^{3}).

A is correct. All C atoms in F are sp^{3} hybridised. Hence, each $\mathrm{C}-\mathrm{C}$ bond is a σ bond formed by a $\mathrm{sp}^{3}-\mathrm{sp}^{3}$ overlap between two C atoms.
B is correct. The \mathbf{N} atoms in \mathbf{G} has the same hybridisation state as carbon in benzene (i.e. sp^{2}) except that in place of a $\mathrm{C}-\mathrm{H}$ bond pair, a lone pair now occupies the sp^{2} hybrid orbital. The unhybridised p orbital of each N atom overlap with the adjacent p orbitals of C atoms to form a delocalised ring of π electron cloud.
C is correct. There are two sp^{2} hybridised C atoms and both are bonded to sp^{3} hybridised C atoms.
D is incorrect. From option \mathbf{C}, the two sp^{2} hybridised \mathbf{C} atoms are not bonded to any N atom. And the N atom in H is likely to be sp^{3} hybridised.
$p \mathrm{~V}=\mathrm{nR} \mathrm{T}$
for the same amount of He gas, n and R remain constant throughout. He gas will diffuse to occupy both vessels \mathbf{J} and \mathbf{K} when the valve is opened, i.e. volume of space occupied by gas $=(v+3 v)$
$p_{\mathrm{i}}=1 \times 10^{5} \mathrm{~Pa}$
$T_{i}=(20+273) K$
$v_{i}=v$
$\left(\frac{\mathrm{pV}}{\mathrm{T}}\right)_{\mathrm{i}}=\left(\frac{\mathrm{pV}}{\mathrm{T}}\right)_{\mathrm{f}}$
$p_{\mathrm{f}}=\frac{\left(1 \times 10^{5}\right)(\mathrm{v})}{(20+273)} \times \frac{(100+273)}{4 \mathrm{v}}$
$=\underline{3.18 \times 105 \mathrm{~Pa}}$

6 Property 1: melting point of chlorides
B
Chlorides of Mg form giant ionic lattice structures, have much higher melting point than simple molecular chlorides of Al, Si and P

Property 2: pH of oxides

oxides	MgO	$\mathrm{Al}_{2} \mathrm{O}_{3}$	SiO_{2}	$\mathrm{P}_{4} \mathrm{O}_{10}$		
Structure	giant ionic lattice		giant molecular	simple molecular		
Reaction with water	weakly alkaline solution $(\mathrm{pH}$ sin	insoluble ($\mathrm{pH}=7)$				acidic solution
:---:						
$(\mathrm{pH}=1)$						

The most obvious clue to identifying the property would be the plateau from Al to Si , which is due to the insoluble oxides of the two elements.

7 On heating with $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2}, the respective iron(II) halides will be formed, since their reduction potential are more positive than that of $\mathrm{Fe}^{2+} / \mathrm{Fe}$.
$\mathrm{Fe}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe} \quad-0.44 \mathrm{~V}$
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}+1.36 \mathrm{~V}$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-}+1.07 \mathrm{~V}$
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{I}^{-} \quad+0.54 \mathrm{~V}$
Due to the oxidising nature of the halogens, Cl_{2} and Br_{2} can further oxidise the iron(II) to iron(III) since their reduction potential are more positive than that of $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$. $\mathrm{Fe}^{3+}+\mathrm{e} \rightleftharpoons \mathrm{Fe}^{2+}+0.77 \mathrm{~V}$
(Note: Fe is not oxidised to Fe^{3+} in a single reaction because the reduction potential of $\mathrm{Fe}^{3+} / \mathrm{Fe}(-0.04 \mathrm{~V})$ is less negative than that of $\mathrm{Fe}^{2+} / \mathrm{Fe}(-0.44 \mathrm{~V})$. Fe will more likely be oxidised to Fe^{2+}.)

8 Given that molar ratio of carbon dioxide : hydrocarbon is 2:1, there are two carbon atoms. \therefore let formula of hydrocarbon be $\mathrm{C}_{2} \mathrm{H}_{x}$
$\Rightarrow \mathrm{C}_{2} \mathrm{H}_{\times}(\mathrm{g})+\left(2+\frac{\mathrm{x}}{4}\right) \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\frac{\mathrm{x}}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Since the remaining O_{2} can burn up exactly $30 \mathrm{~cm}^{3}$ of the same hydrocarbon, this means that $100 \mathrm{~cm}^{3}$ of O_{2} can burn $40 \mathrm{~cm}^{3}$ of the hydrocarbon.
\Rightarrow Molar ratio of hydrocarbon: $\mathrm{O}_{2}=40: 100=1: \frac{5}{2}$
$\Rightarrow 2+\frac{x}{4}=2.5$
$\Rightarrow x=2$
Formula of hydrocarbon is ${\underline{\mathrm{C}_{2}} \mathrm{H}_{2}}^{\text {. }}$

$$
\begin{array}{ll}
\text { reaction } 1 & \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
\text { reaction 2 } & \mathrm{Cu}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuO}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
\text { reaction 3 } & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Reaction 1 is an acid-base reaction (clue: O.N. of the elements remain).
Reaction 2 is a redox reaction (most obvious clue: O.N. of Cu increases; S decreases).
Reaction 3 is an elimination reaction; $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a catalyst here (clue: $\mathrm{H}_{2} \mathrm{SO}_{4}$ remains unchanged after the reaction).

10

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$	$2 \mathrm{NH}_{3}(\mathrm{~g})$	$\Delta H^{\ominus}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	$2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	$\Delta H^{\ominus}=-629 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\left.\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl} / \mathrm{g}\right)$	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	$\Delta H^{\ominus}=-176 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HCl}(\mathrm{g}) \quad \Delta H_{f}^{\rho}(\mathrm{HCl})$
-629
$\mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{4} \mathrm{C} /(\mathrm{s})$

$2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \underset{2 \Delta H_{f}^{\rho}(\mathrm{HCl})}{\longrightarrow} 2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{HCl}(\mathrm{g})$
$2 \Delta H_{f}{ }^{\ominus}(\mathrm{HCl})=-(-92)+(-629)-2(-176)$
$\Delta H_{f}^{\rho}(\mathrm{HCl})=-92.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$

11 Info from Data Booklet, $\mathrm{c}=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$

$$
\begin{aligned}
\text { Heat absorbed by water } & =(160-60) \times 4.18 \times(68-25) \\
& =17974 \mathrm{~J} \\
\text { Heat released by ethanol } & =1370 \times 1000 \times \frac{1.0}{2(12.0)+6(1.0)+16.0} \\
& =29783 \mathrm{~J}
\end{aligned}
$$

The difference in the heat transferred is due to heat loss. Hence in this case, efficiency can be calculated by taking the ratio $\frac{\text { heat absorbed }}{\text { heat released }}$.

$$
\begin{aligned}
\% \text { efficiency } & =\frac{17974}{29783} \times 100 \% \\
& =\underline{60 \%}
\end{aligned}
$$

12 The reactions taking place in the catalytic converter include simultaneous reduction of NO_{x} and oxidation of CO (option C), oxidation of unburnt hydrocarbons (option D) and oxidation of CO (option B).

Hydrocarbons contain C and H atoms. Carbon is not a hydrocarbon.
13 The easiest approach to answering this question is to start from the equimolar quantities of L and M after 9 min and work backwards. Let the amount be.

Since \mathbf{L} has undergone 3 half-lives, its initial concentrations will be 8L. Initial concentration of \mathbf{M} will be $\mathbf{2 M}$ as it has undergone 1 half-lives.

$$
\begin{aligned}
& \begin{array}{l}
8 \times \mathbf{L} \\
2 \times \boldsymbol{M}
\end{array} \longrightarrow \quad 4 \times \mathbf{L} \longrightarrow 2 \times \mathbf{L} \longrightarrow \begin{array}{l}
x \mathbf{L} \\
x \mathbf{M}
\end{array} \\
& \therefore \text { value of } n=\frac{8 x}{2 x} \\
& =\underline{4}
\end{aligned}
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\circ}=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

A is incorrect. Adding a catalyst does not affect the equilibrium yield; it only increases the rate of achieving equilibrium because the rates of both forward and backward reaction increase by the same extent.
B is incorrect. Adding neon at constant pressure will decrease the partial pressures of the particles present (both reactants and products)*. Since the reaction results in a decrease in no. of moles of gaseous particles, position of equilibrium (P.O.E.) shifts to the left to increase the pressure, resulting in a decrease in equilibrium yield.

* $\left[p_{\mathrm{a}}=\frac{\mathrm{n}_{\mathrm{a}}}{\mathrm{n}_{\text {total }}} \mathrm{p}_{\text {total }}, \mathrm{n}_{\text {total }}\right.$ increases while n_{a} and and $p_{\text {total }}$ remain $]$

Addition of an inert gas at constant volume will have no impact on the P.O.E. because the partial pressure of the reactants and products are not affected.
[$p_{a}=\frac{n_{a}}{n_{\text {total }}} p_{\text {total }}, n_{\text {total }}$ and $p_{\text {total }}$ increase to the same extent while n_{a} remains]
C is correct. Decreasing the temperature favours the forward exothermic reaction and P.O.E. shifts to the right (equilibrium yield increase) and the rate of production of ammonia is slower as the average kinetic energy of the particles decrease.
D is incorrect. Removing N_{2} at constant volume (\Rightarrow partial pressure of N_{2} decreases) will cause the P.O.E. to shift to the left (decrease in yield) and rate of production of ammonia is slower due to a decrease in concentration of reactants.

15 Since $\Delta G^{\theta}<0$
\Rightarrow the forward reaction is spontaneous and
\Rightarrow position of equilibrium lies to the right.
\Rightarrow the amount of products at equilibrium is more than that of the reactants.
i.e. K_{p} is greater than 1

Alternatively, using $\Delta G^{\ominus}=-R T \ln K$
$\Rightarrow \underline{K>1}$
16 By inspection, ammonia is in excess. An alkaline buffer (excess unreacted NH_{3} and $\mathrm{NH}_{4}{ }^{+}$) is obtained.

$$
\begin{aligned}
& {\left[\mathrm{NH}_{4}{ }^{+}\right]=\mathrm{nHCl} \div \text { total volume }} \\
& =(30 \times 0.1) \div 50 \\
& =0.06 \mathrm{~mol} \mathrm{dm}^{-3} \\
& {\left[\mathrm{NH}_{3}\right]=(20 \times 0.2-30 \times 0.1) \div 50} \\
& =0.02 \mathrm{~mol} \mathrm{dm}^{-3} \\
& \begin{array}{ll}
K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]} & \text { or use } \\
{\left[\mathrm{OH}^{-}\right]=6 \times 10^{-6}} & \text { pOH }=\mathrm{p} K_{\mathrm{b}}+\lg \frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{array} \\
& \mathrm{pOH}=5.2 \\
& \mathrm{pH}=\underline{8.8}
\end{aligned}
$$

17 By inspection, the base is diprotic (2 equivalence points) and likely to be a weak one (low initial pH). And since the final pH is approximately 1 , the acid added is likely a strong acid.

18 Due to the inductive electron-donating effect of alkyl groups, the stability of the radicals are in increasing order of:

a primary radical < a secondary radical < a tertiary radical

Thus, the tertiary radical being the most stable will be formed most readily.
19 The following hint "... comprising of 10 linearly fused benzene ring ..." is useful in solving the question.

1 is correct. Each C atom is sp^{2} hybridised. The sp^{2} hybridised orbitals are arranged in a trigonal planar manner about each C atom, giving a bond angle of 120°.
2 is correct. The delocalised ring of π electrons is formed by the overlapping of p orbitals on adjacent C atoms.
3 is incorrect. The carbon-carbon bond energies should be intermediate between that of the bond energy of a $\mathrm{C}-\mathrm{C}$ bond in alkane and the $\mathrm{C}=\mathrm{C}$ bond in alkene.
[refer to the Data Booklet - bond energy of $\mathrm{C}=\mathrm{C}$ (benzene) is $520 \mathrm{~kJ} \mathrm{~mol}^{-1}$, between $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (C-C) and $610 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (C=C)]
4 is incorrect. The valency of each C is still 4 . In each C, 3 valence electrons are used in the formation of three σ bonds, and 1 electron is delocalised into the 42π-electron system.

20 Chlorofluoroalkanes generate $\mathrm{Cl} \bullet$ radicals which destroy stratospheric ozone. The more Cl atoms that is present in the molecule, the more $\mathrm{Cl} \bullet$ radicals can be generated, and the higher the ODP.

21

Step I involves the addition of $-\mathrm{C}_{2} \mathrm{H}_{5}$ and -MgBr across the carbonyl group (in bold). As the reactive carbon is electron deficient, it is susceptible to nucleophilic attack.

Step II involves the hydrolysis of $\mathrm{O}-\mathrm{Mg}$ bond (observe the H and OH added - in italics). This reaction is dependent on the polarity across the $\mathrm{O}(\delta-)-\mathrm{Mg}(\delta+)$ bond.

221 is correct. Similar to the above steps, $-\mathrm{C}_{6} \mathrm{H}_{5}$ and -MgBr are added to the carbonyl group of $\mathrm{CH}_{3} \mathrm{CHO}$, followed by hydrolysis of the $\mathrm{O}-\mathrm{Mg}$ bond to form $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$.
2 is incorrect. The reactant has a longer carbon chain (additional $-\mathrm{CH}_{2}-$).
3 is correct. By observation, a carboxylic acid will be formed when CO_{2} reacts with a Grignard reagent.

(To visualize, replace the 2 R group substituents on the reactive carbon $(>\mathrm{C})$ with an oxygen doubly bonded $(=\mathrm{O})$ to the carbon in CO_{2}.)

Nucleophilic substitution does not occur due to the delocalisation of the lone pair of electrons on the Cl atom into the benzene ring (or adjacent $\mathrm{C}=\mathrm{C}$ double bond), creating a partial double bond character in the $\mathrm{C}-\mathrm{Cl}$ bond (circled). The polarity of the $\mathrm{C}-\mathrm{Cl}$ bond is also decreased due to the delocalisation and hence the C atom of the $\mathrm{C}-\mathrm{Cl}$ bond is less electron deficient and less susceptible to attack by the OH^{-}nucleophile.
Steric hindrance due to repulsion of the nucleophile by the π electron cloud could also be used as a reason.

241 is incorrect. Absence of $\mathrm{CH}_{3} \mathrm{COR}$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{R}$. Hence, it does not react with $\mathrm{I}_{2} / \mathrm{OH}^{-}(\mathrm{aq})$.
2 is incorrect. All three 2° alcohol present in Indian Yellow will be oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-/} \mathrm{H}^{+}$to give a compound with four carbonyl groups.
3 is incorrect. Only 2 atoms of Br will be substituted on the benzene ring at the $2^{\text {nd }}$ and $4^{\text {th }}$ position with respect to phenol group. Even if you had use the concept that ether ($\mathrm{R}-\mathrm{O}-\mathrm{R}$ group) has similar reactivity as phenol, still the number of Br atom incorporated will be less than 6 Br atoms. However, do note that reactivity of ether is not in the syllabus. Hence, you have to follow the clue given in the question to decide when it is reactive and when it is assumed to be inert. (refer to N2008/III/5d, N2013/II/3aiv, N2009/I/24 etc)
4 is correct. Each mole of -OH group reacts with Na metal to form $\underline{1} 2 \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$. Since there are 5 mol of -OH group per mol of Indian Yellow, 2.5 mol of $\mathrm{H}_{2}(\mathrm{~g})$ is formed.
decreasing $\mathrm{p} K_{\mathrm{a}} \Rightarrow$ increasing K_{a} and increasing strength of acid
Observe that all four compounds are carboxylic acids, hence the order of strength is dependent on the substituent present and its position relative to -COOH group.

Recall: Strength of an acid depends on the stability of its conjugate base.
(Why? $\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14$ at 298 K , so the bigger the $\mathrm{p} K_{\mathrm{b}}$ is, the smaller the $\mathrm{p} K_{\mathrm{a}}$ will be. A stable base will mean it is unreactive/weak base \Rightarrow greater K_{a} for its conjugate acid.)

Compare carboxylate ions: $\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$and $\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COO}^{-}$

- Presence of electron donating alkyl group in $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ reduces the dispersal of the -ve charge to a smaller extent and thus stabilises the conjugate base to a smaller extent.
- Hence $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ has a larger $\mathrm{p} K_{\text {a }}$ than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$. (narrow down to options A and D)

Compare: 4-hydroxybenzoic acid and 2-hydroxybenzoic acid.

- Close proximity of the phenol group to carboxylic acid group in 2-hydroxybenzoic acid enables it to form intramolecular hydrogen bonding which helps to stabilise the conjugate base to a greater extent.
- Hence 2-hydroxybenzoic acid has a lower $\mathrm{p} K_{\mathrm{a}}$ than 4-hydroxybenzoic acid. (option A)
$26 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$is able to oxidise $1^{\circ}, 2^{\circ}$ alcohols and aldehyde.
NaBH_{4} is able to reduce aldehyde and ketones.

2

\checkmark
X
\checkmark
\checkmark X

27

A	Type of reaction	Products
base-catalysed hydrolysis	base-catalysed hydrolysis	
C	acid-catalysed hydrolysis	
D	no reaction	

Since $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OD}$ is a stronger acid than $\mathrm{D}_{2} \mathrm{O}$, the position of equilibrium lies to the left as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OD}$ is a better proton donor. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$will not react with $\mathrm{D}_{2} \mathrm{O}$ to give a good yield of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OD}$.

28 Given that the first member of the series is ethyl ethanoate
$\Rightarrow \mathrm{n}=0$
\therefore the fourth member of the series $(\underline{n}=3)$ will be either

By observation, a possible product must have one of the following structures.

or

Hence,
A is incorrect. One of its reactants is the fifth member of the series (i.e. $n=4$).
B is correct. It is formed between two fourth members of the series.
C is incorrect. It is formed between a second and a third member of the series.
D is incorrect. It is not part of the ethyl ester series. It is a butyl ester.

When forchlorfenuron undergoes hydrolysis

D

non organic product

However as the reaction was carried out in acidic medium,
the basic groups will be protonated (e.g. $-\mathrm{NH}_{2}$)

FYI

The N atom in the pyridine is basic as its lone pair is not delocalised in the ring but occupies the sp^{2} hybrid orbital. Instead, it is the unhybridised p orbital (with an electron) overlap with the p orbitals of the adjacent C atoms to form an aromatic ring as illustrated in the diagram on the right.

30 When excess of NaOH (aq) are added to $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, a dirty green precipitate of $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ is formed.

$$
\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow\left[\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](\mathrm{s})+2 \mathrm{HOH}^{2}(\mathrm{I})
$$

OH^{-}accepts a proton from the hydrated iron(II) complex (acid-base reaction), resulting in the precipitation of $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$.
On standing in air, $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ is oxidised to $\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$, reddish brown precipitate.

1 (a)
(i) $2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})$
ignore state symbols
(ii) $E^{\ominus}\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)=+0.77 \mathrm{~V}$
$E^{\ominus}\left(\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}\right)=+0.15 \mathrm{~V}$
$E^{\ominus}{ }_{\text {cell }}=E^{9}{ }_{\text {reduction }}-E^{0}{ }_{0 x i d a t i o n}$
$=+0.77-(+0.15)$
$=+0.62 \mathrm{~V}$
(iii) Reduction of Fe^{3+} to Fe^{2+} by SnCl_{2} is spontaneous since the E^{9} cell calculated in (ii) is positive.
$E^{\ominus}\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)=-0.44 \mathrm{~V}$
$E^{\ominus}\left(\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}\right)=+0.15 \mathrm{~V}$
$E^{\ominus}{ }_{\text {cell }}=-0.44-(+0.15)$

$$
=\underline{-0.59 \mathrm{~V}}<0 \text { (not spontaneous) }
$$

However, the reduction of Fe^{2+} to Fe by SnCl_{2} is not spontaneous since the $E^{9}{ }_{\text {cell }}$ is negative.
[1]: determine E^{\ominus} cell for reduction of Fe^{2+}
[1]: conclusion based on both E^{\ominus} cell
(iv)

titration number	1	2	3
initial burette reading $/ \mathrm{cm}^{3}$	0.00	19.95	2.10
final burette reading $/ \mathrm{cm}^{3}$	19.95	40.05	22.15
titre $/ \mathrm{cm}^{3}$	19.95	$\underline{20.10}$	$\underline{20.05}$

average volume of KI used $=1 / 2(20.10+20.05)$

$$
=20.08 \mathrm{~cm}^{3}
$$

$\mathrm{n}\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ required $=\frac{20.08}{1000} \times 0.100$

$$
=0.002008 \mathrm{~mol}
$$

$$
=\underline{0.00201 \mathrm{~mol}}
$$

[1]: correctly determine the titre for run 2 and 3 and used it to find the average titre based on hierarchy rule (i.e. within $0.05 \mathrm{~cm}^{3}$ in this case)
[1]: $\mathrm{n}\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$
(v) $6 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 6 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
ignore state symbols
(vi) $\mathrm{n}\left(\mathrm{Fe}^{2+}\right)$ in $25.0 \mathrm{~cm}^{3}$ of solution $=6 \times 0.00201$

$$
=0.01206 \mathrm{~mol}
$$

$$
\mathrm{n}\left(\mathrm{Fe}^{2+}\right) \text { in } 250 \mathrm{~cm}^{3} \text { of solution }=0.01206 \times 10
$$

$$
=\underline{0.1206 \mathrm{~mol}}
$$

mass of Fe present $=0.1206 \times 55.8$

$$
=6.729 \mathrm{~g}
$$

$\%$ by mass of iron in the sample of iron ore $=\frac{6.729}{11.05} \times 100 \%$

$$
=\underline{60.9 \%}
$$

[1]: $n\left(\mathrm{Fe}^{2+}\right)$ originally present in $250 \mathrm{~cm}^{3}$ (scaling)
[1]: \% by mass of iron in iron ore (ecf)
(b) (i)

- e from metal
+ e from I
- e from O
[1]: correct dot-and-cross
(ii) $\mathbf{M g}\left(\mathrm{IO}_{3}\right)_{2} \longrightarrow \mathrm{MgO}+\mathrm{I}_{\mathbf{2}}+\frac{5}{2} \mathrm{O}_{\mathbf{2}}$
(iii) - size of cations : $\mathrm{Mg}^{2+}(0.065 \mathrm{~nm})>\mathrm{Fe}^{2+}(0.061 \mathrm{~nm})$
- charge of the cations is the same
- charge density of M^{2+} : $\mathrm{Mg}^{2+}<\mathrm{Fe}^{2+}$
- polarising power of $\mathrm{M}^{2+}: \mathrm{Mg}^{2+}<\mathrm{Fe}^{2+}$
- Fe^{2+} ion is able to distort electron cloud of $\mathrm{IO}_{3}{ }^{-}$anion to a greater extent. Hence, I-O covalent bond within the IO_{3}^{-}anion is more weakened in $\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{2}$.
- $\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{2}$ will need to be heated to a lower temperature for decomposition.
[1]: charge density / polarsising power (based on ionic radius quoted)
[1]: extent of distortion / weakening of I-O bond and lower temperature required
(accept comparable / similar temperature)
(iv)

$$
\begin{aligned}
\mathrm{n}\left(\mathrm{Mg}\left(\mathrm{IO}_{3}\right)_{2}\right) \text { reacted } & =\frac{2.00}{24.3+2[126.9+3(16.0)]} \quad\left(\text { or } \frac{2.00}{374.1}\right) \\
& =5.35 \times 10^{-3} \mathrm{~mol} \\
\text { mass of } \mathrm{MgO} \text { left, } y & =5.35 \times 10^{-3} \times(24.3+16.0) \\
& =\underline{0.215 \mathrm{~g}}
\end{aligned}
$$

[1]: steeper gradient and larger mass of residue

$$
\begin{aligned}
\mathrm{n}\left(\mathrm{Fe}\left(\mathrm{IO}_{3}\right)_{2}\right) \text { reacted } & =\frac{2.00}{55.8+2[126.9+3(16.0)]} \quad\left(\text { or } \frac{2.00}{405.6}\right) \\
& =4.93 \times 10^{-3} \mathrm{~mol} \\
\text { mass of FeO left, } \mathrm{y} & =4.93 \times 10^{-3} \times(55.8+16.0) \\
& =\underline{0.354 \mathrm{~g}}
\end{aligned}
$$

2 (a) Homogenous catalyst increases the rate of a reaction where the reactant(s) and the catalyst exist in the same phase. For example, $\mathrm{Fe}^{2+(a q) ~ c a t a l y s e s ~ t h e ~ r e a c t i o n ~}$ between $\mathrm{I}^{-}(\mathrm{aq})$ and $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})$.
[1]: definition
[1]: example (accept other homogeneous system e.g. $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{Mn}^{2+}$)
(b) (i) $\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}$
(ii) (homogeneous) catalyst

Rate of reaction is slow without cobalt(II) but becomes vigorous in its presence. Cobalt(II) forms an intermediate (cobalt(III)) and is regenerated at the end of the reaction.
[1]: role
[1]: evidence (either one)
(iii) $E^{\ominus}\left(\mathrm{Co}^{3+} / \mathrm{Co}^{2+}\right)=+1.89 \mathrm{~V}$
$E^{\ominus}\left(\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)=+1.23 \mathrm{~V}$

$$
\begin{aligned}
E^{{ }_{c} \text { ell }} & =+1.89-(+1.23) \\
& =+\underline{0.66 \mathrm{~V}}>0 \text { (spontaneous) }
\end{aligned}
$$

$\mathrm{Co}^{3+}(\mathrm{aq})$ readily reduces to $\mathrm{Co}^{2+}(\mathrm{aq})$ in aqueous solution but yet Co (III) is formed in this reaction (green solution).

Tartaric acid acts as a ligand which stabilises $\mathrm{Co}(\mathrm{III})$.
[1]: shows unstability of $\mathrm{Co}^{3+}(\mathrm{aq})$
[1]: role of tartaric acid
(c) (i) $\mathrm{n}\left(\mathrm{O}_{2}\right)=\frac{96}{24000}$

$$
=4.00 \times 10^{-3} \mathrm{~mol}
$$

$n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=2 \times 4.00 \times 10^{-3}$

$$
=8.00 \times 10^{-3} \mathrm{~mol}
$$

$$
\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=\frac{8.00 \times 10^{-3}}{0.100}
$$

$$
=\underline{0.0800 \mathrm{~mol} \mathrm{dm}^{-3}}
$$

(ii) When volume of $\mathrm{O}_{2}(\mathrm{~g})$ collected reaches $88 \mathrm{~cm}^{3}, 8 \mathrm{~cm}^{3}$ of O_{2} is left to be collected ($\frac{8}{96}=\frac{1}{12}$).

$$
1 \longrightarrow \frac{1}{2} \longrightarrow \frac{1}{4} \longrightarrow \frac{1}{8} \longrightarrow \longrightarrow \frac{1}{12}\left[\left(\frac{1}{2}\right)^{n}\right]
$$

$\frac{C}{C_{0}}=\left(\frac{1}{2}\right)^{n}$, where $n=$ no. of half-life undergone
$\frac{1}{12}=\left(\frac{1}{2}\right)^{n}$
$\mathrm{n}=\ln \left(\frac{1}{12}\right) \div \ln \left(\frac{1}{2}\right)$
$=3.58$
estimated time taken for $88 \mathrm{~cm}^{3}$ of O_{2} collected $=3.58 \times 35$

$$
=125 \mathrm{~min}
$$

(accept $4 \times 35=140$ min because $\frac{8}{96} \approx\left(\frac{1}{2}\right)^{4} / 3.5 \times 35=122.5 \min$ because $\frac{1}{12}$
is between $\frac{1}{8}$ and $\frac{1}{16}$, i.e. $3^{\text {rd }}$ and $4^{\text {th }}$ half-life)
(iii) $k=\frac{\ln 2}{t_{1 / 2}}=\frac{\ln 2}{35}$
$=\underline{0.0198 \mathrm{~min}^{-1}}$
(iv) time taken for $\mathrm{H}_{2} \mathrm{O}_{2}$ to decrease to the same extent (i.e. 50% in this case) will be the same regardless $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ is $0.08 \mathrm{~mol} \mathrm{dm}^{-3}$ or $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ because "half-life is independent of the initial concentration".

Alternatively,
rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ ($1^{\text {st }}$ order reaction)
If $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right] \times 2.5$ times, rate $\times 2.5$ times.
Hence, for $0.08 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2} \quad 0.04 \mathrm{~mol} \mathrm{dm}^{-3}$ decomposed in 35 min
for $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2} \quad 0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ decomposed in 35 min (as rate $\times 2.5$)
i.e. $\frac{0.1}{0.2} \times 100 \%=\underline{50 \%}$ decomposed
(v) Titrate the $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ remaining at regular time intervals against a standard solution of KMnO_{4}.
Monitor the decrease in mass of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution at regular time intervals.
[1] either one

3
(a) (i) PSI of PM10 $=\frac{200-100}{350-150}(320-150)+100=\underline{185}$

PSI of $\mathrm{CO}=\frac{300-200}{34-17}(20-17)+200=\underline{218}$
[1] each
(ii) overall PSI is the maximum value out of $185,218,112,133$ and 150. Hence overall PSI is $\underline{218}$.
(iii) I would advise the PE teacher to avoid strenuous physical exertion / conduct the lesson indoor (words to the effect based on valid reasoning).
(b) (i) $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \quad(\mathrm{x} 5)$
$2 \mathrm{IO}_{3}{ }^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \longrightarrow \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
overall: $\mathbf{5 S _ { 2 }} \mathbf{+} \mathbf{4 H}_{\mathbf{2}} \mathrm{O}+\mathbf{2 I O}_{3}{ }^{-} \longrightarrow \mathbf{5 S O}_{4}{ }^{\mathbf{2 -}}+\mathbf{8} \mathrm{H}^{+}+\mathrm{I}_{\mathbf{2}}$
(ii) $\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{n}(\mathrm{NaOH})$ reacted $=0.01 \times 0.005$

$$
=5 \times 10^{-5} \mathrm{~mol}
$$

$\mathrm{n}\left(\mathrm{H}^{+}\right)$reacted with $\mathrm{NaOH}=5 \times 10^{-5}$
$\mathrm{n}\left(\mathrm{SO}_{2}\right)$ in $1 \mathrm{~m}^{3}$ sample of air $=5 \times 10^{-5} \times \frac{5}{8}$
$=\underline{3.125 \times 10^{-5} \mathrm{~mol}}$
mass of SO_{2} in $1 \mathrm{~m}^{3}$ sample of air $=3.125 \times 10^{-5} \times[32.1+2(16.0)] \quad$ (or 64.1)

$$
\begin{aligned}
& =0.00200 \mathrm{~g} \\
& =2000 \mu \mathrm{~g}
\end{aligned}
$$

concentration of $\mathrm{SO}_{2}=\underline{2000} \mu \mathrm{~g} \mathrm{~m}^{-3}$
[1]: $\left[\mathrm{SO}_{2}\right]$ in $\mathrm{mol} \mathrm{m}^{-3}$
[1]: $\left[\mathrm{SO}_{2}\right]$ in $\mu \mathrm{g} \mathrm{m}^{-3}$
(c) (i) $\ln 1 \mathrm{~m}^{3}$,
mass of air is 1 kg
mass of PM10 is $\frac{2 \times 10^{-5}}{100} \times 1=2 \times 10^{-7} \mathrm{~kg}=0.0002 \mathrm{~g}=200 \mu \mathrm{~g}$
Hence concentration of PM10 is $\underline{200} \mu \mathrm{~g} \mathrm{~m}^{-3}$
(ii) Since concentration calculated in (c)(i) is more than 180, the sample of air has exceeded the limit.

The German city of Leipzig will be fined.
(d) (i) $\mathrm{C}_{32} \mathrm{H}_{18} \mathrm{~N}_{8}$
(ii) It contains a ring of delocalised pi electron clouds / the p orbitals of the N and C atoms can overlap sideways to form conjugated ring system of pi bonds.

FYI
ball and stick diagram
 copper and N2: $\underline{\text { dative }}$
[1] each
(ii) electronic configuration of Cu is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$ electronic configuration of Cu^{2+} is $\mathbf{1 s ^ { 2 }} \mathbf{2 s}^{2} \mathbf{2 p} p^{6} 3 s^{2} \mathbf{3} p^{6} 3 d^{9}$
(iii) 8
(iv) presence of Cl atoms alters the extent of d -orbital splitting by the ligands and hence energy absorbed by electron (d-d transition) and colour observed will be different

4

step 1: HCN in the presence of NaCN (or trace of NaOH)
step 2: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$ (do not accept its carboxylic acid)
[1]: structure
[1] each reagent
(ii) The instananeous dipole-induced dipole attractions between the non-polar benzene ring / pentyl $\left(-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right)$ group in mandelonitrile hexanoate molecule and the non-polar hexane molecule are comparable in strength to that between mandelonitrile hexanoate molecules and between hexane molecules.
(b) (i) Hydrolysis (or nucleophilic acyl substitution) of ester and oxidation of 2° alcohol
[1] each
(ii) the $\mathrm{C}-\mathrm{C}$ bond in COCN is stronger than the $\mathrm{C}-\mathrm{Cl}$ bond in COCl or CN^{-}in COCN is poorer leaving group than Cl^{-}in COCl or the carbonyl C in COCN is less electron deficient than in COCl
[1] either one
(iii) Add Tollens' reagent and warm, if a silver mirror (or grey ppt) is formed, benzaldehyde is present. Hence, pathway II has occurred. Otherwise, pathway I has occurred.
(accept 2,4-dinitrophenylhydrazine, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-/ \mathrm{H}^{+}}, \mathrm{MnO}_{4}^{-} / \mathrm{H}^{+} /$yellow (orange) ppt, orange solution turned green, purple solution decolourised due to benzaldehyde)
(c) (i) The amount of heat absorbed or evolved when one mole of substance is formed from its constituent elements in their standard states at 298 K and 1 bar.
(ii) $-316=2 \Delta H_{\mathrm{f}}^{0}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right)-[(-367)+(-87)]$
$\Delta H_{\mathrm{f}}^{\mathrm{O}}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right)=-385 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(iii)

[1]: constituent elements at the highest energy level (assigned 0)
[1]: corresponding compounds at the 3 other energy levels
[1]: correct stoichiometry, state symbols and arrow directions

5 (a) (i) stage I: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, warm with immediate distillation
stage III: $\mathrm{H}_{2}, \mathrm{Pt} / \mathrm{Pd}$, room temperature (accept Ni, with or w/o warm/heat)
[1] each
(ii)
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}+\frac{11}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+\mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$
(iii) cis-trans isomerism

cis

trans
[1]: type of isomerism with correct label
[1]: displayed structure
(iv)

\mathbf{G} is reduced to \mathbf{H} (an alcohol) which reacts with sodium metal to give effervescence of H_{2}. H does not react with $2,4-$ DNPH due to absence of aldehyde/ketone. It reacts with aqueous Br_{2} because of the $\underline{\mathrm{C}=\mathrm{C} \text { bond present. }}$
[1]: structure of \mathbf{H}
[1]: explanation (alcohol and $\mathrm{C}=\mathrm{C}$ essential; do not accept hydroxyl or -OH group in place of alcohol)
(b) (i)

[1]: dipoles (BOD if missing on $\mathrm{H}_{2} \mathrm{O}$), charges and lone pairs
[1]: curly arrows and intermediate
(ii) Able to lose H and OH on adjacent C atoms in 2 different ways, giving rise a different product formed.
Absence of resonance stabilised / delocalised structure / less substituted alkene compared to \mathbf{G}, resulting in lower yield.

The other product is $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CHO}$.
(iii)

[1]: ethanal $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ for both
[1] each for the other 2
(c)

OH	CH_{3}	
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{3}$	$\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{OH}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
\mathbf{J}	\mathbf{K}	\mathbf{L}
2°	1°	3°

[1]: all 3 structural isomers correctly identified and labelled (in any order)
[1]: corresponding classification of 3 alcohols
(ii) J reacts with alkaline aqueous iodine
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}+4 \mathrm{I}_{2}+6 \mathrm{OH}^{-} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}+\mathrm{CHI}_{3}+5 \mathrm{I}^{-}+5 \mathrm{H}_{2} \mathrm{O}$
[1]: correctly identified the alcohol with positive reaction with $\mathrm{I}_{2} / \mathrm{OH}^{-}$
[1]: balanced equation

1 (a) (i) Hybridisation: $\underline{s p}^{2}$

bond angle $=\underline{117^{\circ}}\left(\right.$ accept $110^{\circ}<$ angle $\left.<120^{\circ}\right)$
[1]: hybridisation
[1]: hybrid orbitals (allow ecf if hybridisation was wrongly determined)
[1]: bond angle (ecf)
(ii) cis-trans isomerism

cis

trans
[1]: type of isomerism
[1]: structure with correct label (ignore if Ip are missing)
(iii) cis-isomer

For the cis-isomer, bending / flexing occurred which allows the microstructure to peel away from the surface.
(b)

Observation	Type of reaction	Deduction
Compound $\mathrm{U}, \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ is not soluble in $\mathrm{NaOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$.	(absence of acid- base reaction)	U likely to contain amide.
U gives 2 products when heated under reflux with $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-/} \mathrm{H}^{+}$.	hydrolysis	U contains amide or ester group.
Orange $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-/ \mathrm{H}^{+} \text {changes }}$ from orange to green during the process.	oxidation	U or its hydrolysed products contain $1^{\circ} / 2^{\circ}$ alcohol or aldehyde group.
$\mathbf{V}, \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ has a proton chemical shift of 13.0 ppm.		V contains -COOH. \mathbf{W} contains 4 C atoms and 1 N atom..

W gives an orange precipitate when treated with $2,4-$ DNPH but it has no reaction with Tollens' reagent.	condensation / addition-elimination	W contains ketone group.
W gives a yellow precipitate and X when warmed with $\mathrm{I}_{2} / \mathrm{NaOH}$.	oxidation	W contains RCOCH_{3}. \mathbf{X} is a sodium salt
Effervescence was observed when \mathbf{W} was treated with $\mathrm{NaHCO}_{3}(\mathrm{aq})$.	acid-base	W contains - COOH
When \mathbf{W} is heated with excess $\mathrm{CH}_{3} \mathrm{Cl}$, it gives $\mathrm{Y}, \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}$, as the major product.	nucleophilic substitution	W contains 1° amine Y is a quaternary salt.

[4]: 14-18 points
[3]: 10-13 points
[2]: 7-9 points
[1]: 3-6 points

U

(ecf from \mathbf{V} and \mathbf{W})

V

(allow -COOH group to be in other positions)

W

X

(ecf from \mathbf{W})

[1] each correct structure
(overall only penalised once if final answers are not given to 1 dp for this question)
2 (a) (i) $K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]$
(ii) $\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{I}^{-}\right]=[\mathrm{AgI}(\mathrm{aq})]$
$K_{\mathrm{sp}}=\left(8.9 \times 10^{-9}\right)^{2}$
$=\underline{7.9 \times 10^{-17} \mathrm{~mol}^{2} \mathrm{dm}^{-6}}$
[1]: answer given to 1 dp
(iii) $\left[\mathrm{Ag}^{+}\right]=\frac{1}{2}\left(\frac{0.025}{[107.9+14.0+3(16.0)]}\right)$

$$
=\underline{7.4 \times 10^{-5}} \mathrm{~mol} \mathrm{dm}^{-3}
$$

Let the solubility of AgI , after addition of AgNO_{3}, be s.
$K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]$
$7.92 \times 10^{-17}=\left(7.36 \times 10^{-5}+s\right)(s)$
Since solubility of AgI in water is $\ll 10^{-5},\left(7.36 \times 10^{-5}+s\right) \approx 7.36 \times 10^{-5}$
$s=1.08 \times 10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}$
Mass of AgI ppted $=\left(8.9 \times 10^{-9}-1.08 \times 10^{-12}\right) \times 2 \times(107.9+126.9)$

$$
=4.2 \times 10^{-6} \mathrm{~g}
$$

[1]: $\left[\mathrm{Ag}^{+}\right]$added to $2 \mathrm{dm}^{3}$ saturated solution
[1]: mass of AgCl ppted
(b) (i) $\Delta G_{\mathrm{ppt}}^{\ominus}=2.303 R T \log _{10} K_{\mathrm{sp}}$

$$
\begin{aligned}
& =2.303(8.31)(298)\left(\log 2.0 \times 10^{-10}\right) \mathrm{J} \mathrm{~mol}^{-1} \\
& =\underline{-5.5 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1}}
\end{aligned}
$$

(ii) $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}(\mathrm{s})$

White ppt is formed due to the formation of insoluble AgCl .
$\mathrm{AgCl}+2 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}$
White ppt dissolves due to the formation of a complex ion.
$\mathrm{Ag}++\mathrm{Br}^{-} \longrightarrow \mathrm{AgBr}(\mathrm{s})$
Cream ppt is obtained when NaBr is added to the resultant mixture because $\underline{K}_{\text {sp }}$ of $\mathrm{AgBr}<K_{\text {sp }}$ of AgCl
[1] each equation and explanation
(c) $\Delta G_{\mathrm{ppt}}^{0}=2.303 \mathrm{RT} \log _{10} K_{\mathrm{sp}}$

$$
\begin{aligned}
& =2.303(8.31)(298)\left(\log _{10} 1.006\right) \\
& =+14.8 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

Since $\Delta G_{\mathrm{ppt}}^{\ominus}$ is +ve , precipitation will not occur
i.e. AgF is soluble
[1]: $\Delta G_{\text {ppt }}^{0}$ calculated
[1]: conclusion (ecf)

3 (a) (i) Le Chatelier's Principle states that if a change is made to a reversible reaction in dynamic equilibrium, the position of equilibrium shifts so as to minimise that change and to re-establish equilibrium.

A high temperature favours the forward endothermic reaction which helps to absorb the excess heat. Position of equilibrium lies to the right for stage 1 .
[1]: stating Le Chatelier's Principle
[1]: explanation
(ii) $x \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons x \mathrm{CO}(\mathrm{g})+\frac{x}{2} \mathrm{O}_{2}(\mathrm{~g})$
(iii) $\Delta H_{\mathrm{f}}^{\ominus}=\Sigma \mathrm{BE}$ (bonds broken) $-\Sigma \mathrm{BE}$ (bonds formed)
$283=2 \mathrm{BE}(\mathrm{C}=\mathrm{O})-[\mathrm{BE}(\mathrm{C}=\mathrm{O})+1 / 2 \mathrm{BE}(\mathrm{O}=\mathrm{O})]$
$\mathrm{BE}(\mathrm{C} \equiv \mathrm{O})=2(805)-283-1 / 2(496)$

$$
=+1079 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

[1]: correct identification of bonds broken and bonds formed
[1]: $\mathrm{BE}(\mathrm{C}=\mathrm{O})$ (ecf if 740 is used as $\mathrm{BE}(\mathrm{C}=0)$; i.e. $+949 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
(iv) $\Delta G^{\ominus}=\Delta H^{\ominus}-\mathrm{T} \Delta S^{\ominus}$
$237=283-(298)\left(\Delta S^{\ominus}\right)$
$\Delta S^{\ominus}=+0.154 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$=+154 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Entropy change for the reaction is positive, indicating an increase in disorder of system / ways of distributing energy as seen from the equation in (ii) where there is an increase in number of moles of gaseous particles.
[1]: ΔS^{\ominus}, include units
[1]: explaining link between entropy change and disorder of reaction
(b) (i)

shape: octahedral
[1]: structure (dative bonds of bidentate ligand cannot be both on axial position)
[1]: shape
(ii) steps $\underline{2}$ and 6
(iii) step 1: reduction
step 4: acid base reaction
(iv) In the presence of ligands, the partially filled 3d orbitals of Mn are split into two levels (non-degenerate) with a small energy gap (d orbital splitting).
When light passes through, energy corresponding to the blue light is absorbed and an electron in a lower energy d-orbital is promoted to a higher energy dorbital. (d-d transition).
The orange colour of the solution is the complementary colour of the blue light absorbed.
[1]: partially filled 3d-orbital; small energy gap
[1]: d-d transition
[1]: absorption of blue (complementary to orange)
(c) (i) When pH is high, $\left[\mathrm{H}^{+}\right]$is low, position of equilibrium shifts to the right and hence more metal carbonate will be precipitated.
(ii) $\left[\mathrm{Ca}^{2+}\right]=\frac{0.0120}{40.1}=\underline{2.99 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}$
$\left[\mathrm{Mg}^{2+}\right]=\frac{0.0073}{24.3}=\underline{3.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}$
$\left[\mathrm{Cl}^{-}\right]=\frac{0.0284}{35.5}=\underline{8.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}$
$\left[\mathrm{HCO}_{3}^{-}\right]=\frac{0.0244}{[1.0+12.0+3(16.0)]}=\underline{4.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}}$
$\mathrm{CaCl}_{2}: \mathrm{MgCl}_{2}: \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}: \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}=\underline{2: 2: 1: 1}$
[2]: all concentrations; [1]: any two correct
[1]: correct ratio
(iii) The rock is made up of calcium carbonate, magnesium carbonate, (calcium chloride and magnesium chloride).

Rainwater containing dissolved atmospheric carbon dioxide shifts the equilibrium position of (2) to the right.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{MCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{M}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq})
$$

Group 2 bicarbonates are soluble, hence it accounts for the presence of $\mathrm{HCO}_{3}{ }^{-}$ in mineral water.

Calcium chloride and magnesium chloride present in the rock also can dissolve in the rainwater, causing $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ and Cl^{-}to be present in mineral water.
[1]: composition of rock
[1]: explanation using equation (2) to account for presence of bicarbonate

4 (a) (i) anode: $\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
cathode: $\mathrm{I}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}$
$\mathbf{Z n}+\mathbf{I}_{\mathbf{2}} \longrightarrow \mathbf{2 I}^{-}+\mathrm{Zn}^{\mathbf{2 +}}$
[1]: 2 correct half-equations
[1]: balanced equation
(ii) $E_{\text {cell }}^{0}=0.54-(-0.76)$

$$
=+1.30 \mathrm{~V}
$$

(iii) $\Delta G^{\ominus}=-\mathrm{nF} E_{\text {cell }}^{\ominus}$

$$
\begin{align*}
& =-2 \times 96500 \times 1.30 \tag{1}\\
& =-2.50 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}
\end{align*}
$$

(value of n depends on balanced equation in (i))
(iv) To allow Zn^{2+} ions to move from the anode to the cathode during discharging to prevent built up of charges / to maintain electrical neutrality.
(b)

$$
\left[\begin{array}{lllll}
\\
\\
+\mathrm{Br}_{+}^{++} & \bullet & \mathrm{I}^{+} & \stackrel{+}{++} \\
++ & & \mathrm{I}_{+}^{+} & + \\
+
\end{array}\right]_{+}^{-}
$$

shape: linear
[1]: dot-and-cross
[1]: shape
(c) (i) electrophilic addition

(accept if deprotonation by Br^{-}is shown over 2 steps)
[1]: name of mechanism
[1]: dipoles and charges
[1]: lone pairs and curly arrows
[1]: intermediates and product
(ii)

 Br

[2]: all 4
[1]: any 2
(iii) Reagents and condition: Na metal, room temperature

Observation: effervescence observed with bromohydrin but no effervescence observed with cyclohexene.

OR
Reagents and condition: anhydrous $\mathrm{PCl}_{5} / \mathrm{SOCl}_{2}$, room temperature Observation: white fumes observed with bromohydrin but no white fumes observed with cyclohexene.
OR
Reagents and condition: KMnO_{4}, dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, cold/heat
Observation: purple KMnO_{4} decolourises for cyclohexene but purple KMnO_{4} remains for bromohydrin.

Alternative (less preferred)
Reagents and condition: $\mathrm{NaOH}(\mathrm{aq})$ and heat, cool and add HNO_{3} then AgNO_{3}.
Observation: cream ppt observed with bromohydrin but no ppt observed with cyclohexene.
[1]: reagents and condition (do not accept aq. Br_{2})
[1]: corresponding observations
(a) First I.E. decreases down the group nuclear charge increase
but electrons are added to next electron/quantum shell attraction between the nucleus and the valence electron decreases less energy required to remove the valence electron.
[1]: trend
[1]: explanation in terms of increased nuclear charge but weaker attraction due to valence electron being further from nucleus / at a higher energy level
(b) (i) Gas particles occupies negligible space

Negligible forces of attraction between gas particles
[1] each
(ii)

[1]: sketch complete with ideal gas line and axes labelled
(iii)

Experiment No.	$p \vee$ for gas D	$p \vee$ for gas E
1	2275	2320
2	2198	2280
3	2100	2190
4	1953	2140

The $p V$ values of Gas \mathbf{D} deviates more from a constant value than Gas \mathbf{E}. Hence, Gas D behaves less like an ideal gas than Gas E.

Gas E is H_{2}, which is smaller in size and also has weaker instantaneous dipoleinduced dipole interactions between molecules and deviate less from ideality while gas D is O_{2} which is a larger molecule with relatively stronger instantaneous dipole-induced dipole interactions.
[1]: all $p V$ values
[1]: identify gases D and E
[1]: explanation
(c) (i) Lewis base is defined as an electron pair donor.
(ii) $\mathrm{PCl}_{5}+\mathrm{SO}_{2}(\mathrm{OH})_{2} \longrightarrow \mathrm{ClSO}_{3} \mathrm{H}+\mathrm{POCl}_{3}+\mathrm{HCl}$
(iii) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{ClSO}_{3} \mathrm{H}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{ClSO}_{3}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
The HSO_{4}^{-}conjugate base is more stable because there will be greater charge dispersal as it has an additional and more electronegative O. Thus the P.O.E. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ acid ionisation lie more to the right.
(d) (i) The lone pair of electrons on N is delocalised to the carbonyl carbon and hence it is not available in accepting a proton, making \mathbf{A} a neutral compound.
(ii) Boil/heat with $\underline{\mathrm{NaOH}(\mathrm{aq})}$, followed by adding $\mathrm{Br}_{2}(\mathrm{aq})$ to the resultant hydrolysed products.
The product of \mathbf{A} (phenylamine) will decolorise the orange $\mathrm{Br}_{2}(\mathrm{aq})$ together with a white ppt but not the other isomer.
[1]: reagents and condition (accept HCl , if followed by excess NaOH)
[1]: corresponding observations
(iii) $\mathrm{ClSO}_{3} \mathrm{H}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{ClSO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(accept $\mathrm{ClSO}_{3} \mathrm{H}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{ClSO}_{2}{ }^{+}+\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$)
(iv) electrophilic substitution

[1]: name of mechanism
[1]: dipoles, charges and lone pairs
[1]: curly arrows, intermediate and regeneration of catalyst
(v) nucleophilic substitution
(vi) $\mathrm{H}_{2} \mathrm{O}$ nucleophile competes with NH_{3} nucleophile for the electron deficient S to displace Cl^{-}, affecting the yield of \mathbf{C}.

[O] $\mathrm{Br}^{-} \longrightarrow 1 / 2 \mathrm{Br}_{2}+\mathrm{e}^{-}$
$5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
(ii) Comparing Expt 1 \& 2,
when $\left[\mathrm{Br}^{-}\right]$increase by 2 times, rate increases by 2 times $\left(\frac{8 \times 10^{-2}}{4 \times 10^{-2}}\right)$.
\Rightarrow rate is directly proportional to $\left[\mathrm{Br}^{-}\right]$
\Rightarrow reaction is $\underline{1}^{\text {st }}$ order with respect to Br^{-}
Comparing Expt 2 \& 3,
when $\left[\mathrm{BrO}_{3}^{-}\right]$increases by 2 times, rate increases by 2 times $\left(\frac{4 \times 10^{-2}}{2 \times 10^{-2}}\right)$.
\Rightarrow rate is directly proportional to $\left[\mathrm{BrO}_{3}{ }^{-}\right]$
\Rightarrow reaction is $\underline{1}^{\text {st }}$ order with respect to $\mathrm{BrO}_{3}{ }^{-}$
$\left[\mathrm{H}^{+}\right]$at $\mathrm{pH} 1.00=0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]$at $\mathrm{pH} 1.30=0.0501 \mathrm{~mol} \mathrm{dm}^{-3}$
Comparing Expt 1 \& 4 and let order of reaction with respect to H^{+}be x
$\frac{8 \times 10^{-2}}{1 \times 10^{-2}}=\frac{(0.10)(0.10)(0.1)^{x}}{(0.05)(0.10)(0.05)^{\mathrm{x}}}$
$\mathrm{x}=2$
\Rightarrow reaction is $\underline{2^{\text {nd }}}$ order with respect to H^{+}
[1] each
(iii) rate $=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
(iv) Using values from Expt 1,
$8 \times 10^{-2}=k(0.10)(0.10)(0.10)^{2}$
$k=800 \mathrm{~mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1}$
(b)

When temperature increases, the (average) kinetic energies of the reactant molecules increase.
As shown on the diagram, the number of reactant molecules with energy greater or equal to the activation energy will increase.
This results in an increase in the frequency of effective collisions. Hence, the rate of reaction increases.
[1]: correct axes, shape of graph (including beginning from origin) and correct shift of graph and shading when T increase
[1]: correct explanation (in terms of ave KE increase and frequency of effective collision increase)
[1]: correct conclusion
(c) (i) As seen in the equation, $\ln k=\ln \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}}\right)$
gradient $=-\frac{E_{a}}{R}$
Taking points from the graph, gradient $=\frac{-5.20-(-6.90)}{(3.10-3.30) \times 10^{-3}}=-8500$
$-8500=-\frac{E_{a}}{R}$
$E_{\mathrm{a}}=+70600 \mathrm{~J} \mathrm{~mol}^{-1}$
(ii) Both $\mathrm{BrO}_{3}{ }^{-}$and Br^{-}are negatively charged and they experience inter-electronic repulsion and hence E_{a} of the reaction is high.
(iii)

Since the reaction will have a lower activation energy in the presence of a catalyst, the slope will be less steep.
(d) (i)

Observation	Type of reaction	Deduction
$\mathrm{K}, \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ON}$, is not very soluble in water, but dissolves in $\mathrm{HCl}(\mathrm{aq})$.	acid-base	K contains basic amine group.
K also dissolves in $\mathrm{NaOH}(\mathrm{aq})$, but not in $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$.	acid-base	K contains acidic phenol group Absence of $-\mathrm{CO}_{2} \mathrm{H}$.
On reaction with 1 mol of $\mathrm{CH}_{3} \mathrm{COCl}, \mathbf{K}$ forms compound $\mathbf{L}, \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}$.	nucleophilic (acyl) substitution / condensation	L contains an amide group or ester group.
On reaction with $\mathrm{Br}_{2}(\mathrm{aq})$, L produces compound M, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{NBr}_{2}$.	electrophilic substitution	$2 \times \mathrm{Br}$ substituted suggests that one of the 2,4 or 6 position of L is occupied.

When K is reacted with 2 mol of ethanoyl chloride, it produces compound \mathbf{N}, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$.	nucleophilic (acyl) substitution / condensation	\mathbf{N} contains an amide group and an ester group.
\mathbf{N} is not soluble in either $\mathrm{HCl}(\mathrm{aq})$ or $\mathrm{NaOH}(\mathrm{aq})$.	-	absence of basic amine and acidic phenol group
K can be synthesised by treating phenol with dil. HNO_{3}.	electrophilic substitution	4-nitrophenol (or 2- nitrophenol) is formed.
Followed by reaction with Sn metal and HCl.	reduction	4-nitrophenol is reduced to form K which contains an amine group.

[3]: 14-18 points
[2]: 9-13 points
[1]: 4-8 points

Accepts 2-aminophenol. Likewise for L, M, N.

(ecf from L, i.e. give \mathbf{P} instead)
[1] each correct structure
(ii)

\mathbf{P} is

Presence of nucleophilic $-\mathrm{NH}_{2}$ and- OH groups in K allows the 1 mol of $\mathrm{CH}_{3} \mathrm{COCl}$ to react with the more nucleophilic $-\mathrm{NH}_{2}$ group to form L or to react with the less nucleophilic -OH group to form minor product \mathbf{P}.
[1]: structure of \mathbf{P}
[1]: explanation why there 2 possible products and which is major/minor

AJC 2017 JC2 Preliminary Examinations

H2 Chemistry (9729/04) Science Practical Preparation List

Apparatus List

No.	Apparatus	Quantity per student
1	$10 \mathrm{~cm}^{3}$ measuring cylinder	2
2	$50 \mathrm{~cm}^{3}$ measuring cylinder	1
3	$250 \mathrm{~cm}^{3}$ conical flask	2
4	$250 \mathrm{~cm}^{3}$ volumetric flask	1
5	$250 \mathrm{~cm}^{3}$ beaker	1
6	burette with clip - one labelled as FA 1	2
7	$25.0 \mathrm{~cm}^{3}$ pipette with pipette filler	1
8	filter funnel	2
9	weighing bottle	2
10	styrofoam cup with lids	2
11	thermometer (-5 ${ }^{\circ} \mathrm{C}$ to $+50{ }^{\circ} \mathrm{C}$ at $0.2^{\circ} \mathrm{C}$)	1
12	test tube rack	1
13	test tube (big)	6
14	test tube (small)	6
15	test tube holder	1
16	plastic bag of - litmus papers, plastic teat droppers $\times 3$, tissue, splinter, filter paper strip	1
17	white tile	1
18	retort stand	1
19	safety goggles	1
20	deionised water bottle	1
21	access to weighing balance	communal
22	lighter	per bench${ }^{2} \quad$

Chemicals Required

No.	Label	Identity and concentration	Quantity per student
1	FA 1	$20 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{KMnO}_{4}$	$80 \mathrm{~cm}^{3}$
2	FA 2	$0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$	$150 \mathrm{~cm}^{3}$
3	FA 3	$100 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{KI}(\mathrm{aq})$	$50 \mathrm{~cm}^{3}$
4	FA 4	$1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$	$50 \mathrm{~cm}^{3}$
5	FA 6	$1 \mathrm{~mol} \mathrm{dm}^{-3}$ of HCl	$200 \mathrm{~cm}^{3}$
6	FA 7	$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	$\sim 6 \mathrm{~g}$
7	FA 8	$\mathrm{NaHCO}_{3}(\mathrm{~s})$	$\sim 5 \mathrm{~g}$
8	FA 9	$50 \mathrm{~g} \mathrm{dm}^{-3}$ hydrated $\mathrm{Cu}^{(}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$	$20 \mathrm{~cm}^{3}$
9	FA 10	$50 \mathrm{~g} \mathrm{dm}^{-3} \mathrm{FeSO}_{4}(\mathrm{aq})$	$20 \mathrm{~cm}^{3}$

Bench Reagents (shared by 2 students)

No.	Label	Concentration
$\mathbf{1}$	aqueous NaOH	$2.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathbf{2}$	dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$	$1.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathbf{3}$	aqueous NH_{3}	$2.0 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathbf{4}$	$\mathrm{KI}(\mathrm{aq})$	$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathbf{5}$	aluminum powder	-
$\mathbf{6}$	$\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$	$50 \mathrm{~g} \mathrm{dm}^{-3}$
$\mathbf{7}$	starch solution	1%
$\mathbf{8}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	200 g dm
$\mathbf{9}$	concentrated HCl	36%
$\mathbf{1 0}$	limewater	-

Qn	Suggested Mark Scheme	Mark
1(a)(i),(ii)	Correctly calculates the volume of FA 1 used and volume of FA 1 used is within 40.00 to $45.00 \mathrm{~cm}^{3}$, both inclusive.	1
	Tabulates initial and final burette readings for table and volume of FA 2 used in (a)(ii). Table has appropriate headers and units. Tabulation may be vertical or horizontal; lines are not essential but there should be no absences of headers. Where units have not been included in the header, there should be the appropriate unit for each entry in the table. Do NOT award this mark if any final and initial burette readings in either table are inverted or 50 is used as the initial burette reading in either table.	1
	All the final/initial burette readings for all accurate titres in BOTH tables are recorded to the nearest $0.05 \mathrm{~cm}^{3}$. Treat all titres as "accurate" unless labelled rough or $1^{\text {st }}$ titre is of lower precision than subsequent titres	1
	Has at least TWO uncorrected titires for end-point within $0.10 \mathrm{~cm}^{3}$ * refers to uncorrected titres i.e. ignore arithmetical errors made when calculating the titre values	1
	Check and correct, if necessary, subtractions in the titre table. Examiner then selects the "best" titre using the hierarchy: two identical; titres within $0.05 \mathrm{~cm}^{3}$; titres within $0.1 \mathrm{~cm}^{3}$, etc Calculate student titre $\times \frac{\text { student volume of FA1 added }}{\text { teacher volume of FA1 added }}$ Teacher's results Calculate difference in teacher and student scaled values (Δ titre) and award "quality" marks as below. Give 3 marks if this difference is within $0.20 \mathrm{~cm}^{3}$ Give 2 marks if this difference is $>0.20 \mathrm{~cm}^{3}$ but $\leq 0.40 \mathrm{~cm}^{3}$ Give 1 mark if this difference is $>0.40 \mathrm{~cm}^{3}$ but $\leq 0.60 \mathrm{~cm}^{3}$ Give 0 marks for a difference that is $>0.60 \mathrm{~cm}^{3}$.	3

Qn	Suggested Mark Scheme	Mark
2	Mass of empty weighing bottle / g Mass of weighing bottle and FA 7/8 / g Mass of weighing bottle and residual FA 7/8 / g Mass of FA 7/8 used / g Highest / Lowest temperature reached $/{ }^{\circ} \mathrm{C}$ Initial temperature of FA $6 /{ }^{\circ} \mathrm{C}$ Temperature rise $/$ drop $/{ }^{\circ} \mathrm{C}$ Or Change in temperature $/{ }^{\circ} \mathrm{C}$ - Tabulates weighings / temperature in appropriate manner. Tabulation may be vertical or horizontal; lines are not essential but there should be no absence of headers. - Correct use of highest and lowest temperature. - Correct use of rise/ drop. - Tables have correct headers and units. Where units have not been included in the header, there should be the appropriate unit for each entry in the tables. - For students who record "Change" in temperature, the corresponding sign must be included. - Ignore the absence of a calculated mass for FA 7/8.	1
	Complete set of masses (refer to table above) Do not award mark if Tare function is used. The mass of FA $7 / 8$ weighed is within specified limits. $\begin{aligned} & 4.45 \mathrm{~g} \leq \text { FA } 7 \leq 5.05 \mathrm{~g} \\ & 3.45 \mathrm{~g} \leq \text { FA } 8 \leq 4.05 \mathrm{~g} \end{aligned}$ Correctly calculate the mass of FA 7/8.	1
	All the mass readings are recorded to 3 d.p. All temperatures are recorded to $0.1^{\circ} \mathrm{C}$	1
	Accuracy mark. If \qquad for both experiments $+/-0.05$ from Teacher's result If \qquad ΔT for both experiments $+/-0.2$ from Teacher's result Teacher's results	$\stackrel{2}{(\max)}$ 1
(a)	Correctly calculates $\mathrm{q}=\mathrm{V}_{\mathrm{FA} 6 \mathrm{C}} \Delta \mathrm{T}=50 \times 4.2 \times \Delta \mathrm{T}$ Ignore if q has sign or has a wrong unit. Ignore if ΔT was calculated wrongly.	1

(b)	Correctly calculates no of moles of $\mathrm{HCl}=1 \times \frac{50}{1000}=0.0500 \mathrm{~mol}$	1
(c)	Correctly calculates number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ used $=\frac{\text { mass of } \mathrm{FA} 7 \text { used }}{106.0}$	1
(d)	reaction, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is in excess.	1
(e)	Correctly calculates $\Delta H_{1}=-\frac{\mathrm{q}}{\mathrm{nHCl}}=-\frac{\mathrm{q}}{0.0500} \times 2=\underline{-\mathrm{a}} \mathrm{kJ} \mathrm{mol}^{-1}$ Correct sign for $\Delta H_{1}=-$ ve	1
(f)	Correctly calculates $q=\mathrm{V}_{\mathrm{FA} 6 \mathrm{C}} \mathrm{C} \mathrm{T}=50 \times 4.2 \times \Delta \mathrm{T}$ Ignore if q has sign or has a wrong unit. Ignore if $\Delta \mathrm{T}$ was calculated wrongly.	1
(g)	Correctly calculates number of moles of NaHCO_{3} used $=\frac{\text { mass of } \mathrm{FA} 8 \text { used }}{84.0}$	1
(h)	Recognises that the limiting reagent is NaHCO_{3} and uses the number of moles of NaHCO_{3} to determine ΔH. Correctly calculates $\Delta H_{2}=+\frac{\mathrm{q}}{\mathrm{nNaHCO}}{ }_{3}=+\underline{\mathrm{b}} \mathrm{kJ} \mathrm{mol}^{-1}$ Correct sign for $\Delta H_{2}=+$ ve	1
(i)	Correctly calculates $\Delta H_{3}=2 \Delta H_{2}-\Delta H_{1}=2 \mathrm{~b}-(-\mathrm{a}) \mathrm{kJ} \mathrm{mol}^{-1}$	1
	Shows working in all calculations in 1(a)(iii), 1(b), 2(a) - (c) and 2(e) - (i). All calculations must be relevant although they may not be complete or correct. Any calculations not attempted loses this mark.	1
	Shows appropriate significant figures (3 s.f.) in all final answers in 1(b), 2(a) - (c) and 2(e) - (i). Shows appropriate units in 1(a)(iii), 1(b), 2(a) - (c) and 2(e) - (i). Any calculations not attempted loses this mark.	1
(j)	No effect. This is because HCl was already used in excess, hence $\underline{\Delta H}_{2}$ calculated is independent of the number of moles of HCl . Therefore, ΔH_{3} will not be affected.	1

Qn	Suggested Mark Scheme	Mark
	SUMMARY FA 9: $\mathrm{Cu}^{2+}, \mathrm{NO}_{3}{ }^{-}$(do not accept $\mathrm{NH}_{4}{ }^{+}, \mathrm{NO}_{2}{ }^{-}$) FA 10: Fe^{2+} Correctly identifies both cations Correctly identifies anion and supports answer with evidence that NH_{3} evolved with NaOH and Al powder (either $\mathrm{NO}_{3}{ }^{-}$or NO_{2}^{-}) but no NO_{2} gas evolved on addition of acid (so can only be $\mathrm{NO}_{3}{ }^{-}$).	1
$\begin{gathered} \text { (b)(i) } \\ \text { (ii) } \\ \hline \end{gathered}$	ligand exchange redox	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$
(c)(i)	dilute HCl $\mathrm{NaOH}(\mathrm{aq})$ MgO soluble insoluble $\mathrm{Al}_{2} \mathrm{O}_{3}$ soluble soluble SiO_{2} insoluble insoluble ZnO soluble soluble All correct At least 2 correct	$\begin{gathered} 2(\max) \\ 1 \end{gathered}$
(ii)	Outline a logical sequence of testing that - successfully identifies FA 11 - reduces the possibility to 2 - reduces the possibility to 3 (Broad workable outline, not on details) Deduction with: - correct formula of species present (or balanced equations) - correct observations - explanations 8 out of 10 given ($\geq 80 \%$) $5-7(\geq 50 \%)$ At least 3 (30\%)	$\begin{gathered} 2(\max) \\ 1 \\ 0 \end{gathered}$ 3(max) 2 1

ANDERSON JUNIOR COLLEGE

2017 JC 2 PRELIMINARY EXAMINATIONS

NAME:
PDG: \qquad /16

CHEMISTRY

9729/04
Paper 4 Practical

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your name, PDG and register number on all the work you hand in.
Give details of the practical shift and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Quantitative Analysis Notes are printed on pages 17 and 18.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Shift
Laboratory

For Examiner's Use	
1	
2	
3	
Total	

Answer all the questions in the spaces provided.

Determination of the concentration of thiosulfate ions

Potassium manganate(VII), KMnO_{4}, is an oxidising agent that can be used to determine the concentration of a solution of sodium thiosulfate.

To do this, aqueous potassium manganate(VII) is used to react with excess aqueous potassium iodide, KI to produce iodine solution. In this reaction, iodide ions are oxidised to iodine by manganate(VII) ions in acidic solution.

$$
2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+10 \mathrm{I}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+5 \mathrm{I}_{2}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The iodine produced is then titrated with aqueous thiosulfate ions.

$$
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})
$$

You are provided with the following.
FA 1 is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of potassium manganate(VII), KMnO_{4}.
FA 2 is an aqueous solution of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
FA 3 is an aqueous solution of potassium iodide, KI.
FA 4 is dilute sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.
In this question, you are to perform a dilution of the KMnO_{4} provided before carrying out a titration. The data from this titration will be used to determine the concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in FA 2.

(a) (i) Dilution of FA 1

1. Fill a burette with FA 1.
2. Run between $40.00 \mathrm{~cm}^{3}$ and $45.00 \mathrm{~cm}^{3}$ of FA 1 into $250 \mathrm{~cm}^{3}$ volumetric flask.
3. Make up to the mark with deionised water.
4. Shake the volumetric flask to obtain a homogeneous solution and label this solution FA 5.
5. Record all burette readings and the volume of FA 1 that you used for dilution in the space provided in Table 1.1 below.

Table 1.1

Final burette reading $/ \mathrm{cm}^{3}$	
Initial burette reading $/ \mathrm{cm}^{3}$	
Volume of FA 1 used $/ \mathrm{cm}^{3}$	

(ii) Titration of iodine liberated by FA 5 with FA 2

1. Fill a second burette with FA 2.
2. Using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA 5 into the conical flask.
3. Using appropriate measuring cylinders, add about $10 \mathrm{~cm}^{3}$ of FA 3 and about $10 \mathrm{~cm}^{3}$ of FA 4 to the conical flask.
4. Run FA 2 from the burette into this flask until the colour of the solution just turns colourless.
5. Record your titration results in the space provided below. Make certain that your recorded results show the precision of your working.
6. Repeat points $\mathbf{1}$ to $\mathbf{5}$ as necessary until consistent results are obtained.

Results

(iii) From your titrations, obtain a suitable volume of FA 2 to be used in your calculations. Show clearly how you obtained this volume.
(b) (i) Calculate the amount of manganate(VII) ions, MnO_{4}^{-}, in $25.0 \mathrm{~cm}^{3}$ of FA 5.
\qquad
(ii) Given that one mole of manganate(VII) ions liberates sufficient iodine from potassium iodide to react with five moles of thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$, calculate the number of moles of thiosulfate ions present in the volume of FA 5 that you found necessary in the titration.
amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ ions needed $=$
(iii) Determine the concentration, in $\mathrm{mol} \mathrm{dm}{ }^{-3}$, of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in FA 2.
(c) A student suggests that the volumes of FA 3 and FA 4 should be measured using a burette instead of measuring cylinders, so as to improve the accuracy of the titration data.

Do you agree with the student? Explain your answer.
\qquad
\qquad
\qquad
\qquad
(d) A teacher performs this same experiment, using the quantities described earlier, and obtains a mean titre volume of $25.65 \mathrm{~cm}^{3}$.

The errors (uncertainties) associated with each reading using a volumetric flask, pipette and burette are $\pm 0.15 \mathrm{~cm}^{3}, \pm 0.1 \mathrm{~cm}^{3}$ and $\pm 0.05 \mathrm{~cm}^{3}$ respectively.

Calculate the maximum total percentage error (uncertainty) of this mean titre value.

(e) Planning

X is another oxidising agent that can react with potassium iodide, KI , to give iodine, I_{2}.
The rate equation for this reaction is rate $=k[K I]^{a}[X]^{b}$, where a and b are the orders of reaction with respect to KI and X respectively.

An investigation was carried out to determine the order of reaction with respect to KI. This is done by mixing different volumes of the X and KI , together with a fixed volume of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The I_{2} produced from the reaction between X and KI will react with the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ added and be reduced back to iodide, I^{-}. When all the $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is used up, the colour of I_{2} will appear.

The kinetics of this reaction can be determined by measuring the time taken for the colour of I_{2} to first appear.

The following experiments were carried out to determine the order of reaction with respect to KI.

Experiment	volume of $\mathrm{X} / \mathrm{cm}^{3}$	volume of $\mathrm{KI} / \mathrm{cm}^{3}$	volume of $\mathrm{H}_{2} \mathrm{O} / \mathrm{cm}^{3}$	volume of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{cm}^{3}$	time /s
1	50	40	0	10	40
2	50	20	20	10	82

(i) From the data given above, state the order of reaction with respect to KI.
\qquad
(ii) Explain clearly how the above results support your answer in (e)(i).
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Sketch the graph of concentration of KI against time based on the order you have determined in (e)(i).
(iv) You are to plan an investigation for one further experiment, which together with those above, will allow you to determine the order of reaction with respect to X.

In your plan, you should include details of

- the volumes of the solutions you would use
- the apparatus and their capacities that you would use
- the procedure that you would follow, including details on how you would obtain reliable results.
\qquad

2 Determination of the enthalpy change of a reaction, ΔH_{r}

You are required to obtain values of ΔH for two chemical reactions and use them to calculate ΔH for a third reaction.

FA 6 is $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
FA 7 is solid sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
FA 8 is solid sodium hydrogencarbonate, NaHCO_{3}.

Experiment 1

1. Weigh an empty weighing bottle.
2. Place between 4.50 g and 5.00 g of FA 7 in the weighing bottle.
3. Place a dry Styrofoam cup inside a $250 \mathrm{~cm}^{3}$ beaker.
4. Using a measuring cylinder, place $50 \mathrm{~cm}^{3}$ of FA 6 into the Styrofoam cup.
5. Place the lid onto the cup through the thermometer from the top. Stir the liquid in the cup with the thermometer and measure its temperature when it reaches a steady temperature. Read and record this temperature in your table.
6. Tip cautiously the contents of the weighing bottle into the acid in the Styrofoam cup, stir gently with the thermometer and record the highest temperature obtained in your table.
7. Calculate the change in temperature.
8. Reweigh the empty weighing bottle.

In an appropriate format in the space provided below, record all measurements of mass and temperature. Calculate the mass of FA 7 used.

Results

(a) If 4.2 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of solution by $1^{\circ} \mathrm{C}$, calculate the amount of heat absorbed in Experiment 1.
(b) Calculate the number of moles of HCl added to the cup.
(c) Calculate the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ added to the cup. $\left[M_{\mathrm{r}}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=106.0\right]$
(d) Explain which reagent was added in excess.
\qquad
\qquad
(e) Calculate the enthalpy change ΔH_{1} for the following reaction.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \quad---\Delta H_{1}
$$

Experiment 2

1. Weigh an empty weighing bottle.
2. Place between 3.50 g and 4.00 g of FA 8 in the weighing bottle.
3. Place a dry Styrofoam cup inside a $250 \mathrm{~cm}^{3}$ beaker.
4. Using a measuring cylinder, place $50 \mathrm{~cm}^{3}$ of FA 6 into the Styrofoam cup.
5. Place the lid onto the cup through the thermometer from the top. Stir the liquid in the cup with the thermometer and measure its temperature when it reaches a steady temperature. Read and record this temperature in your table.
6. Tip cautiously the contents of the weighing bottle into the acid in the Styrofoam cup, stir gently with the thermometer and record the lowest temperature obtained in your table.
7. Calculate the change in temperature.
8. Reweigh the empty weighing bottle.

In an appropriate format in the space provided below, record all measurements of mass and temperature. Calculate the mass of FA 8 used.

Results

(f) If 4.2 J are required to raise the temperature of $1 \mathrm{~cm}^{3}$ of solution by $1^{\circ} \mathrm{C}$, calculate the amount of heat absorbed in Experiment 2.
(g) Calculate the number of moles of NaHCO_{3} added to the cup. $\left[M_{\mathrm{r}}\left(\mathrm{NaHCO}_{3}\right)=84.0\right.$]
(h) Calculate the enthalpy change ΔH_{2} for the following reaction.

$$
\mathrm{NaHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \quad---\Delta H_{2}
$$

(i) Use your answers in (e) and (h) to calculate ΔH_{3} for the following reaction.

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \quad---\Delta H_{3}
$$

(j) A student decides to repeat the experiment with $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ in Experiment 2 instead of the given concentration of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ as specified in the instructions.

This mistake may lead to differences in heat exchange and reaction rate.
Is there any other effect this mistake would have on the value of ΔH_{3} that she has calculated?
effect on ΔH_{3} \qquad explanation \qquad
\qquad
\qquad

3 Inorganic Qualitative Analysis

(a) Carry out the following tests on FA 9 and FA 10 which contain cations and anions from the following list:
$\mathrm{NH}_{4}{ }^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Ca}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{SO}_{4}{ }^{2-}$, $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$.

Record your observations in the space provided in Table 3.1.
Your answers should include

- details of colour changes and precipitates formed.
- the names of gases evolved and details of the test used to identify each one.

Use a fresh $1 \mathrm{~cm}^{3}$ sample of each solution for each test.

In all tests, the reagent should be added gradually until no further change is observed, with shaking after each addition.

Table 3.1

test	observations with FA 9	observations with FA 10
Add $\mathrm{NaOH}($ aq), followed by a spatula load of aluminium powder.		
Add concentrated HCl dropwise.		
To the FA 9 and concentrated		
HCl mixture, add deionised		
water.		

test	observations with FA 9	observations with FA 10
Add KI(aq).		
To the resulting solution, add $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$.		
Add $1 \mathrm{~cm}^{3}$ dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ followed by $1 \mathrm{~cm}^{3}$ of $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$.		
Divide into 2 portions. To one portion, add $\mathrm{KI}(\mathrm{aq})$ followed by $1 \mathrm{~cm}^{3}$ of starch solution.		
To the other portion, add $\mathrm{NaOH}(\mathrm{aq})$.		

Summary

Use your observations to identify the following ions
FA 9 contains the cation \qquad and anion \qquad
FA 10 contains the cation \qquad
State and explain all the evidence for your identification of the anion in FA 9.
\qquad
\qquad
\qquad
(b) State the type of reaction that occurs when
(i) concentrated HCl is added to FA 9 .
\qquad
(ii) $\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$ is added to FA 10 .
\qquad
(c) Planning

FA 11 is a sample of white powder which contains one of the four oxides:
magnesium oxide (MgO), aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, zinc oxide (ZnO), silicon dioxide $\left(\mathrm{SiO}_{2}\right)$
(i) Fill in the spaces in Table 3.2 the expected solubility for each of the oxides, when mixed separately, in dilute HCl and aqueous NaOH .

Table 3.2

	dilute HCl	$\mathrm{NaOH}(\mathrm{aq})$
MgO		
$\mathrm{Al}_{2} \mathrm{O}_{3}$		
SiO_{2}		
ZnO		

(ii) Using your expected observation in (c)(i), suggest a plan using test tube reactions to identify the oxide present in FA 11.

In planning your tests you may use only the following reagents and no others.
Dilute hydrochloric acid, HCl
Aqueous sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$
Aqueous ammonia, $\mathrm{NH}_{3}(\mathrm{aq})$
You may use a flow scheme or a table to chart the sequence of reactions to establish the identity of FA 11.

Your completed plan should include expected observations, deductions with explanation and/or formula of species present at each stage. Definite deductions may be made from tests where there appears to be no reaction.
\qquad

Qualitative Analysis Notes

[ppt. = precipitate]
(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{Al}{ }^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
chromium(III), $\mathrm{Cr}^{3+}(\mathrm{aq})$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
$\begin{array}{\|l} \hline \text { iron(III), } \\ \mathrm{Fe}^{3+}(\mathrm{aq}) \\ \hline \end{array}$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

(b) Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-(a q)}$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\operatorname{Br}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}{ }^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-(a q)}$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated on warming with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

