

INNOVA JUNIOR COLLEGE
JC2 PRELIMINARY EXAMINATION
in preparation for General Certificate of Education Advanced Level
Higher 2

CHEMISTRY

9729/01
Paper 1 Multiple Choice
15 September 2017
Additional Materials: Data Booklet
Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in soft pencil.
Do not use staples, paper clips, highlighters, glue or correction fluid.

There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.

For each question there are four possible answers, $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D}. Choose the one you consider to be correct.

1 A given mass of ideal gas occupies a volume V and exerts a pressure p at $30^{\circ} \mathrm{C}$.
At which temperature will the same mass of the ideal gas occupy a volume $\frac{V}{3}$ and exert a pressure $2 p$?
A $\quad 20^{\circ} \mathrm{C}$
C $\quad 202{ }^{\circ} \mathrm{C}$
B $\quad 20 \mathrm{~K}$
D $\quad 202 \mathrm{~K}$

2 Which equation corresponds to the third ionisation energy of titanium (Ti)?
A $\quad \mathrm{Ti}(\mathrm{g}) \rightarrow \mathrm{Ti}^{3+}(\mathrm{g})+3 \mathrm{e}^{-}$
B $\quad \mathrm{Ti}^{2+}(\mathrm{s}) \rightarrow \mathrm{Ti}^{3+}(\mathrm{g})+\mathrm{e}^{-}$
C $\quad \mathrm{Ti}^{2+}(\mathrm{g}) \rightarrow \mathrm{Ti}^{3+}(\mathrm{g})+\mathrm{e}^{-}$
D $\quad \mathrm{Ti}^{3+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ti}^{2+}(\mathrm{g})$

3 A sample of the element Americium (Am) was vaporised, ionised and passed through an electric field. It was observed that a beam of ${ }^{241} \mathrm{Am}^{+}$particles gave an angle of deflection of $+2^{\circ}$.

Assuming an identical set of experimental conditions, by what angle would a beam of ${ }^{32} S^{-}$ particles be deflected?

A $+15.1^{\circ}$
B -15.1°
C $\quad+30.1^{\circ}$
D -30.1°

4 Which of the following statements describes a phenomenon which cannot be explained by hydrogen bonding?

A Ice floats on water.
B The boiling point of carboxylic acid increases with increasing relative molecular mass.
C 2-nitrophenol is more volatile than 4-nitrophenol.
D Ethanoic acid molecules form dimers when dissolved in benzene.

5 A tertiary amine, $\mathrm{R}_{3} \mathrm{~N}$, reacts with boron trifluoride, BF_{3} to give an addition product. Which of the following statements is not true?

A $\quad \mathrm{R}_{3} \mathrm{~N}$ acts as a Lewis base.
B The product is a polar molecule.
C There are six σ bonds in the product.
D The product contains a dative covalent bond.

6 The curve \mathbf{Y} and the value E_{a} represent the distribution of energies of the molecules and the activation energy for an uncatalysed gaseous reaction.

What is a possible outcome if the reaction is catalysed?
A The distribution of energies will be given by curve \mathbf{X} and the activation energy by value V

B The distribution of energies will be given by curve \mathbf{Y} and the activation energy by value V.

C The distribution of energies will be given by curve \mathbf{Y} and the activation energy by value W.

D The distribution of energies will be given by curve \mathbf{Z} and the activation energy by value W.

7 If the rate of decay of a radioactive isotope decrease from 300 counts per minute to 37.5 counts per minute after 1 day, what is its half-life?
A 4 hours
C 8 hours
B 6 hours
D 12 hours

8 Which of the following statements does not describe a reaction at equilibrium?
A Forward and backward reactions occur at equal rate.
B The system must be closed.
C $\quad K_{\mathrm{c}}$ increases as the reaction progresses.
D Concentrations of reactants and products are constant.

9 Use of the Data Booklet is relevant to this question.
The enthalpy change of formation of carbon monoxide and carbon dioxide are given below.
$\Delta H_{\mathrm{f}} \mathrm{CO}=-110 \mathrm{kJmol}^{-1}$
$\Delta H_{\mathrm{f}} \mathrm{CO}_{2}=-393 \mathrm{kJmol}^{-1}$

Which of these statements are correct?
$1 \quad \mathrm{CO}_{2}(\mathrm{~g})$ has lower energy content than $\mathrm{CO}(\mathrm{g})$.
2 The enthalpy change of combustion of carbon is $-393 \mathrm{kJmol}^{-1}$.
$3 \quad \mathrm{CO}_{2}(\mathrm{~g})$ is formed exothermically from $\mathrm{CO}(\mathrm{g})$.
4 A larger amount of energy is required to atomise $\mathrm{CO}_{2}(\mathrm{~g})$ than $\mathrm{CO}(\mathrm{g})$.
A 1, 2, 3 and 4
B 1, 2 and 3 only
C 1, 2 and 4 only
D 2 and 3 only

10 A sparingly soluble calcium salt ionises in aqueous solution according to the equation given:

$$
\mathrm{Ca}_{3} \mathrm{X}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{X}^{3-}(\mathrm{aq})
$$

If the solubility product $K_{\text {sp }}$ of $\mathrm{Ca}_{3} \mathrm{X}_{2}$ is S , what is the value of the concentration of $\mathrm{Ca}^{2+}(\mathrm{aq})$ at equilibrium?

A $S^{\frac{1}{2}}$
B $\left[\frac{S}{108}\right]^{\frac{1}{5}}$
C $\left[\frac{3 S}{5}\right]^{\frac{1}{2}}$
D

$$
\left[\frac{9 S}{4}\right]^{\frac{1}{5}}
$$

11 The $K_{s p}$ of AgCl and AgI are $1.80 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ and $8.3 \times 10^{-17} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ respectively. Which of the following statements is correct when equal volumes of $1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous AgNO_{3} was added to a mixture containing $3.0 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BaCl}_{2}$ and $3.0 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BaI}_{2}$?

A AgCl is precipitated only.
B AgI is precipitated only.
C AgCl is precipitated followed by AgI .
D AgI is precipitated followed by AgCl .

12 The dissociation constant, K_{w}, for the ionisation of water, $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$, at different temperatures is given below.

Temperature $/{ }^{\circ} \mathrm{C}$	$K_{w} / \mathrm{mol}^{2} \mathrm{dm}^{-6}$
0	1.15×10^{-15}
25	1.00×10^{-14}
50	5.50×10^{-14}

What can be deduced from this information?
A Only at $25^{\circ} \mathrm{C}$ are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$equal.
B The equilibrium lies furthest to the right at $0^{\circ} \mathrm{C}$.
C The forward reaction is exothermic.
D The pH of pure water decreases with temperature.

13 Calculate the standard Gibbs free energy change, ΔG^{\ominus} for the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

A $\quad-386 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $\quad-579 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad-1045 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad-1158 \mathrm{~kJ} \mathrm{~mol}^{-1}$

14 An experiment is carried out with the following cell.

$$
\mathrm{Fe}(\mathrm{~s})\left|\mathrm{Fe}^{2+}(\mathrm{aq}) \| \mathrm{Ni}^{2+}(\mathrm{aq})\right| \mathrm{Ni}(\mathrm{~s})
$$

The following graph of cell potential against time was obtained when a change was continuously made to the half-cell.

What continuous change could produce these results?
A Add nickel (II) chloride to the nickel half-cell.
B Add aqueous cyanide ions to the iron half-cell.
C Add water to the nickel half-cell.
D Increases the surface area of iron immersed in the solution.

15 The circuit shown in the diagram was set up.

Which reactions will occur at the electrodes?
anode reaction
A Oxygen gas is evolved.
B Tin dissolves preferentially.
C Copper dissolves preferentially.
D Copper and tin both dissolve.
cathode reaction Hydrogen gas is evolved. Hydrogen gas is evolved.

Copper is deposited.
Sulfur dioxide gas is evolved.

16 The diagram shows the structure of vitamin C.

How many stereoisomers are there in one molecule of vitamin C ?
A 2
B 4
C 8
D 16

17 Propyne, $\mathrm{C}_{3} \mathrm{H}_{4}$, has the following structure.

Which row correctly describes the bonding and hybridisation in a molecule of propyne?

	number of π bonds	number of sp C atoms	number of $\mathrm{sp}^{2} \mathrm{C}$ atoms
A	1	1	1
B	2	2	0
C	2	2	1
D	3	3	0

18 During the nitration of benzene, a nitro group substitutes at a carbon atom. Which one of the following gives the arrangement of the bonds at this carbon atom during the reaction?
at the start of the in the intermediate at the end of the
reaction
complex

A planar
B planar
C planar
D tetrahedral
planar
tetrahedral
tetrahedral
planar
planar
tetrahedral
planar
tetrahedral

19 When a halogen compound \mathbf{S} was boiled under reflux for some time with silver nitrate in a mixture of ethanol and water, little or no precipitate was seen.

Which of the following formulae could represent \mathbf{S} ?
A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$
C

D

20 Compound \mathbf{P} was heated with ethanolic potassium hydroxide.

compound \mathbf{P}
Which of the following would be the major product?
A

B

C

D

21 How many isomers (including both structural isomers and stereoisomers) with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ liberate hydrogen gas on reaction with sodium?
A 2
B 3
C 4
D 5

22 Bisphenol A was used to make products such as plastic polycarbonate baby bottles and food containers. It is now regarded as toxic and has been withdrawn from use.

Which reagent will convert bisphenol A into compound \mathbf{Q} ?
A $\mathrm{AlBr}_{3}(\mathrm{~s})$
B $\quad \mathrm{Br}_{2}(\mathrm{aq})$
C $\quad \mathrm{HBr}(\mathrm{g})$
D $\quad \mathrm{NaBr}(\mathrm{aq})$

23 Vanillin is the active ingredient of vanilla.

vanillin
Which of the following will be observed with vanillin?
1 Warm acidified potassium dichromate (VI) turns green.
2 2,4-dinitrophenylhydrazine reagent gives an orange precipitate.
3 A yellow precipitate is formed on warming with aqueous alkaline iodine.
A 1 only
B 2 only
C 1 and 2 only
D 2 and 3 only

24 The mould Phytophthora damages many plants, destroying agricultural crops such as potatoes. A hormone-like compound called alpha1 regulates the reproduction of all species of Phytophthora. The structure of alpha1 is now known, giving scientist a key to the possible future eradication of the mould.

Which of the following reagents will react with alpha1?
$1 \mathrm{Br}_{2}$
$2 \mathrm{SOCl}_{2}$
$3 \quad \mathrm{H}_{2} / \mathrm{Pt}$
A 1 and 2 only
B 2 and 3 only
C 1 and 3 only
D 1, 2 and 3 only

25 Which transformations involve a nucleophile?
1

2

$3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{NH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}+\mathrm{HCl}$
A 1 only
B 3 only
C 1 and 2 only
D 1, 2 and 3 only

26 Which of the following properties are identical for the two enantiomers of 2-hydroxypropanoic acid, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$?
$1 \Delta H_{f}{ }^{\circ}$
$2 \mathrm{p} K_{\mathrm{a}}$
3 melting point
A 2 only
B 3 only
C 1 and 2 only
D 1, 2 and 3 only

27 When organic compounds E, F, G and H are added separately to water, solutions of increasing pH values are obtained. The possible identities of compounds \mathbf{E} to \mathbf{H} (not necessarily in that order) are given below.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Which is the correct set of identities of compounds $\mathbf{E}, \mathbf{F}, \mathbf{G}$ and \mathbf{H} ?

E

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$

C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$

D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
G
H
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$

28 The graphs below show the variation in two properties of the elements Na to P and their compounds.

Which properties are illustrated in Graphs I and II?

Graph I
A electrical conductivity of the element
B electrical conductivity of the element
C melting point of the element
D melting point of the element

Graph II
pH of the chloride when added to water pH of the oxide when added to water pH of the chloride when added to water pH of the oxide when added to water

29 Which of the following elements is expected to show the greatest tendency to form some covalent compounds?

A Barium
B Calcium
C Magnesium
D Potassium

30 Why is hydrogen iodide a stronger acid than hydrogen chloride?
A A molecule of hydrogen chloride is more polar than a molecule of hydrogen iodide.
B The enthalpy change of formation of hydrogen iodide is greater than that of hydrogen chloride.
C The covalent bond in the hydrogen iodide molecule is weaker than that in the hydrogen chloride molecule.
D The dissociation of hydrogen chloride molecules is suppressed by the stronger permanent dipole-permanent dipole interactions.

Blank Page

CANDIDATE
NAME

CLASS \square INDEX NUMBER \square
CHEMISTRY
9729/02
24 August 2017
Paper 2 Structured Questions 2 hours

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your index number, name and civics group on all the work you hand in.
Write in dark blue or black pen.
You may use pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions in the space provided.
You are advised to show all working in calculations.
You are reminded of the need for good English and clear presentation in your answers.
You are reminded of the need for good handwriting.
Your final answers should be in 3 significant figures.
You may use a calculator.
The number of marks is given in brackets [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

For Examiner's Use	
1	
2	12
3	10
4	10
5	24
Significant Figures and Units	
Handwriting and Presentation	
Total	

This document consists of $\mathbf{1 8}$ printed pages.

Answer all the questions in the spaces provided.
1 Halogens are highly reactive and form compounds with many other elements, including metals and non-metals.
(a) Fluorine reacts with bromine to form liquid bromine trifluoride, BrF_{3}.

Two molecules of BrF_{3} react to form ions as shown by the following equation.

$$
2 \mathrm{BrF}_{3} \longrightarrow \mathrm{BrF}_{2}^{+}+\mathrm{BrF}_{4^{-}}^{-}
$$

(i) Draw the structures and suggest the shape of each of these species.
BrF_{3}

Shape: \qquad
$\mathrm{BrF}_{4}{ }^{-}$

Shape: \qquad
(ii) $\mathrm{BrF}_{4}{ }^{-}$ions are also formed when potassium fluoride, KF dissolves in liquid BrF_{3} to form KBrF_{4}. Explain, in terms of structure and bonding, why KBrF_{4}, has a high melting point.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Magnesium bromide, MgBr_{2} is a chemical compound of magnesium and bromine and is often used in the pharmaceutical industries.

In this part of the question, you will construct an energy cycle for magnesium bromide to determine the enthalpy change of hydration of magnesium ions.
(i) Magnesium bromide has a lattice energy of $-2440 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Define in words the lattice energy of magnesium bromide.
\qquad
\qquad
\qquad
(ii) The table below shows the enthalpy changes that are needed to determine the enthalpy change of hydration of magnesium ions.

enthalpy change	energy $/ \mathbf{k J ~ m o l}^{-1}$
lattice energy of magnesium bromide	-2440
enthalpy change of solution of magnesium bromide	-89
enthalpy change of hydration of bromide ions	-304

On the two dotted lines, add the species present and label the numerical values of the three arrows in the boxes provided.

(iii) Calculate the enthalpy change of hydration of magnesium ions.
(iv) Given that the enthalpy change of formation of $\mathrm{Mg}^{2+}(\mathrm{aq})$ is $+413 \mathrm{~kJ} \mathrm{~mol}^{-1}$, use your answer in (b)(iii) as well as relevant values from the Data Booklet to calculate the enthalpy change of atomisation of magnesium.
(v) The enthalpy change of hydration of magnesium ions is more exothermic than the enthalpy change of hydration of calcium ions. Explain why.
\qquad
\qquad
\qquad
(c) Nickel is a typical transition element in the d-block of the Periodic Table. Many nickel ions are able to interact with ligands to form complex ions, such as $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.

A student dissolves nickel(II) sulfate in water. A green solution forms containing the complex ion $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2++}\right.$. The student then reacts separate portions of the green solution of nickel(II) sulfate as outlined below.

- Concentrated hydrochloric acid is added to the green solution of nickel(II) sulfate until there is no further change. The solution turns a lime-green colour and contains the four-coordinate complex ion \mathbf{A}.
- Aqueous sodium hydroxide is added to the green solution of nickel(II) sulfate. A pale-green precipitate \mathbf{B} forms.
- Concentrated aqueous ammonia is added to the green solution of nickel(II) sulfate until there is no further change. The solution turns a violet colour and contains the complex ion C. C has a molar mass of $160.7 \mathrm{~g} \mathrm{~mol}^{-1}$.
(i) Explain why aqueous nickel(II) sulfate is green.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Draw a three dimensional diagram for the $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion.
(iii) Suggest the formulae of \mathbf{A}, \mathbf{B} and \mathbf{C}.

A:
B:
C: \qquad
(iv) What type of reaction has taken place in the formation of \mathbf{C} from $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$? Write an equation for this reaction.
\qquad
\qquad

2 (a) In a school lab, magnesium strips can be stored in a normal container. However, barium metal has to be submerged in oil when it is stored. With reference to relevant data from the Data Booklet, explain the above observation.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) When solid barium carbonate is heated, no carbon dioxide is detected as it is thermally stable.
However, magnesium carbonate decomposes on heating as shown by the equation below.

$$
\begin{aligned}
& \mathrm{MgCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \Delta H^{\ominus}=+117 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \quad \Delta \mathrm{S}^{\ominus}=+175 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

(i) Explain why barium carbonate is thermally stable while magnesium carbonate is not.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Account for the sign of ΔS^{\ominus} in this reaction.
\qquad
\qquad
\qquad
(iii) Calculate the standard Gibbs free energy change, ΔG^{\ominus}, for the decomposition of magnesium carbonate.
(iv) Assuming that ΔH^{\ominus} and ΔS^{\ominus} for the reaction are independent of temperature, calculate the temperature at which the decomposition reaction becomes feasible.
(c) The labels of group 2 metal carbonates fell off the bottles. In an attempt to identify the compound in one of the bottles, the following experiment was carried out.
1.68 g of an insoluble metal carbonate, DCO_{3} was reacted with $100 \mathrm{~cm}^{3}$ of hydrochloric acid of concentration $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$. The resulting solution was then made up to $250 \mathrm{~cm}^{3}$ with distilled water. $25.0 \mathrm{~cm}^{3}$ of this solution required $25 \mathrm{~cm}^{3}$ of $0.04 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide for titration.
(i) Write a balanced equation for the reaction between the metal carbonate and hydrochloric acid.
(ii) Calculate the relative atomic mass of \mathbf{D} and hence using the Periodic Table, identify \mathbf{D}.

3 Claisen condensation is a carbon-carbon bond forming reaction between 2 esters or an ester and a carbonyl compound in the presence of strong base to form β-ketoesters or diketones respectively.

The following is the general equation for the reaction between an ester and a ketone.

The mechanism of the Claisen condensation reaction is given below.

(a) Name the type of reaction for the step shown in the box above.
\qquad

The Claisen condensation reaction can be used in step IV of the following synthesis.

(b) (i) Suggest reagents and conditions for steps I to III.

Step I: \qquad
Step II: \qquad
Step III: \qquad
(ii) State the type of reactions for step I to III

Step I: \qquad
Step II: \qquad
Step III: \qquad
(iii) Propose the structures of compounds \mathbf{E}, \mathbf{F} and \mathbf{H}.

4 (a) The Gattermann-Koch reaction, named after the German chemists Ludwig Gattermann and Julius Arnold Koch in organic chemistry, refers to a Friedel-Crafts acylation reaction in which carbon monoxide and hydrochloric acid are used in-situ with Friedel-Crafts catalyst, namely AlCl_{3}. The reaction involves an acylium ion as an electrophile and tetrachloroaluminate ion, AlCl_{4}. An example is provided below.

(i) Give the formula of the acylium ion in this reaction.
\qquad
(ii) The synthesis of compound \mathbf{L} involves the Gattermann-Koch reaction in Step II.

Complete the reaction scheme below by providing the appropriate reagents and conditions for Step I and IV and give the structural formula for J and K.

L
Step I:

Step IV:

(b) Three non-cyclic organic compounds, M, N and \mathbf{P} each have the same empirical formula $\mathrm{CH}_{2} \mathrm{O}$.
The number of carbon atoms in their molecules are shown in the table below.

compound	number of \mathbf{C} atoms
\mathbf{M}	2
\mathbf{N}	3
\mathbf{P}	3

All the carbon atoms are bonded directly to one another in \mathbf{M} and in \mathbf{N} but not in \mathbf{P}.
\mathbf{M} and \mathbf{N} each give a brisk effervescence with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ but not \mathbf{P}.
\mathbf{P} does not give a silver mirror when treated with Tollens' reagent.
(i) Draw the structural formula of \mathbf{M}.
(ii) When \mathbf{N} is heated under reflux with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, the product, \mathbf{Q}, gives a orange precipitate with 2,4-dinitrophenylhydrazine.

Draw the structural formulae of \mathbf{N} and \mathbf{Q}.

(iii) When \mathbf{N} is warmed with concentrated sulfuric acid, compound \mathbf{R} is formed. \mathbf{R} has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$.

Draw the structural formula of \mathbf{R}.
(iv) \mathbf{P} is optically active. Draw the displayed formula of \mathbf{P}.

5 Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ is produced commercially by the fermentation of sugars. Citric acid is used in the production of beverages and foods; in detergents; and in cosmetics and pharmaceuticals.

Fruits such as oranges, lemons and strawberries also contain citric acid.
(a) Citric acid can undergo the following reactions:

Suggest structures for the organic compounds S, T, U, V and W.
(b) As citric acid is a user-friendly, inexpensive, water-soluble crystalline solid, it is often used for finding the concentration of alkalis e.g. sodium hydroxide and potassium hydroxide.

Citric acid is a tribasic acid with the following $\mathrm{p} K_{a}$ values:
$\mathrm{p} K_{1}=3.14, \mathrm{p} K_{2}=4.75, \mathrm{p} K_{3}=6.40$
(i) Explain why citric acid is soluble in water.
\qquad
\qquad
(ii) The $\mathrm{p} K_{a}$ value of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.76 .

Suggest why the $\mathrm{p} K_{1}$ value of citric acid is lower than the $\mathrm{p} K_{a}$ value of ethanoic acid.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the pH of a solution that is a mixture of equal volumes of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of citric acid and $0.060 \mathrm{~mol} \mathrm{dm}^{-3}$ of sodium hydroxide.
(c) The neutralisation equivalent (N.E.) of a carboxylic acid is defined as the mass in g of the acid required to neutralise one mole of a strong alkali such as sodium hydroxide. Each carboxylic acid has a unique N.E. value.
N.E. values can be used to determine the identity of a carboxylic acid.

A student carried out a titration experiment between a sample of citric acid and sodium hydroxide solution. 3.68 g of the citric acid was dissolved in $500 \mathrm{~cm}^{3}$ of water in a volumetric flask. It was found that $5.00 \mathrm{~cm}^{3}$ of the citric acid solution needed 5.29 g of $4.43 \mathrm{~g} \mathrm{dm}^{-3}$ sodium hydroxide solution for complete reaction.
(i) Calculate the mass, in g, of the citric acid used in the $5 \mathrm{~cm}^{3}$ sample.
(ii) Calculate the amount, in moles, of sodium hydroxide that reacted with the $5 \mathrm{~cm}^{3}$ of citric acid.

The density of the sodium hydroxide solution is $1.01 \mathrm{~g} \mathrm{~cm}^{-3}$.
(iii) Calculate the neutralisation equivalent (N.E.) for this sample of citric acid.
(d) Table 5.1 gives the neutralisation equivalent (N.E.) values for some organic acids.

Table 5.1

Acid name	Structure	Molar mass/ $\mathrm{g} \mathrm{mol}^{-1}$	N.E. / g
Malonic acid		104.0	52.0
Succinic acid		118.0	59.0
Anhydrous citric acid		192.0	64.0
Citric acid monohydrate		210.0	70.0
Tartaric acid		150.0	m
Lactic acid		90.0	90.0

(i) Suggest whether the student's sample of citric acid is a hydrated sample or anhydrous sample. Support your answer with appropriate evidence.
\qquad
\qquad
\qquad
(ii) Determine the value of m in Table 5.1.
(e) Another student determines the N.E. of an unknown aliphatic acid to be 82.0 g .

The unknown aliphatic acid has the following formula, $\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{COOH})_{n}$ where x and y are integers and $\mathrm{n}=1,2$ or 3 .

Determine the molecular formula of the unknown aliphatic acid.
(f) The loss of carbon dioxide from a carboxylic acid is called decarboxylation.

$$
\mathrm{RCOOH} \longrightarrow \mathrm{RH}+\mathrm{CO}_{2}
$$

Certain types of carboxylic acids are readily decarboxylated. Beta-keto acids such as acetoacetic acid readily decarboxylate at room temperature in an acidic solution.

acetoacetic acid
The decarboxylation of acetoacetic acid occurs via a two-step mechanism.

- the H atom from the COOH group is transferred to the carbonyl oxygen atom via a cyclic transition state to form CO_{2} and the following compound, an enol,

- the enol then extracts a H atom from a $\mathrm{H}_{2} \mathrm{O}$ molecule to form a ketone and H^{+} and OH^{-}ions.

Suggest the mechanism for this reaction. Show any relevant lone pairs, dipoles and charges, and indicate the movement of electron pairs with curly arrows.

CHEMISTRY

Candidates answer on separate paper.
Additional Materials: Writing Papers
Data Booklet
Cover Page

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.
You are advised to show all working in calculations.
You are reminded of the need for good English and clear presentation in your answers.
You are reminded of the need for good handwriting.
Your final answers should be in 3 significant figures.
At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part question.

Section A

Answer all the questions in this section.
1 Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is a colourless crystalline solid and a simple aromatic carboxylic acid. Benzoic acid occurs naturally in many plants. Salts of benzoic acid are used as food preservatives and benzoic acid is an important precursor for the industrial synthesis of many other organic substances.
(a) In the identification of benzoic acid, a commonly used reagent is neutral iron(III) chloride solution, in which a buff precipitate of iron(III) benzoate, $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}$ is formed. When $50.0 \mathrm{~cm}^{3}$ of iron(III) chloride solution was added to $50.0 \mathrm{~cm}^{3}$ of benzoic acid solution, 0.0532 g of the buff precipitate was formed in the mixture.

The reactions that take place are shown below:

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} & \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+} \\
\mathrm{Fe}^{3+}+3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} & \longrightarrow \mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}+3 \mathrm{H}^{+}
\end{aligned}
$$

(Given: Mr_{r} of $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}=418.8$)
(i) Calculate the number of moles of benzoic acid that reacted with the neutral iron(III) chloride solution.
(ii) Given that the pH of the solution after the reaction is 2.33 , calculate the number of moles of H^{+}in the mixture.
(iii) Assuming that the H^{+}ions in solution are formed only from the dissociation of benzoic acid in solution, as well as the reaction of benzoic acid with iron(III) chloride, calculate the concentration of benzoate ions in the mixture.
(iv) Iron(III) benzoate is a sparingly soluble salt.

Calculate the $K_{\text {sp }}$ of iron(III) benzoate, given that the concentration of Fe^{3+} in the mixture was $1.83 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ at equilibrium.
(b) Benzoic acid can be produced by oxidising compound \mathbf{L}.

Compound L
Compound \mathbf{L} can be synthesised by the following reaction scheme.

(i) State the type of reaction in step I and hence explain the need for FeBr_{3} to be anhydrous.
(ii) Suggest the identities of \mathbf{J} and \mathbf{K}.
(iii) State the reagents and conditions for steps II to IV.
(iv) State the type of reaction for stage IV.
[Total: 13]

2 Sulfur is a chemical element with the symbol S and an atomic number of 16 . It is an abundant, multivalent non-metal. It can be found in amino acids and it is a precursor to other chemicals such as $\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{SO}_{4}$ is a common mineral acid with many uses. It can be used as an electrolyte in batteries.
(a) In the cells of a lead-acid car battery the following reactions take place.

$$
\begin{array}{ll}
\text { anode: } & \mathrm{Pb}(\mathrm{~s}) \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \\
\text {cathode } & \mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{array}
$$

(i) Use the Data Booklet to calculate E^{θ} cell for this reaction.
(ii) Construct an equation for the overall reaction.

The electrolyte in a lead-acid cell is $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. Most of the $\mathrm{Pb}^{2+}(\mathrm{aq})$ ions that are produced at the electrodes are precipitated as a highly insoluble $\mathrm{PbSO}_{4}(\mathrm{~s})$.
(iii) Construct an equation for the overall cell reaction in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(iv) By considering the effect of decreasing $\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]$ on the electrode potentials of the cathode and the anode, state and explain whether the overall E^{\ominus} cell will increase, decrease or remain the same.
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is also used as an electrolyte in the anodising of aluminium. Anodising of aluminium is the process of coating aluminium metal with aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ via electrolysis with the aluminium metal as the anode.
(i) Using $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ as the electrolyte and an inert electrode, draw an electrolysis set-up to show how a piece of aluminium metal can be anodised.
(ii) Write chemical equations to show the reactions at the anode and cathode during anodising. Include in your answers, the overall equation.
(iii) The aluminum piece to be anodised has a surface area of $29.2 \mathrm{~cm}^{2}$. Calculate the time taken to form a 0.2 mm protective layer of $\mathrm{Al}_{2} \mathrm{O}_{3}$ on the aluminum piece if a current of 2.0 A is passed through the set-up.
(Density of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is $3.95 \mathrm{~g} \mathrm{~cm}^{-3}$)
(iv) Give one example of an anodised aluminium object, and explain the advantages of anodising it.
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$, can be produced when sulfur trioxide is added to water, according to the following equation:

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})-\ldots \mathrm{m} \mathrm{~m}_{\mathrm{m}}
$$

Calculate the volume of gaseous SO_{3}, under room temperature and pressure, needed to form $30.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(d) $25.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was titrated against $\mathrm{NH}_{3}(\mathrm{aq})$. The following graph was obtained.

(i) Calculate the initial pH of the sulfuric acid solution.
(ii) Calculate the concentration of $\mathrm{NH}_{3}(\mathrm{aq})$ used in this titration.
(iii) Suggest a suitable indicator for this titration, giving a reason for your choice.
(e) Thiophenol are the sulfur analogue of phenol, that is, sulfur takes the place of oxygen in the hydroxyl group of phenol. A common reaction that phenol and thiophenol have is shown in Figure 1 below.

Figure 1
Consider the reaction scheme below.

(i) Suggest reagent and condition for step I.
(ii) What type of reaction is step I and step II?
(iii) Suggest the structure of $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~S}$.

3 Halogenated organic compounds are widespread throughout nature and have a vast array of uses in modern industrial processes. They find many uses in the industries such as solvents and pesticides.

The rate of hydrolysis of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ with aqueous NaOH was studied in a series of 3 experiments in which the initial rate of the reaction was measured. The following results were obtained.

Experiment	$\left[\mathrm{OH}^{-}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial Rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.100	0.010	4×10^{-6}
2	0.200	0.010	8×10^{-6}
3	0.200	0.020	16×10^{-6}

(a) Explain the meaning of the following terms.
(i) order of reaction
(ii) half-life
(iii) Using the data given, derive the rate equation for the hydrolysis of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$.
(iv) Using your rate equation, determine a value for the rate constant, including units for this reaction.
(v) Using the Maxwell-Boltzmann distribution curve, explain how the reaction rate might change with an increase in temperature.
(vi) Given that the rate equation for the hydrolysis of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ is rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$, suggest possible mechanisms for both of the reactions of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ with aqueous NaOH which are consistent with the observed kinetics.
(b) Bromine reacts with 2-methylpropane in the presence of sunlight to produce monobrominated products via a free radical mechanism.
(i) Explain why the mono-bromination of 2-methylpropane results in the formation of two products in unequal amounts.
(ii) By quoting appropriate data from the Data Booklet, explain the difference in the reactivity of fluorine with 2-methylpropane compare with that of bromine.
(c) A student was not successful in making \mathbf{X} from (chloromethyl)benzene with the proposed reaction route as shown.

(chloromethyl)benzene
conc. NH_{3} sealed tube

Instead, a different product with molecular formula $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ was obtained.
(i) Draw the displayed formula of the product obtained.
(ii) Suggest how \mathbf{X} can be synthesised from (chloromethyl)benzene. You should include the reagents, conditions and intermediate(s) formed in your answer.
[Total: 24]

Section B

Answer one question from this section
4 Hydrogen gas is needed in a large number of processes in the chemical industries such as hydrocracking of petroleum, production of margarine and production of ammonia.

Hydrogen gas can be produced in many chemical reactions.
(a) One of the reactions that produces hydrogen is the reaction of sodium with ethanol.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+\mathrm{Na}(\mathrm{~s}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}(\mathrm{~s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})
$$

This is also a chemical test for the presence of alcohol.
(i) Write the full electronic configuration of Na .
(ii) Describe how you would use the ionisation energies found in the Data Booklet to conclude that sodium is in group 1 of the periodic table.
(iii) Ethanoic acid reacts with sodium in a similar way. However, when ethanol and ethanoic acid is reacted with solid sodium carbonate separately, only ethanoic acid gives off a gas that forms white precipitate with calcium hydroxide.

Explain the difference in reactions of ethanol and ethanoic acid with sodium carbonate.
(iv) An unknown compound $\mathbf{M}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ was found to be an alcohol when tested with sodium metal.

When \mathbf{M} is treated with hot acidified potassium dichromate, compound $\mathbf{N}, \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ is formed. \mathbf{N} gives a yellow precipitate, \mathbf{P} when warmed with alkaline aqueous iodine.

When \mathbf{M} is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, compound $\mathbf{R}, \mathrm{C}_{8} \mathrm{H}_{8}$ is formed. \mathbf{R} gives compound \mathbf{S} when reacted with hydrogen chloride gas.
\mathbf{M} also gave compound \mathbf{S} when reacted with phosphorous pentachloride at room temperature.

Deduce the structures of $\mathbf{M}, \mathbf{N}, \mathbf{P}, \mathbf{R}$ and \mathbf{S}.
(b) Another reaction that produces hydrogen is the reaction of methane with steam at $1000-1400 \mathrm{~K}$.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+206 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

This reaction produces large quantities of hydrogen for industrial use.
(i) State and explain the effect of decreasing the temperature of the reaction on the equilibrium position.
(ii) Deduce the sign of entropy change for the forward reaction.
(iii) Hence, or otherwise, predict and explain the spontaneity of the forward reaction at low temperature.
(iv) Comment and explain if there is any discrepancy in your answers in $\mathbf{b}(\mathbf{i})$ and \mathbf{b} (iii).
(v) Calculate the enthalpy change of vaporisation of water using the data in Table 1.

Table 1

Enthalpy change of formation of carbon monoxide	$-111 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of formation of methane	$-75 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of formation of water	$-285 \mathrm{~kJ} \mathrm{~mol}^{-1}$

(c) Hydrogen gas can also be produced from the reaction of carbon monoxide with steam.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) K_{\mathrm{c}}=6.40 \times 10^{-1} \text { at } 1100 \mathrm{~K}
$$

A mixture containing 0.8 mol of CO and 0.8 mol of $\mathrm{H}_{2} \mathrm{O}$ was placed in a $2 \mathrm{dm}^{3}$ flask and allowed to come to equilibrium at 1100 K .
(i) Write an expression for an expression for K_{c} of this reaction.
(ii) Calculate the amount of each substance present in the equilibrium mixture at 1100K.
(iii) State and explain the effect of decreasing pressure on the equilibrium constant.

5 Methanol can be prepared industrially by reacting together carbon monoxide and hydrogen. This is a reversible reaction:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \Delta H=-94 \mathrm{kJmol}^{-1}
$$

A chemist mixes together $0.114 \mathrm{~mol} \mathrm{CO}(\mathrm{g})$ and $0.152 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})$ in a container. The container is pressurised and then sealed and the total volume is $200 \mathrm{~cm}^{3}$. The mixture is heated to 500 K at constant volume and left to reach equilibrium. The chemist analyses the equilibrium mixture and finds that $0.052 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$ has formed.
(a) Calculate the value of K_{c} for the equilibrium at 500 K .
(b) The chemist repeats the experiment using the same initial amounts of CO and H_{2}. The same procedure is used but the mixture is heated in the $200 \mathrm{~cm}^{3}$ sealed container to a temperature higher than 500 K .
As the gas volume is kept at $200 \mathrm{~cm}^{3}$, the increased temperature also increases the pressure.

Explain why it is difficult to predict how the yield of $\mathrm{CH}_{3} \mathrm{OH}$ would change and state what happens to the value of K_{c}.
(c) Methanol can be oxidised to formaldehyde, HCHO , by passing its vapour over copper heated to $300^{\circ} \mathrm{C}$.

Explain why the boiling point of methanol $\left(65^{\circ} \mathrm{C}\right)$ is higher than that of formaldehyde $\left(-19{ }^{\circ} \mathrm{C}\right)$.
(d) State the type of hybridisation shown by the C atom in formaldehyde and draw its hybrid orbitals.
(e) Benzaldehyde, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$, is the simplest aromatic aldehyde and has a characteristic smell of almonds.
In the presence of a solution of potassium hydroxide, benzaldehyde undergoes disproportionation to give a mixture of two organic products, E and F. F has a higher solubility in water compared to \mathbf{E}.
(i) Suggest the structures of \mathbf{E} and \mathbf{F}.
(ii) Explain why \mathbf{F} is soluble in water.
(f) Alkyllithium compounds, RLi, can be used to increase the number of carbon atoms in an organic compound. Different alkyl groups, R, add carbon chains with different chain lengths.

RLi provides a source of R^{-}ions, which act as a nucleophile.
(i) RLi reacts with benzaldehyde to give an intermediate in stage 1, followed by reaction with aqueous acid to form an alcohol in stage 2.

Describe the mechanism for the above reaction, including curly arrows and relevant dipoles.
(ii) 'Ozonolysis' is a technique used in organic chemistry to break open a $\mathrm{C}=\mathrm{C}$ double bond. During ozonolysis, an alkene reacts with ozone, O_{3}. The products are carbonyl compounds as shown below.

An aromatic alkene, \mathbf{A} undergoes ozonolysis to give benzaldehyde and \mathbf{B}, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$. B has no reaction with $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq})$ but gives a yellow precipitate with aqueous alkaline iodine.

B undergoes a reaction with an alkyllithium compound, C, followed by reaction with aqueous acid to give an alcohol, D, which is optically active. The elimination of $\mathrm{H}_{2} \mathrm{O}$ from D produces a mixture of four different isomeric alkenes with the formula, $\mathrm{C}_{7} \mathrm{H}_{14}$, only two of which are cis-trans isomers of each other. Suggest the structural formulae of compounds \mathbf{A} to \mathbf{D} and the two cis-trans isomers.

CHEMISTRY LAB PREPARATION LIST FOR JC2 H2 CHEMISTRY

2017 PRELIM

APPARATUS

S/N	Apparatus	Quantity
1	$25 \mathrm{~cm}^{3}$ Pipette	1
2	Pipette Filler	1
3	Burette stand and clamp	2
4	$250 \mathrm{~cm}^{3}$ conical flask	2
5	$250 \mathrm{~cm}^{3}$ volumetric flask	1
6	$250 \mathrm{~cm}^{3}$ beaker	1
7	Funnel (for filling burette)	1
8	White tile	1
9	spatula	1
10	Wash bottle containing distilled water	1
11	Marker pen or labels(suitable for labelling glassware)	1
12	$100 \mathrm{~cm}^{3}$ beaker	2
13	$25 \mathrm{~cm}^{3}$ measuring cylinder	1
14	$10 \mathrm{~cm}^{3}$ measuring cylinder	2
14	$50 \mathrm{~cm}^{3}$ burette	2
15	Glass rod	1
16	Stopwatch	1
17	Paper towels	
18	Dropping pipettes	4
19	DRY Boiling tube	4
20	DRY Test tubes	8

CHEMICALS NEEDED (PER STUDENT)

S/N Chemical
1 FA1
2 Magnesium Ribbon
3 Bromophenol blue
4 FA3
5 FA4
6 FA5
7 FA6
8 Starch indicator
$9 \quad$ FA7
10 FA8
11 FA9

CHEMISTRY LAB PREPARATION LIST FOR JC2 H2 CHEMISTRY
 2017 PRELIM

APPARATUS NEEDED (PER STUDENT)

S/N	Apparatus	Quantity	Location	Remarks
1	$25 \mathrm{~cm}^{3}$ Pipette	1	Student's bench	Reuse
2	Pipette Filler	1	Student's bench	Reuse
3	Burette stand and clamp	2	Student's bench	Reuse
4	$250 \mathrm{~cm}^{3}$ conical flask	2	Student's bench	Reuse
5	$250 \mathrm{~cm}^{3}$ volumetric flask	1	Student's bench	Reuse
6	$250 \mathrm{~cm}^{3}$ beaker	1	Student's bench	Reuse
7	Funnel (for filling burette)	1	Student's bench	Reuse
8	White tile	1	Student's bench	Reuse
9	spatula	1	Student's bench	Reuse
10	Wash bottle containing distilled water	1	Student's bench	Reuse
11	Marker pen or labels(suitable for labelling glassware)	1	Student's bench	Reuse
12	$100 \mathrm{~cm}^{3}$ beaker	2	Student's bench	Reuse
13	$25 \mathrm{~cm}^{3}$ measuring cylinder	1	Student's bench	Reuse
14	$10 \mathrm{~cm}^{3}$ measuring cylinder	2	Student's bench	Reuse
14	$50 \mathrm{~cm}^{3}$ burette	2	Student's bench	Reuse
15	Glass rod	1	Student's bench	Reuse
16	Stopwatch	1	Student's bench	Reuse
17	Paper towels		Student's bench	Must change to new one per shift
18	Dropping pipettes	4	Student's bench	Must change to new one per shift
19	Boiling tube	$3-4$	Student's bench	Must change to new one per shift
20	Test tubes	8	Student's bench	Must change to new one per shift
24	Hard glass test tube	7	Student's bench	Must change to new one per shift
22	Access to weighing balance			4 per lab

CHEMICALS NEEDED (PER STUDENT)

S/N	Chemical	Concentration	Quantity	Location	Remarks
1	FA1 Hydrochloric acid [H]	$2.00 \mathrm{~mol} \mathrm{dm}^{-3}$	$40 \mathrm{~cm}^{3}$	Student's bench	Dilute $170 \mathrm{~cm}^{3}$ of concentrated (35-37\%; approximately $11 \mathrm{~mol} \mathrm{dm}^{-3}$) hydrochloric acid to $1 \mathrm{dm}^{3}$
2	Magnesium Ribbon [F]		0.20 g (in one strip) - Place in a ziplock bag and label.	Student's bench - together with FA1 to FA9 **REMOVE the small strips in the bottle found with the common QA reagents	One strip of Mg ribbon, lightly cleaned with emery paper or sand paper if appropriate, of mass 0.20 g . All Mg strips supplied to candidates must be cut to the same length, to within 0.2 cm , using scissors and a ruler.
3	Bromophenol blue		$5 \mathrm{~cm}^{3}$	Student's bench/ Shared by two students per bench	Dissolve 0.4 g of the solid indicator in $200 \mathrm{~cm}^{3}$ ethanol and make up to $1 \mathrm{dm}^{3}$ with distilled water.
4	FA3 Sodium hydroxide [H]	$0.120 \mathrm{~mol} \mathrm{dm}^{-3}$	$150 \mathrm{~cm}^{3}$	Student's bench	Dissolve 4.80 g of NaOH in each dm^{3} of solution.
5	FA4 Acidified iron(III) chloride [C][H]	$0.060 \mathrm{~mol} \mathrm{dm}^{-3}$	$150 \mathrm{~cm}^{3}$	Student's bench	Dissolve 16.22 g of $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of $0 . .20 \mathrm{~mol}$ dm^{-3} hydrochloric acid. $0.20 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid made by diluting 2.0 $\mathrm{mol} \mathrm{dm}^{-3}$ hydrochloric acid 10 fold.(see above in FA1)
6	FA5 Potassium iodide	$0.060 \mathrm{~mol} \mathrm{dm}^{-3}$	$80 \mathrm{~cm}^{3}$	Student's bench	Dissolve $9 . .96 \mathrm{~g}$ of KI in each dm^{3} of solution.
7	FA6 Sodium thiosulfate	$0.0060 \mathrm{~mol} \mathrm{dm}^{-3}$	$150 \mathrm{~cm}^{3}$	Student's bench	Dissolve 29.78 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ in each dm^{3} of solution. Dilute this solution 20 -fold.
8	Starch indicator	Freshly prepared aqueous starch indicator	$80 \mathrm{~cm}^{3}$	Student's bench	Mix 2 g of soluble starch with a little cold water until a smooth paste is obtained. Add $100 \mathrm{~cm}^{3}$ of boiling water and stir. Boil until a clear solution is obtained (about 5 minutes).

		(approx. 2\% solution w/v)			
	FA7	A mixture of aluminium sulfate and sodium chloride	0.5 g	Student's bench	Approximately equal masses of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ and NaCl thoroughly mixed.
	FA8	A mixture of magnesium carbonate and potassium iodide	0.5 g	Student's bench	Approximately equal masses of MgCO_{3} and KI thoroughly mixed. Note: "basic" forms of magnesium carbonate are suitable.
	FA9 [H]	Ammonium iron(II) sulfate	1.5 g	Student's bench	Approximately 1.5 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}$
STANDARD BENCH REAGENTS					
Hazard	Label		dentity	Notes (hazards given in this column are for the raw materials)	
[MH]	Dilute hydrochloric acid	$2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$		Dilute $170 \mathrm{~cm}^{3}$ of concentrated ($35-37 \%$; approximately $11 \mathrm{~mol} \mathrm{dm}^{-3}$) hydrochloric acid to $1 \mathrm{dm}^{-3}$	
[C]	Dilute nitric acid	$2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$		Dilute $128 \mathrm{~cm}^{3}$ of concentrated ($70 \% \mathrm{w} / \mathrm{v}$) nitric acid to $1 \mathrm{dm}^{3}$	
[MH]	Dilute sulfuric acid	$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$		Cautiously pour $55 \mathrm{~cm}^{3}$ of concentrated (98%) sulfuric acid into $500 \mathrm{~cm}^{3}$ of distilled water with continuous stirring. Make the solution up to $1 \mathrm{dm}^{3}$ with distilled water. Care: concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is very corrosive	
[C][MH][N]	Aqueous ammonia	$2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}$		Dilute $112 \mathrm{~cm}^{3}$ of concentrated (35\%) ammonia to $1 \mathrm{dm}^{3}$	
[C]	Aqueous sodium hydroxide	2.0 mol dm ${ }^{-3} \mathrm{NaOH}$		Dissolve 80.0 g of NaOH in each dm^{3} of solution. Care: the process of solution is exothermic and any concentrated solution is very corrosive.	
[MH]	Aqueous barium nitrate	$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ barium nitrate		Dissolve 26.1 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ in each dm^{3} of solution.	
[N]	Aqueous silver nitrate	$0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate		Dissolve 8.5 g of AgNO_{3} in each dm^{3} of solution.	
[MH]	Limewater	Saturated aqueous calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$		Prepare fresh limewater by leaving distilled water to stand over solid calcium hydroxide for several days, shaking occasionally. Decant or filter the solution.	
	Aqueous potassium iodide	$0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KI}$		Dissolve 16.6 g of KI in each dm^{3} of solution	

	Acidified aqueous potassium manganate (VII)	$0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate (VII)	Dissolve 3.16 g of KMnO_{4} in each dm^{3} of solution. hexane

The following materials and apparatus should be available FOR EACH STUDENT.
Red and blue litmus papers, plain filter strips for use with acidified manganate(VII), aluminium foil for testing nitrate/nitrite, wooden splints and the
apparatus normally used in the Centre for use with limewater testing for carbon dioxide.
\square
\square
INDEX NUMBER
\square

CHEMISTRY

9729/01
Paper 1 Multiple Choice

Additional Materials: Data Booklet
Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in soft pencil.
Do not use staples, paper clips, highlighters, glue or correction fluid.

There are thirty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.

1	D	6	B	11	B	16	B	21	D	26	D
2	C	7	C	12	D	17	B	22	B	27	D
3	B	8	C	13	D	18	C	23	C	28	A
4	B	9	A	14	C	19	D	24	B	29	C
5	C	10	D	15	B	20	C	25	D	30	C

For each question there are four possible answers, A, B, C, and D. Choose the one you consider to be correct.

1 A given mass of ideal gas occupies a volume V and exerts a pressure p at $30^{\circ} \mathrm{C}$.
At which temperature will the same mass of the ideal gas occupy a volume $\frac{\mathrm{V}}{3}$ and exert a pressure $2 p$?
A $\quad 20^{\circ} \mathrm{C}$
C $\quad 202{ }^{\circ} \mathrm{C}$
B $\quad 20 \mathrm{~K}$
D $\quad 202 \mathrm{~K}$
Answer: D
$\mathrm{pV}=\mathrm{nRT}$
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
$\frac{P_{1} V_{1}}{T_{1}}=\frac{2 P_{1} \frac{V_{1}}{3}}{T_{2}}$
$T_{2}=\frac{2}{3} T_{1}$

Original T = $30+273=303 \mathrm{~K}$
New T $=\frac{2}{3} \times 303=202 \mathrm{~K}$

2 Which equation corresponds to the third ionisation energy of titanium (Ti)?
A $\quad \mathrm{Ti}(\mathrm{g}) \rightarrow \mathrm{Ti}^{3+}(\mathrm{g})+3 \mathrm{e}^{-}$
B $\quad \mathrm{Ti}^{2+}(\mathrm{s}) \rightarrow \mathrm{Ti}^{3+}(\mathrm{g})+\mathrm{e}^{-}$
C $\quad \mathrm{Ti}^{2+}(\mathrm{g}) \rightarrow \mathrm{Ti}^{3+}(\mathrm{g})+\mathrm{e}^{-}$
D $\quad \mathrm{Ti}^{3+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Ti}^{2+}(\mathrm{g})$
Answer: C
Third ionization energy of Ti is defined as the amount of energy required to remove 1 mole of electrons from one mole of doubly charged gaseous $\mathrm{Ti}\left(\mathrm{T}^{\mathrm{i}^{2+}}\right)$ to form one mole of triply charged gaseous $\mathrm{Ti}\left(\mathrm{Ti}^{3+}\right)$.

3 A sample of the element Americium (Am) was vaporised, ionised and passed through an electric field. It was observed that a beam of ${ }^{241} \mathrm{Am}^{+}$particles gave an angle of deflection of $+2^{\circ}$.

Assuming an identical set of experimental conditions, by what angle would a beam of ${ }^{32} S^{-}$ particles be deflected?

A $+15.1^{\circ}$
B -15.1°
C $\quad+30.1^{\circ}$
D $\quad-30.1^{\circ}$
Answer: B
angle of deflection $\alpha \frac{\text { charge }}{\text { mass }}$
angle of deflection of ${ }^{241} \mathrm{Am}^{+}=+2^{\circ}$
For ${ }^{241} \mathrm{Am}^{+}, \frac{q}{m}=\frac{1}{241}$
$k \frac{1}{241}=(2)$
$k=482$
For ${ }^{32} S^{-}, \frac{q}{m}=\frac{1}{32}$
angle of deflection of ${ }^{32} \mathrm{~S}^{-}==\frac{1}{32} \times 482=-15.1^{\circ}$

4 Which of the following statements describes a phenomenon which cannot be explained by hydrogen bonding?

A Ice floats on water.
B The boiling point of carboxylic acid increases with increasing relative molecular mass.
C 2-nitrophenol is more volatile than 4-nitrophenol.
D Ethanoic acid molecules form dimers when dissolved in benzene.

Answer: B

Option \mathbf{A} is incorrect as in ice, each $\mathrm{H}_{2} \mathrm{O}$ molecule forms the maximum of four hydrogen bonds with 4 other $\mathrm{H}_{2} \mathrm{O}$ molecules. This results in an open structure of ice and hence ice is less dense than water and so, floats on water.

Option B is correct as the boiling point of carboxylic acid increases with increasing M_{r} due to stronger instantaneous dipole-induced dipole interactions between the non-polar \mathbf{R} group as the size of electron cloud of R group increases and hence become more polarisable.

Option C is incorrect as in 2-nitrophenol, due to close proximity between - OH and $-\mathrm{NO}_{2}$ groups, they can be used for formation of intramolecular hydrogen bonds. Hence, there are fewer available sites for intermolecular hydrogen bonds. Thus, 2-nitrophenol has a lower boiling point (and hence more volatile) as lesser energy is required to overcome the less extensive hydrogen bonds between molecules.

Option D is incorrect as in benzene, $\mathrm{CH}_{3} \mathrm{COOH}$ molecules can form a dimer via hydrogen bonding.

5 A tertiary amine, $\mathrm{R}_{3} \mathrm{~N}$, reacts with boron trifluoride, BF_{3} to give an addition product. Which of the following statements is not true?

A $\quad \mathrm{R}_{3} \mathrm{~N}$ acts as a Lewis base.
B The product is a polar molecule.
C There are six σ bonds in the product.
D The product contains a dative covalent bond.
Answer: C

Addition product:

Option \mathbf{A} is incorrect as $\mathrm{R}_{3} \mathrm{~N}$ is a lewis base as it donates an electron pair to BF_{3}.
Option B is incorrect as the molecule is polar due to presence of polar bonds (C-N, $B-F$ and $B-N$) and the dipole moments do not cancel out.
Option \mathbf{C} is correct as there is a minimum of $7 \boldsymbol{\sigma}$ bonds in the addition product (not taking into account the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C} \sigma$ bonds present in the R groups).

Option D is correct as there is a dative covalent bond from \mathbf{N} to \mathbf{B}.

6 The curve \mathbf{Y} and the value E_{a} represent the distribution of energies of the molecules and the activation energy for an uncatalysed gaseous reaction.

What is a possible outcome if the reaction is catalysed?
A The distribution of energies will be given by curve \mathbf{X} and the activation energy by value V

B The distribution of energies will be given by curve \mathbf{Y} and the activation energy by value V.

C The distribution of energies will be given by curve \mathbf{Y} and the activation energy by value W.

D The distribution of energies will be given by curve \mathbf{Z} and the activation energy by value W.

Answer: B
When catalyst is added, the graph distribution of energies of molecules will not change, it is affected only by temperature. Hence the curve should be Y.
However, when catalyst is added E_{a} will become lowered, hence value V.
7 If the rate of decay of a radioactive isotope decrease from 300 counts per minute to 37.5 counts per minute after 1 day, what is its half-life?
A 4 hours
C 8 hours
B 6 hours
D 12 hours

Answer: C
First half-life occurs when 300 counts per minute is reduced to 150 counts per minute.
Second half-life occurs when 150 counts per minute is reduced to 75 counts per minute.
Third half-life occurs when 75 counts per minute is reduced to 37.5 counts per minute.
3 half-life in 24 hours means each half-life is 8 hours.

8 Which of the following statements does not describe a reaction at equilibrium?
A Forward and backward reactions occur at equal rate.
B The system must be closed.
C K_{c} increases as the reaction progresses.
D Concentrations of reactants and products are constant.
Answer: C
At dynamic equilibrium, rate of forward reaction = rate of backward reaction, hence there is no change in concentration of reactants and products.
K_{c} is only affected by temperature changes.

9 Use of the Data Booklet is relevant to this question.
The enthalpy change of formation of carbon monoxide and carbon dioxide are given below.

$$
\begin{aligned}
\Delta H_{\mathrm{f}} \mathrm{CO} & =-110 \mathrm{kJmol}^{-1} \\
\Delta H_{\mathrm{f}} \mathrm{CO}_{2} & =-393 \mathrm{kJmol}^{-1}
\end{aligned}
$$

Which of these statements are correct?
$1 \quad \mathrm{CO}_{2}(\mathrm{~g})$ has lower energy content than $\mathrm{CO}(\mathrm{g})$.
2 The enthalpy change of combustion of carbon is $-393 \mathrm{kJmol}^{-1}$.
$3 \quad \mathrm{CO}_{2}(\mathrm{~g})$ is formed exothermically from $\mathrm{CO}(\mathrm{g})$.
4 A larger amount of energy is required to atomise $\mathrm{CO}_{2}(\mathrm{~g})$ than $\mathrm{CO}(\mathrm{g})$.
A 1, 2, 3 and 4
B 1, 2 and 3 only
C 1, 2 and 4 only
D 2 and 3 only

Answer: A

Option 1 is correct as from the energy level diagram, $\mathrm{CO}_{2}(\mathrm{~g})$ has a lower energy content than $\mathrm{CO}(\mathrm{g})$.
Option 2 is correct as $\Delta H_{c}(\mathrm{C})=\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{CO}_{2}\right)=-393 \mathrm{kJmol}^{-1}$ from the diagram
Option 3 is correct as from the energy level diagram, $\mathrm{CO}_{2}(\mathrm{~g})$ is formed exothermically from CO (g). [-283 $\left.\mathrm{kJmol}^{-1}\right]$
Option 4 is correct as atomisation means to produce free gaseous C and O atoms (an endothermic process). More energy is required to atomise $\mathrm{CO}_{2}(\mathrm{~g})$ than $\mathrm{CO}(\mathrm{g})$ as $\mathrm{CO}_{2}(\mathrm{~g})$ has a lower energy content.

10 A sparingly soluble calcium salt ionises in aqueous solution according to the equation given:

$$
\mathrm{Ca}_{3} \mathrm{X}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{X}^{3-}(\mathrm{aq})
$$

If the solubility product $K_{\text {sp }}$ of $\mathrm{Ca}_{3} \mathrm{X}_{2}$ is S , what is the value of the concentration of $\mathrm{Ca}^{2+}(\mathrm{aq})$ at equilibrium?
A

$$
S^{\frac{1}{2}}
$$

B

$$
\left[\frac{S}{108}\right]^{\frac{1}{5}}
$$

C

$$
\left[\frac{3 S}{5}\right]^{\frac{1}{2}}
$$

D

$$
\left[\frac{9 S}{4}\right]^{\frac{1}{5}}
$$

Answer: D

$$
\mathrm{Ca}_{3} \mathrm{X}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{X}^{3-}(\mathrm{aq})
$$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{Sp}} & =\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{X}^{3}-\right]^{2} \\
\mathrm{~S} & =(3 \mathrm{x})^{3}(2 \mathrm{x})^{2} \\
& =\left(27 \mathrm{x}^{3}\right)\left(4 \mathrm{x}^{2}\right) \\
& =108 \mathrm{x}^{5} \\
\mathrm{X} & =\left(\frac{\mathrm{S}}{108}\right)^{\frac{1}{5}} \\
& {\left[\mathrm{Ca}^{2+}\right] \text { at eqm }=3 \mathrm{x}=3\left(\frac{\mathrm{~S}}{108}\right)^{\frac{1}{5}}=\left(\frac{243 S}{108}\right)^{\frac{1}{5}}=\left[\frac{9 \mathrm{~S}}{4}\right]^{\frac{1}{5}} }
\end{aligned}
$$

11 The $K_{s p}$ of AgCl and AgI are $1.80 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ and $8.3 \times 10^{-17} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ respectively. Which of the following statements is correct when equal volumes of $1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous AgNO_{3} was added to a mixture containing $3.0 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{BaCl}_{2}$ and 3.0×10^{-6} $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{BaI}_{2}$?

A AgCl is precipitated only.
B AgI is precipitated only.
C AgCl is precipitated followed by AgI.
D AgI is precipitated followed by AgCl .

Answer: B
$\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{AgNO}_{3}\right]=1 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$
$[\mathrm{Cl}]=2 \times\left[\mathrm{BaCl}_{2}\right]=6 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
$[\mathrm{I}]=2 \times\left[\mathrm{BaI}_{2}\right]=6 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$

Take note that the mixture consists of equal volumes of AgNO_{3} and BaCl_{2}. Hence, the new concentration will be halved.
$\left[\mathrm{Ag}^{+}\right]$in mixture $=0.5 \times 10^{-4}$
[Cl -] in mixture $=3 \times 10^{-6}$

IP of $\mathrm{AgCl}=\left(0.5 \times 10^{-4}\right)\left(3.0 \times 10^{-6}\right)=1.5 \times 10^{-10}$
$\mathrm{IP}<\mathrm{Ksp} \rightarrow \mathrm{AgCl}$ will not ppt out

IP of AgI $=\left(0.5 \times 10^{-4}\right)\left(3.0 \times 10^{-6}\right)=1.5 \times 10^{-10}$
IP $>$ Ksp \rightarrow Agl will ppt out

12 The dissociation constant, K_{w}, for the ionisation of water, $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$, at different temperatures is given below.

Temperature $/{ }^{\circ} \mathrm{C}$	$K_{w} / \mathrm{mol}^{2} \mathrm{dm}^{-6}$
0	1.15×10^{-15}
25	1.00×10^{-14}
50	5.50×10^{-14}

What can be deduced from this information?
A Only at $25^{\circ} \mathrm{C}$ are $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$equal.
B The equilibrium lies furthest to the right at $0^{\circ} \mathrm{C}$.
C The forward reaction is exothermic.
D The pH of pure water decreases with temperature.
Answer: D
Option \mathbf{A} is incorrect as the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of water are equal at all temperatures.
Option \mathbf{B} is incorrect as the value of K_{w} is the smallest at $0^{\circ} \mathrm{C}$. Hence, equilibrium lies most to the left.
Option C is incorrect as K_{w} increases with temperature, the forward reaction is favoured.
Option \mathbf{D} is correct as an increase in temperature favours the endothermic reaction, hence the forward reaction is endothermic.

Option D:
$K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$K_{w}=\left[\mathrm{H}^{+}\right]^{2}$
$\mathrm{pH}=-\log \sqrt{ }\left(K_{w}\right)$
as K_{w} increases with temperature, pH will decrease.

13 Calculate the standard Gibbs free energy change, ΔG^{\ominus} for the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Cu}(\mathrm{~s})
$$

A $\quad-386 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B $\quad-579 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C $\quad-1045 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D $\quad-1158 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Answer: D

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =+0.34-(-1.66)=+2.00 \mathrm{~V} \\
\Delta G^{e} & =-n F E_{\text {cell }}=-6 \times 96500 \times 2.00
\end{aligned}=-1158000 \mathrm{~J} \mathrm{~mol}^{-1} .
$$

14 An experiment is carried out with the following cell.

$$
\mathrm{Fe}(\mathrm{~s})\left|\mathrm{Fe}^{2+}(\mathrm{aq}) \| \mathrm{Ni}^{2+}(\mathrm{aq})\right| \mathrm{Ni}(\mathrm{~s})
$$

The following graph of cell potential against time was obtained when a change was continuously made to the half-cell.

What continuous change could produce these results?
A Add nickel (II) chloride to the nickel half-cell.
B Add aqueous cyanide ions to the iron half-cell.
C Add water to the nickel half-cell.
D Increases the surface area of iron immersed in the solution.
Answer: C
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{Ni}}{ }^{2+} / \mathrm{Ni}-\mathrm{E}_{\mathrm{Fe}}{ }^{3+} / \mathrm{Fe}^{2+}$ (graph states that $\mathrm{E}_{\text {cell }}$ should decrease)
Option A is incorrect as

$$
\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \quad \rightleftharpoons \quad \mathrm{Ni}
$$

When nickel (II) chloride is added to the nickel half-cell, $\left[\mathrm{Ni}^{2+}\right]$ increase, eqm position shift right. $\mathrm{E}_{\mathrm{Ni}}{ }^{2+} / \mathrm{Ni}$ is more positive (incorrect)
Option B is incorrect as

$$
\begin{array}{rlll}
\mathrm{Fe}^{3+}+\mathrm{e}^{-} & \rightleftharpoons & \mathrm{Fe}^{2+} & +0.77 \\
{\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-}} & \rightleftharpoons & {\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}} & +0.36
\end{array}
$$

When aqueous cyanide ions is added to the iron half-cell. $\mathrm{E}_{\mathrm{Fe}}{ }^{3+} / / \mathrm{Fe}^{2+}$ is less positive (incorrect) Option \mathbf{C} is correct as when water is added to the nickel half-cell, $\left[\mathrm{Ni}^{2+}\right]$ decrease, eqm position shift left. $\mathrm{E}_{\mathrm{Ni}}{ }^{2+}{ }_{\mathrm{Ni}}$ is less positive (correct)
Option \mathbf{D} is incorrect as increases in the surface area of iron affects rate not E values.

15 The circuit shown in the diagram was set up.

Which reactions will occur at the electrodes?
anode reaction
A Oxygen gas is evolved.
B Tin dissolves preferentially.
C Copper dissolves preferentially.
D Copper and tin both dissolve.
cathode reaction
Hydrogen gas is evolved.
Hydrogen gas is evolved.
Copper is deposited.
Sulfur dioxide gas is evolved.

Answer: B
At the anode: (oxidation will occur)
Species present: Cu and Sn
Consider
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn} \quad \mathrm{E} \bullet / \mathrm{V}=-0.14$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu} \quad E \ominus / \mathrm{V}=+0.34$
Based on the $\mathbf{E} \ominus / \mathbf{V}$ values, a less positive value indicates that tin will be selectively oxidised.

At the cathode: (reduction will occur)
Species present: $\mathrm{H}_{2} \mathrm{O}$ and H^{+}
Consider
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-} \quad \mathrm{E} \ominus / \mathrm{V}=-0.83$
$2 \mathrm{H}^{+}+2 \mathrm{e}_{-} \longrightarrow \mathrm{H}_{2} \quad \mathrm{E}$ 㫙 $\mathrm{V}=0.00$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn} \quad \mathrm{E} \oplus / \mathbf{V}=-0.14$
Based on the $E \ominus / \mathbf{V}$ values, a more $E \ominus / \mathbf{V}$ positive value indicates that H^{+}will be selectively reduced to produce H_{2} gas.

16 The diagram shows the structure of vitamin C .

How many stereoisomers are there in one molecule of vitamin C?
A 2
B 4
C 8
D 16
Answer: B

2 chiral centres so number of enantiomers are $2^{2}=4$
17 Propyne, $\mathrm{C}_{3} \mathrm{H}_{4}$, has the following structure.

Which row correctly describes the bonding and hybridisation in a molecule of propyne?

	number of π bonds	number of sp C atoms	number of $\mathrm{sp}^{2} \mathrm{C}$ atoms
A	1	1	1
B	2	2	0
C	2	2	1
D	3	3	0

Answer: B

π bond

18 During the nitration of benzene, a nitro group substitutes at a carbon atom. Which one of the following gives the arrangement of the bonds at this carbon atom during the reaction?

at the start of the	in the intermediate	at the end of the
reaction	complex	reaction
planar	planar	planar
planar	tetrahedral	tetrahedral
planar	tetrahedral	planar
tetrahedral	planar	tetrahedral

Answer: C

19 When a halogen compound \mathbf{S} was boiled under reflux for some time with silver nitrate in a mixture of ethanol and water, little or no precipitate was seen.

Which of the following formulae could represent \mathbf{S} ?
A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$
B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$
C

D

Answer: D
Given that there is little or no ppt seen, it shows that the $\mathrm{C}-\mathrm{Cl}$ bond is strong, hence it is referring to the Cl bonded to a benzene ring as the p orbital of Cl will overlap with the π orbital of the benzene ring.

20 Compound \mathbf{P} was heated with ethanolic potassium hydroxide.

compound \mathbf{P}
Which of the following would be the major product?
A

B

C

D

Answer: C

Ethanolic KOH is the reagent to eliminate H and $\mathrm{Br} \rightarrow \mathbf{A}$ and \mathbf{B} will be wrong Using Saytzeff rule whereby the "poor get poorer"

21 How many isomers (including both structural isomers and stereoisomers) with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ liberates hydrogen on reaction with sodium?
A 2
B 3
C 4
D 5

Answer: D

22 Bisphenol A was used to make products such as plastic polycarbonate baby bottles and food containers. It is now regarded as toxic and has been withdrawn from use.

Which reagent will convert bisphenol A into compound \mathbf{Q} ?
A $\mathrm{AlBr}_{3}(\mathrm{~s})$
B $\quad \mathrm{Br}_{2}(\mathrm{aq})$
C $\quad \mathrm{HBr}(\mathrm{g})$
D $\operatorname{NaBr}(\mathrm{aq})$

Answer: B

Based on the product, the reaction is electrophilic substitution. Since the starting reactant is a phenol, catalyst will not be necessary. Hence $\mathrm{Br}_{2}(\mathrm{aq})$ will be sufficient.

23 Vanillin is the active ingredient of vanilla.

Which of the following will be observed with vanillin?
1 Warm acidified potassium dichromate (VI) turns green.
2 2,4-dinitrophenylhydrazine reagent gives an orange precipitate.
3 A yellow precipitate is formed on warming with aqueous alkaline iodine.
A 1 only
B 2 only
C 1 and 2 only
D 2 and 3 only
Answer: C
Option 1 and $\mathbf{2}$ are correct as Vanillin has the aldehyde group which can be oxidised by potassium dichromate and react with 2,4-DNPH.

Option 3 is not correct as there is no presence of $\mathrm{CH}_{3} \mathrm{CO}$ - or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ - group in vanillin hence it does not react with aqueous alkaline iodine.

24 The mould Phytophthora damages many plants, destroying agricultural crops such as potatoes. A hormone-like compound called alpha1 regulates the reproduction of all species of Phytophthora. The structure of alpha1 is now known, giving scientist a key to the possible future eradication of the mould.

Which of the following reagents will react with alpha1?
$1 \mathrm{Br}_{2}$
$2 \mathrm{SOCl}_{2}$
$3 \quad \mathrm{H}_{2} / \mathrm{Pt}$
A 1 and 2 only

B 2 and 3 only
C 1 and 3 only
D 1, 2 and 3 only
Answer: B
Alpha1 is not able to react with aqueous Br_{2} since there is no $\mathrm{C}=\mathrm{C}$.
OH group on Alpha1 is able to react with SOCl_{2} to form halogenoalkane.
Carbonyl group on alpha1 can be reduced by $\mathrm{H}_{2} / \mathrm{Pt}$ to form secondary alcohol.

25 Which transformations involve a nucleophile?
1

2

3

A 1 only
B 2 and 3 only
C 1 and 2 only
D 1, 2 and 3 only
Answer: D

Option 1 is correct as
 is the nucleophile. Similar to 2,4 -DNPH
Option $\mathbf{2}$ is correct as CN^{-}is the nucleophile. Reaction is nucleophilic addition.
Option 3 is correct as NH_{3} is the nucleophile. Reaction is nucleophilic acyl substitution.

26 Which of the following properties are identical for the two enantiomers of 2-hydroxypropanoic acid, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$?
$1 \Delta H^{o_{f}}$
$2 \mathrm{p} K_{\mathrm{a}}$
3 melting point
A 2 only
B 3 only
C 1 and 2 only
D 1, 2 and 3 only
Answer: D

Enantiomers will only differ in their biological properties. Given that they have the same functional group, their chemical and physical properties should remain the same.

27 When organic compounds E, F, G and H are added separately to water, solutions of increasing pH values are obtained. The possible identities of compounds \mathbf{E} to \mathbf{H} (not necessarily in that order) are given below.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}
$$

Which is the correct set of identities of compounds $\mathbf{E}, \mathbf{F}, \mathbf{G}$ and \mathbf{H} ?

E
A $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
B
B $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
C $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$

F
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

G
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

H

$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$

Answer: D
Between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ is a weaker acid as one mole of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ will form one mole of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and one mole of HCl in aqueous solution while $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ will only partially dissociate to form $\mathrm{H}^{+} . \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ will have a lower pH than $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$ is a stronger base as compared to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ as it has one more methyl electron donating group, hence the lone pair is more available to accept H^{+}. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHNH}_{2}$ will have a higher pH as compared to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$.

28 The graphs below show the variation in two properties of the elements Na to P and their compounds.

Which properties are illustrated in Graphs I and II?

Graph I

Graph II
electrical conductivity of the pH of the chloride when added to
A element electrical conductivity of the pH of the oxide when added to
B element water
melting point of the element pH of the chloride when added to
C water

D melting point of the element
Answer: A
Graph 1:
Electrical conductivity increases from Na to Al due to the increasing amount of delocalised electrons. Si is a semiconductor / metalloid hence it is able to conduct electricity. Phosphorus is a non-metal with a simple covalent structure. Hence it is unable to conduct electricity.

Melting point of graph should increase from Na to Al and peak at Si as Si has a giant covalent structure. Hence, options C and D are eliminated.

Graph 2:
$\mathrm{NaCl}-\mathrm{pH} 7$
$\mathrm{MgCl}_{2}-\mathrm{pH} 6.5$
$\mathrm{AlCl}_{3}-\mathrm{pH} 3$
$\mathrm{SiCl}_{4}-\mathrm{pH} 2$
$\mathrm{PCl}_{5}-\mathrm{pH} 2$
$\mathrm{Na}_{2} \mathrm{O}-\mathrm{pH} 13$
$\mathrm{MgO}-\mathrm{pH} 10$
$\mathrm{Al}_{2} \mathrm{O}_{3}$ - not soluble hence pH 7
SiO_{4} - not soluble hence pH 7
$\mathrm{P}_{4} \mathrm{O}_{10}-\mathrm{pH} 2$

29 Which of the following elements is expected to show the greatest tendency to form some covalent compounds?

A Barium
B Calcium
C Magnesium
D Potassium
Answer: C
The metal cation with the highest charge density will have the greatest polarising power and hence the greatest tendency to form covalent compounds.

Charge density = charge / ionic radius
Since $M g$ has a charge of +2 and the smallest size, it has the highest charge density
30 Why is hydrogen iodide a stronger acid than hydrogen chloride?
A A molecule of hydrogen chloride is more polar than a molecule of hydrogen iodide.
B The enthalpy change of formation of hydrogen iodide is greater than that of hydrogen chloride.
C The covalent bond in the hydrogen iodide molecule is weaker than that in the hydrogen chloride molecule.

D The dissociation of hydrogen chloride molecules is suppressed by the stronger permanent dipole-permanent dipole interactions.

Answer: C

For HI and HCl to form acids, the $\mathrm{H}-\mathrm{X}$ bond must be broken and the molecules need to dissociate in water to form H^{+}and X - ions.
Hence, the molecule with the weaker $\mathrm{H}-\mathrm{X}$ bond will be able to dissociate to a greater extent to form more H^{+}ions to be the stronger acid.

WORKED SOLUTIONS

CLASS \square
\square

CHEMISTRY

9729/02
24 August 2017
2 hours

Candidates answer on the question paper.
Paper 2 Structured Questions

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your index number, name and civics group on all the work you hand in.
Write in dark blue or black pen.
You may use pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions in the space provided.
You are advised to show all working in calculations.
You are reminded of the need for good English and clear presentation in your answers.
You are reminded of the need for good handwriting.
Your final answers should be in 3 significant figures.
You may use a calculator.
The number of marks is given in brackets []
at the end of each question or part question.
At the end of the examination, fasten all your work securely together.

For Examiner's Use	
1	19
2	12
3	10
4	10
5	24
Significant Figures and Units	
Handwriting and Presentation	
Total	75

This document consists of 18 printed pages.

Answer all the questions in the spaces provided.
1 Halogens are highly reactive and form compounds with many other elements, including metals and non-metals.
(a) Fluorine reacts with bromine to form liquid bromine trifluoride, BrF_{3}.

Two molecules of BrF_{3} react to form ions as shown by the following equation.
$2 \mathrm{BrF}_{3} \longrightarrow \mathrm{BrF}_{2}{ }^{+}+\mathrm{BrF}_{4}^{-}$
(i) Draw the structures and suggest the shape of each of these species.
BrF_{3}

T-shaped
BrF_{4}^{-}

Square planar
(ii) $\mathrm{BrF}_{4}{ }^{-}$ions are also formed when potassium fluoride, KF dissolves in liquid BrF_{3} to form KBrF_{4}. Explain, in terms of structure and bonding, why KBrF_{4}, has a high melting point.
KBrF_{4} has a giant ionic structure with strong electrostatic forces of attraction between oppositely charged ions, K^{+}and $\mathrm{BrF}_{4}{ }^{-}$.

Large amount of energy is required to break the strong ionic bonds, thus it has a high melting point.
(b) Magnesium bromide, MgBr_{2} is a chemical compound of magnesium and bromine and is often used in the pharmaceutical industries.

In this part of the question, you will construct an energy cycle for magnesium bromide to determine the enthalpy change of hydration of magnesium ions.
(i) Magnesium bromide has a lattice energy of $-2440 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Define in words the lattice energy of magnesium bromide.
Lattice energy of MgBr_{2} is the enthalpy change/ energy released when ONE mole of solid MgBr_{2} is formed from its separate gaseous ions, $\mathrm{Mg}^{2+}(\mathrm{g})$ and $\mathrm{Br}^{-}(\mathrm{g})$.
(ii) The table below shows the enthalpy changes that are needed to determine the enthalpy change of hydration of magnesium ions.

enthalpy change	energy $/ \mathbf{k J ~ m o l}^{-1}$
lattice energy of magnesium bromide	-2440
enthalpy change of solution of magnesium bromide	-89
enthalpy change of hydration of bromide ions	-304

On the two dotted lines, add the species present and label the numerical values of the three arrows in the boxes provided.

Species on the 2 dotted lines
Three numerical values
(iii) Calculate the enthalpy change of hydration of magnesium ions.

Enthalpy change of hydration $=-2440-89+608=-1921$

$$
=-1920 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(iv) Given that the enthalpy change of formation of $\mathrm{Mg}^{2+}(\mathrm{aq})$ is $+413 \mathrm{~kJ} \mathrm{~mol}^{-1}$, use your answer in (b)(iii) as well as relevant values from the Data Booklet to calculate the enthalpy change of atomisation of magnesium.

$\Delta H_{\text {atomisation }}=413+1921-736-1450$
$=+148 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(v) The enthalpy change of hydration of magnesium ions is more exothermic than the enthalpy change of hydration of calcium ions. Explain why.

- $\Delta H_{\text {hydration }} \alpha \frac{q_{+}}{r_{+}}$or in words
- Mg^{2+} has higher charge density than Ca^{2+} since $\mathbf{M g}^{2+}$ has a smaller ionic size than Ca^{2+} and hence a more exothermic $\Delta \mathrm{H}_{\text {hydration }}$.
(c) Nickel is a typical transition element in the d-block of the Periodic Table. Many nickel ions are able to interact with ligands to form complex ions, such as $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$.

A student dissolves nickel(II) sulfate in water. A green solution forms containing the complex ion $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. The student then reacts separate portions of the green solution of nickel(II) sulfate as outlined below.

- Concentrated hydrochloric acid is added to the green solution of nickel(II) sulfate until there is no further change. The solution turns a lime-green colour and contains the four-coordinate complex ion \mathbf{A}.
- Aqueous sodium hydroxide is added to the green solution of nickel(II) sulfate. A pale-green precipitate \mathbf{B} forms.
- Concentrated aqueous ammonia is added to the green solution of nickel(II) sulfate until there is no further change. The solution turns a violet colour and contains the complex ion C. C has a molar mass of $160.7 \mathrm{~g} \mathrm{~mol}^{-1}$.
(i) Explain why aqueous nickel(II) sulfate is green.
$\mathrm{NiSO}_{4}(\mathrm{aq})$ is coloured due to:
- the presence of partially filled 3d-orbitals in the Ni^{2+} metal ions.
- In the presence of ligands, 3d orbitals split into two groups with small energy gap
- Some of the light energy is used to promote an electron from a d-orbital of lower energy into the unfilled/ partially filled d-orbital of higher energy.
- Green colour seen is the complement of the red colour absorbed in the visible region of the spectrum.
(ii) Draw a three dimensional diagram for the $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ion.

OR

(iii) Suggest the formulae of \mathbf{A}, \mathbf{B} and \mathbf{C}.

A: $\left[\mathrm{NiCl}_{4}\right]^{2-}$
B: $\mathrm{Ni}(\mathrm{OH})_{2}$ or $\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$
C: $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, do not allow $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ due to M_{r} of C given
(iv) What type of reaction has taken place in the formation of \mathbf{C} from $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$? Write an equation for this reaction.

Ligand exchange
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+6 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$

2 (a) In a school lab, magnesium strips can be stored in a normal container. However, barium metal has to be submerged in oil when it is stored. With reference to relevant data from the Data Booklet, explain the above observation.

Reduction potential for $\mathrm{Ba}^{2+}(-2.92 \mathrm{~V})$ is more negative than $\mathrm{Mg}^{2+}(-2.38 \mathrm{~V})$. Ba is more reactive OR undergoes oxidation more readily than Mg , thus has to be kept in oil to prevent it from reacting OR avoid direct contact with atmospheric O_{2}.
(b) When solid barium carbonate is heated, no carbon dioxide is detected as it is thermally stable.

However, magnesium carbonate decomposes on heating as shown by the equation below.

$$
\begin{aligned}
& \mathrm{MgCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
& \Delta H^{\ominus}=+117 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \quad \Delta \mathrm{S}^{\ominus}=+175 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

(i) Explain why barium carbonate is thermally stable while magnesium carbonate is not.
Ba^{2+} ion is larger and has a smaller charge density than Mg^{2+}.
Ba^{2+} ion (has a smaller polarizing power) is able to polarize/ distort the large electron cloud of the carbonate ion less effectively than Mg^{2+}, weakening the C-O bond to a smaller extent.
More energy is required to break the $\mathrm{C}-\mathrm{O}$ bond in $\underline{\mathrm{BaCO}_{3}}$ than MgCO_{3}.
(ii) Account for the sign of ΔS^{\ominus} in this reaction.

There is an increase in disorderliness due to increase in the number of moles of gaseous particles , resulting in more ways to arrange the particles in the system.
(iii) Calculate the standard Gibbs free energy change, ΔG^{\ominus}, for the decomposition of magnesium carbonate.

$$
\begin{equation*}
\Delta G^{\ominus}=\Delta H^{\ominus}-T \Delta S^{\ominus} \tag{1}
\end{equation*}
$$

$$
=+117-\left(298 \times \frac{+175}{1000}\right)=+117-52.15
$$

$$
\approx+64.9 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(iv) Assuming that ΔH^{\ominus} and ΔS^{\ominus} for the reaction are independent of temperature, calculate the temperature at which the decomposition reaction becomes feasible.
$\Delta G^{\ominus}=0=\Delta H^{\ominus}-T \Delta S^{\ominus}=+117-\left(T \times \frac{+175}{1000}\right)$
$\mathrm{T}=669 \mathrm{~K}=396^{\circ} \mathrm{C}$
At 669K, the decomposition reaction becomes feasible.
(c) The labels of group 2 metal carbonates fell off the bottles. In an attempt to identify the compound in one of the bottles, the following experiment was carried out.
1.68 g of an insoluble metal carbonate, DCO_{3} was reacted with $100 \mathrm{~cm}^{3}$ of hydrochloric acid of concentration $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$. The resulting solution was then made up to $250 \mathrm{~cm}^{3}$ with distilled water. $25.0 \mathrm{~cm}^{3}$ of this solution required $25 \mathrm{~cm}^{3}$ of $0.04 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide for titration.
(i) Write a balanced equation for the reaction between the metal carbonate and hydrochloric acid.
$\mathrm{DCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{DCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$
(ii) Calculate the relative atomic mass of \mathbf{D} and hence using the Periodic Table, identify \mathbf{D}.
Amount of sodium hydroxide that was used for the titration
$=(25 / 1000) \times 0.04$
$=\underline{1.00 \times 10^{-3}} \mathrm{~mol}(3 \mathrm{sf})$

Amount of HCl present originally $=\frac{100}{1000} \times 0.500=0.05000 \mathrm{~mol}$

Amount of HCl in $\underline{\mathbf{2 5} .0 \mathrm{~cm}^{3}}$ after reaction with DCO_{3}
$=1.00 \times 10^{-3} \mathrm{~mol}$
Amount of unreacted HCl in $\underline{\mathbf{2 5 0} \mathrm{cm}^{3}}=1.00 \times 10^{-3} \times \frac{250}{25.0}$
$=1.00 \times 10^{-2} \mathrm{~mol}$
Amount of $\mathrm{HC} /$ reacted with DCO_{3}
= Amount of HCl initially - amount of unreacted HCl
$=0.05000-1.00 \times 10^{-2}=0.0400 \mathrm{~mol}$

Amount of DCO_{3} reacted $=0.0400 / 2=0.0200 \mathrm{~mol}$
M_{r} of $\mathrm{DCO}_{3}=1.68 / 0.0200=84$
A_{r} of $D=84-12.0-3 \times 16.0=24.0 \quad$ (must be 1d.p.)
$D=M g$
[Total: 12]

3 Claisen condensation is a carbon-carbon bond forming reaction between 2 esters or an ester and a carbonyl compound in the presence of strong base to form β-ketoesters or diketones respectively.

The following is the general equation for the reaction between an ester and a ketone.

The mechanism of the Claisen condensation reaction is given below.

(a) Name the type of reaction for the step shown in the box above.

Nucleophilic addition
The Claisen condensation reaction can be used in step IV of the following synthesis.

(b) (i) Suggest reagents and conditions for steps I to III.
[3]
Step I : ethanolic KCN, heat with reflux
Step II: $\mathrm{HCl}(\mathrm{aq})$ or $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat
Step III : $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, trace amount of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat with reflux
(ii) State the type of reactions for step I to III

Step I: Nucleophilic substitution
Step II: Acidic hydrolysis
Step III: Condensation or Nucleophilic acyl substitution
(iii) Propose the structures of compounds \mathbf{E}, \mathbf{F} and \mathbf{H}.
[3]

A
E
F

G

H
[Total: 10m]

4 (a) The Gattermann-Koch reaction, named after the German chemists Ludwig Gattermann and Julius Arnold Koch in organic chemistry, refers to a Friedel-Crafts acylation reaction in which carbon monoxide and hydrochloric acid are used in-situ with Friedel-Crafts catalyst, namely AlCl_{3}. The reaction involves an acylium ion as an electrophile and tetrachloroaluminate ion, AlCl_{4}. An example is provided below.

(i) Give the formula of the acylium ion in this reaction.
${ }^{+} \mathrm{CHO}$
(ii) The synthesis of compound \mathbf{L} involves the Gattermann-Koch reaction in Step II.

Complete the reaction scheme below by providing the appropriate reagents and conditions for Step I and IV and give the structural formula for J and K.

Step I: KMnO_{4}, dil $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat with reflux
Step IV: limited $\mathrm{Cl}_{2}(\mathrm{~g})$ or limited Cl_{2} in CCl_{4}, UV light

$\mathrm{J}:$

K:

(b) Three non-cyclic organic compounds, \mathbf{M}, \mathbf{N} and \mathbf{P} each have the same empirical formula $\mathrm{CH}_{2} \mathrm{O}$.
The number of carbon atoms in their molecules are shown in the table below.

compound	number of \mathbf{C} atoms
\mathbf{M}	2
\mathbf{N}	3
\mathbf{P}	3

All the carbon atoms are bonded directly to one another in \mathbf{M} and in \mathbf{N} but not in \mathbf{P}.
\mathbf{M} and \mathbf{N} each give a brisk effervescence with $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ but not \mathbf{P}.
\mathbf{P} does not give a silver mirror when treated with Tollens' reagent.
(i) Draw the structural formula of \mathbf{M}.

$\mathrm{CH}_{3} \mathrm{COOH}$

(ii) When \mathbf{N} is heated under reflux with acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, the product, \mathbf{Q}, gives a orange precipitate with 2,4-dinitrophenylhydrazine.

Draw the structural formulae of \mathbf{N} and \mathbf{Q}.

Compound \mathbf{N}
Compound Q
(iii) When \mathbf{N} is warmed with concentrated sulfuric acid, compound \mathbf{R} is formed. \mathbf{R} has the molecular formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}$.

Draw the structural formula of \mathbf{R}.

(iv) \mathbf{P} is optically active. Draw the displayed formula of \mathbf{P}.

[Total: 10]

5 Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ is produced commercially by the fermentation of sugars. Citric acid is used in the production of beverages and foods; in detergents; and in cosmetics and pharmaceuticals.

Fruits such as oranges, lemons and strawberries also contain citric acid.
(a) Citric acid can undergo the following reactions:

Suggest structures for the organic compounds S, T, U, V and W.
(b) As citric acid is a user-friendly, inexpensive, water-soluble crystalline solid, it is often used for finding the concentration of alkalis e.g. sodium hydroxide and potassium hydroxide.

Citric acid is a tribasic acid with the following $\mathrm{p} K_{a}$ values:
$\mathrm{p} K_{1}=3.14, \mathrm{p} K_{2}=4.75, \mathrm{p} K_{3}=6.40$
(i) Explain why citric acid is soluble in water.

Citric acid has (3 COOH groups) which can form hydrogen bonds with water molecules.
(ii) The $\mathrm{p} K_{a}$ value of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.76 .

Suggest why the $\mathrm{p} K_{1}$ value of citric acid is lower than the $\mathrm{p} K_{a}$ value of ethanoic acid.

The anion formed by citric acid contains two electron withdrawing - COOH group which disperses the negative charge on the oxygen atom of the anion.
Thus, the anion formed by citric acid is more stable than the ethanoate anion and hence citric acid is stronger/ has a lower $p K_{a}$ value.

OR
The anion formed by citric acid is further stabilised by intramolecular hydrogen bonding with the neighbouring COOH groups.
Thus, the anion formed by citric acid is more stable than the ethanoate anion and hence citric acid is stronger/ has a lower $p K_{a}$ value .
(iii) Calculate the pH of a solution that is a mixture of equal volumes of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of citric acid and $0.060 \mathrm{~mol} \mathrm{dm}^{-3}$ of sodium hydroxide.

A buffer solution is formed.
New initial concentration of citric acid $=0.100 / 2=0.050 \mathrm{~mol} \mathrm{dm}^{-3}$
New initial concentration of $\mathrm{NaOH}=0.060 / 2=0.030 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

After reaction
Final concentration of citric acid salt, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}=\mathbf{0 . 0 3 0} \mathrm{mol} \mathrm{dm}^{-3}$
Final concentration of citric acid $=0.050-0.030=\mathbf{0 . 0 2 0} \mathbf{m o l ~ d m}^{-3}$

$$
\begin{aligned}
\mathrm{pH} \text { of solution } & =\mathrm{pK}_{1}+\log _{10} \frac{[\mathrm{C} 6 \mathrm{H} 7 \mathrm{O}-]-]}{[\mathrm{H} 87 \mathrm{H}]} \\
& =3.14+\log _{10}\left[\frac{0.030}{0.020}\right]=3.316=3.32
\end{aligned}
$$

(c) The neutralisation equivalent (N.E.) of a carboxylic acid is defined as the mass in g of the acid required to neutralise one mole of a strong alkali such as sodium hydroxide. Each carboxylic acid has a unique N.E. value.
N.E. values can be used to determine the identity of a carboxylic acid.

A student carried out a titration experiment between a sample of citric acid and sodium hydroxide solution. 3.68 g of the citric acid was dissolved in $500 \mathrm{~cm}^{3}$ of water in a volumetric flask. It was found that $5.00 \mathrm{~cm}^{3}$ of the citric acid solution needed 5.29 g of $4.43 \mathrm{~g} \mathrm{dm}^{-3}$ sodium hydroxide solution for complete reaction.
(i) Calculate the mass, in g, of the citric acid used in the $5 \mathrm{~cm}^{3}$ sample.

Mass of citric acid $=3.68 \times \frac{5.00}{500}=0.0368 \mathrm{~g}$
(ii) Calculate the amount, in moles, of sodium hydroxide that reacted with the $5 \mathrm{~cm}^{3}$ of citric acid.

The density of the sodium hydroxide solution is $1.01 \mathrm{~g} \mathrm{~cm}^{-3}$.
Concentration of $\mathrm{NaOH}=\frac{4.43}{40}=0.11075 \mathrm{~mol} \mathrm{dm}^{-3}$
Volume of NaOH used $=5.29 / 1.01=5.2376 \mathrm{~cm}^{3}$
Moles of $\begin{aligned} \mathrm{NaOH} \text { used }=\frac{5.2376}{1000} \times 0.11075 & =5.801 \times 10^{-4} \mathrm{~mol}(4 \text { s.f. }) \\ & =5.80 \times 10^{-4} \mathrm{~mol}(3 \text { s.f. })\end{aligned}$
[2]
(iii) Calculate the neutralisation equivalent (N.E.) for this sample of citric acid.

Neutralisation Equivalent $=\frac{0.0368}{5.801 \times 10^{-4}}=63.4$
(d) Table 5.1 gives the neutralisation equivalent (N.E.) values for some organic acids.

Table 5.1

Acid name	Structure	Molar mass/ $\mathrm{g} \mathrm{mol}^{-1}$	N.E. / g
Malonic acid		104.0	52.0
Succinic acid		118.0	59.0
Anhydrous citric acid		192.0	64.0
Citric acid monohydrate		210.0	70.0
Tartaric acid		150.0	m
Lactic acid		90.0	90.0

(i) Suggest whether the student's sample of citric acid is a hydrated sample or anhydrous sample. Support your answer with appropriate evidence.

Anhydrous citric acid. The calculated value of N.E. is 63.4 and this is close to the theoretical value of 64.0 .
(ii) Determine the value of m in Table 5.1.
N.E. for tartaric acid $=\frac{150.0}{2}=75.0$
(e) Another student determines the N.E. of an unknown aliphatic acid to be 82.0 g .

The unknown aliphatic acid has the following formula, $\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{COOH})_{n}$ where x and y are integers and $\mathrm{n}=1,2$ or 3 .

Determine the molecular formula of the unknown aliphatic acid.
The molar mass of the acid is either:
$82.0 \mathrm{~g} \mathrm{~mol}^{-1}$ for a monobasic acid, $\mathrm{n}=1$
$82.0 \times 2=164.0 \mathrm{~g} \mathrm{~mol}^{-1}$ for a dibasic acid, $\mathrm{n}=2$
$82.0 \times 3=246.0 \mathrm{~g} \mathrm{~mol}^{-1}$ for a tribasic acid, $\mathrm{n}=3$

The molar mass of a -COOH group $=12.0+2 \times 16.0+1.0=45.0 \mathrm{~g} \mathrm{~mol}^{-1}$
The molar mass of a $-\mathrm{CH}_{2}-$ group $=12.0+2.0=14.0 \mathrm{~g} \mathrm{~mol}^{-1}$
It is a tribasic acid as $246.0-(3 \times 45.0)-(14.0 \times 7)=13.0 \mathrm{~g} \mathrm{~mol}^{-1}$ (equivalent to 1 C and 1 H)

The tribasic acid consists of $3-\mathrm{COOH}$ groups, $7-\mathrm{CH}_{2}-$ groups and one C and one H atom. It is possible to form a molecule using these groups.

The molecular formula is $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6}$ or $\mathrm{C}_{8} \mathrm{H}_{15}(\mathbf{C O O H})_{3}$

Marking guidelines

- 1 mark for calculating the molar mass of the tribasic acid
- 1 mark for explaining why it has to be the tribasic acid using the calculated molar mass
- 1 mark for giving the correct molecular formula
- Working must be shown for the mark to be obtained. No marks to be given if the correct answer is given without any working.

Additional note (not marking points):

It cannot be a monobasic acid as $85.0=12.0+45.0+2 \times 14.0$
There cannot be a structure for $1-\mathrm{COOH}$ group and $2-\mathrm{CH}_{2}-$ groups and 1 C atom. (Molecular formula $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}$)

It cannot be a dibasic acid as $164.0=2 \times 45.0+5 \times 14.0+4.0$
There cannot be a structure for $2-\mathrm{COOH}$ groups and $5-\mathrm{CH}_{2}-$ groups and 4 H atoms. (Molecular formula $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{4}$)
(f) The loss of carbon dioxide from a carboxylic acid is called decarboxylation.

$$
\mathrm{RCOOH} \longrightarrow \mathrm{RH}+\mathrm{CO}_{2}
$$

Certain types of carboxylic acids are readily decarboxylated. Beta-keto acids such as acetoacetic acid readily decarboxylate at room temperature in an acidic solution.

acetoacetic acid
The decarboxylation of acetoacetic acid occurs via a two-step mechanism.

- the H atom from the COOH group is transferred to the carbonyl oxygen atom via a cyclic transition state to form CO_{2} and the following compound, an enol,

- the enol then extracts a H atom from a $\mathrm{H}_{2} \mathrm{O}$ molecule to form a ketone and H^{+} and OH^{-}ions.

Suggest the mechanism for this reaction. Show any relevant lone pairs, dipoles and charges, and indicate the movement of electron pairs with curly arrows.

Step 1

Step 2

CHEMISTRY

Candidates answer on separate paper.
Additional Materials: Writing Papers
Data Booklet
Cover Page

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer one question.
You are advised to show all working in calculations.
You are reminded of the need for good English and clear presentation in your answers.
You are reminded of the need for good handwriting.
Your final answers should be in 3 significant figures.
At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part question.

Section A

Answer all the questions in this section.
Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ is a colourless crystalline solid and a simple aromatic carboxylic acid. Benzoic acid occurs naturally in many plants. Salts of benzoic acid are used as food preservatives and benzoic acid is an important precursor for the industrial synthesis of many other organic substances.
(a) In the identification of benzoic acid, a commonly used reagent is neutral iron(III) chloride solution, in which a buff precipitate of iron(III) benzoate, $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}$ is formed. When $50.0 \mathrm{~cm}^{3}$ of iron(III) chloride solution was added to $50.0 \mathrm{~cm}^{3}$ of benzoic acid solution, 0.0532 g of the buff precipitate was formed in the mixture.

The reactions that take place are shown below:

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} & \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}^{-}+\mathrm{H}^{+} \\
\mathrm{Fe}^{3+}+3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} & \longrightarrow \mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}+3 \mathrm{H}^{+}
\end{aligned}
$$

(Given: M_{r} of $\left.\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}=418.8\right)$
(i) Calculate the number of moles of benzoic acid that reacted with the neutral iron(III) chloride solution.

Number of moles of $\mathrm{Fe}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}\right)_{3}=0.0532 / 418.8$

$$
=1.2703 \times 10^{-4} \mathrm{~mol}
$$

$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-} \equiv \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
Number of moles of benzoic acid reacted $=3 \times 1.2703 \times 10^{-4}$

$$
=3.8108 \times 10^{-4}
$$

$$
=3.81 \times 10^{-4} \mathrm{~mol}
$$

(ii) Given that the pH of the solution after the reaction is 2.33, calculate the number of moles of H^{+}in the mixture.
$\left[\mathrm{H}^{+}\right]=10^{-2.33}=4.677 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\text { Number of moles of } \begin{aligned}
\mathrm{H}^{+} & =0.100 \times 4.677 \times 10^{-3} \\
& =4.677 \times 10^{-4} \\
& =4.68 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

(iii) Assuming that the H^{+}ions in solution are formed only from the dissociation of benzoic acid in solution, as well as the reaction of benzoic acid with iron(III) chloride, calculate the concentration of benzoate ions in the mixture.

Since the H^{+}comes from both dissociation of benzoic acid and reaction of benzoic acid with iron (III) chloride,

Number of moles of benzoate in solution $=4.677 \times 10^{-4}-3.8108 \times 10^{-4}$

$$
=8.6655 \times 10^{-5} \mathrm{~mol}
$$

Concentration of benzoate in solution $=$ moles $/$ volume

$$
\begin{aligned}
& =8.6655 \times 10^{-5} /[(50+50) / 1000] \\
& =8.67 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Allow ecf
(iv) Iron(III) benzoate is a sparingly soluble salt.

Calculate the $K_{\text {sp }}$ of iron(III) benzoate, given that the concentration of Fe^{3+} in the mixture was $1.83 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ at equilibrium.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{sp}} & =\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}-\right]^{3} \\
& =\left(1.83 \times 10^{-3}\right)\left(8.6655 \times 10^{-4}\right)^{3} \\
& =1.1908 \times 10^{-12} \\
& =1.19 \times 10^{-12} \mathrm{~mol}^{4} \mathrm{dm}^{-12}
\end{aligned}
$$

Allow ecf
(b) Benzoic acid can be produced by oxidising compound \mathbf{L}.

Compound \mathbf{L}
Compound \mathbf{L} can be synthesised by the following reaction scheme.

L
(i) State the type of reaction in step I and hence explain the need for FeBr_{3} to be anhydrous.

Electrophilic substitution
The catalyst will be hydrolysed and lose its catalytic property if it is dissolved in water.
FeBr_{3} has to be anhydrous as it has to be electron deficient to accept a lone pair of electron from the Br in $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Br}$ to form the electrophile $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}{ }^{+}$for electrophilic substitution to take place.

If water is present, $\mathrm{Fe}^{3+}(\mathrm{aq})$ will be present and the electrophile $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}{ }^{+}$will not be formed.
$\mathrm{Fe}^{3+}(\mathrm{aq})$ will undergo hydrolysis:
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{OH}^{-}\right)\right]^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$
(ii) Suggest the identities of \mathbf{J} and \mathbf{K}.

(iii) State the reagents and conditions for steps II to IV.

II: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat with immediate distillation
III: HCN , trace amount of NaCN or NaOH , cold
IV: dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ or dilute HCl , heat
(iv) State the type of reaction for stage IV.

Acidic hydrolysis

2 Sulfur is a chemical element with the symbol S and an atomic number of 16. It is an abundant, multivalent non-metal. It can be found in amino acids and as a precursor to other chemicals such as $\mathrm{H}_{2} \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{SO}_{4}$ is a common mineral acid with many uses. It can be used as an electrolyte in batteries.
(a) In the cells of a lead-acid car battery the following reactions take place.

$$
\begin{array}{ll}
\text { anode: } & \mathrm{Pb}(\mathrm{~s}) \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \\
\text {cathode } & \mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{array}
$$

(i) Use the Data Booklet to calculate E^{θ} cell for this reaction.

$$
\begin{equation*}
\mathrm{E}^{\ominus} \text { cell }=1.47-(-0.13)=+1.60 \mathrm{~V} \tag{1}
\end{equation*}
$$

(ii) Construct an equation for the overall reaction.

$$
\begin{equation*}
\mathrm{PbO}_{2}+\mathrm{Pb}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{~Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

The electrolyte in a lead-acid cell is $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. Most of the $\mathrm{Pb}^{2+}(\mathrm{aq})$ ions that are produced at the electrodes are precipitated as a highly insoluble $\mathrm{PbSO}_{4}(\mathrm{~s})$.
(iii) Construct an equation for the overall cell reaction in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
\begin{equation*}
\mathrm{PbO}_{2}+\mathrm{Pb}+4 \mathrm{H}^{+}+2 \mathrm{SO}_{4}{ }^{2-} \longrightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

(iv) By considering the effect of decreasing $\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]$ on the electrode potentials of the cathode and the anode, state and explain whether the overall E^{\ominus} cell will increase, decrease or remain the same.

Overall E^{θ} cell will increase as $\left[\mathrm{Pb}^{2+}\right]$ decreases, $\mathrm{E}^{\theta}\left(\mathrm{PbO}_{2} / \mathrm{Pb}^{2+}\right)$ will become more positive, but $\mathrm{E}^{\theta}\left(\mathrm{Pb}^{2+} / \mathrm{Pb}\right)$ will become more negative
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is also used as an electrolyte in the anodising of aluminium. Anodising of aluminium is the process of coating aluminium metal with aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ via electrolysis with the aluminium metal as the anode.
(i) Using $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ as the electrolyte and an inert electrode, draw an electrolysis set-up to show how a piece of aluminium metal can be anodised.

- Correct orientation of the battery
- Correct labeling of both the electrodes with the material used
- Correct cell. i.e. An electrolytic cell and not a electrochemical cell
(ii) Write chemical equations to show the reactions at the anode and cathode during anodising. Include in your answers, the overall equation.

Reaction at the Al anode:
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}$
The oxygen liberated then reacts with the aluminium to produce aluminium oxide protective surface.
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Reaction at the Pt cathode:
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$
Overall reaction: $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})$
(iii) The aluminium piece to be anodised has a surface area of $29.2 \mathrm{~cm}^{2}$. Calculate the time taken to form a 0.2 mm protective layer of $\mathrm{Al}_{2} \mathrm{O}_{3}$ on the aluminium piece if a current of 2.0 A is passed through the set-up.
(Density of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is $3.95 \mathrm{~g} \mathrm{~cm}^{-3}$)
Volume of $\mathrm{Al}_{2} \mathrm{O}_{3}$ layer $=29.2 \times 0.02$

$$
=0.58400 \mathrm{~cm}^{3}
$$

Mass of $\mathrm{Al}_{2} \mathrm{O}_{3}=3.95 \times 0.584$

$$
=2.3068 \mathrm{~g}
$$

Amount of $\mathrm{Al}_{2} \mathrm{O}_{3}=\frac{2.3068}{2 \times 27.0+3 \times 16.0}$

$$
\begin{aligned}
& \quad=0.022616 \mathrm{~mol} \\
& \text { Amount of } \mathrm{O}_{2}=0.0226 \times 3 / 2 \\
& \quad=0.033923 \mathrm{~mol} \\
& \text { Amount of electrons passed through the anode }=0.0339 \times 4 \\
& \\
& \begin{aligned}
\mathrm{Q}=0.13569 \times 96500 \\
=13094 \mathrm{C}
\end{aligned} \\
& \begin{aligned}
\text { Time needed } & =0.13569 \mathrm{~mol} \\
& =6547.2 \mathrm{~s}=6550 \mathrm{~s}(3 \mathrm{~s} . f)
\end{aligned}
\end{aligned}
$$

Alternatively from here,
It $=n_{e} F$ approach

$$
\begin{aligned}
\mathrm{t} & =\left(\mathrm{n}_{\mathrm{e}} \mathrm{~F}\right) / \mathrm{I} \\
& =(0.13569 \times 96500) / 2.0 \\
& =6547.2 \mathrm{~s}=6550 \mathrm{~s}(3 \mathrm{~s} . \mathrm{f})
\end{aligned}
$$

(iv) Give one example of an anodised aluminium object, and explain the advantages of anodising it.

Examples of anodized aluminium objects: drink cans, windows frames and grilles

Anodised aluminium objects are more resistant to corrosion. Moreover, they can be decorative as well since the aluminium oxide layer is able to absorb dyes.
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$, can be produced when sulfur trioxide is added to water, according to the following equation:

$$
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

Calculate the volume of gaseous SO_{3} under room temperature and pressure, needed to form $30.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to be produced $=\frac{30}{1000} \times 0.02=6.00 \times 10^{-4}$
Amount of SO_{3} needed $=6.00 \times 10^{-4}$
Volume of SO_{3} needed at r.t.p $=6.00 \times 10^{-4} \mathrm{X} 24.0 \mathrm{dm}^{3}$

$$
=0.0144 \mathrm{dm}^{3}
$$

(d) $25.0 \mathrm{~cm}^{3}$ of $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was titrated against $\mathrm{NH}_{3}(\mathrm{aq})$. The following graph was obtained.

(i) Calculate the initial pH of the sulfuric acid solution.
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.02 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]=0.04 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=1.40$
(ii) Calculate the concentration of $\mathrm{NH}_{3}(\mathrm{aq})$ used in this titration.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
Amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used in titration $=\frac{25}{1000} \times 0.02=5.000 \times 10^{-4}$
Amount of NH_{3} used in titration $=\frac{25}{1000} \times 0.02 \times 2=1.000 \times 10^{-3}$
$\left[\mathrm{NH}_{3}\right]=\frac{1 \times 10^{-3}}{12.60 / 1000}=0.0794 \mathrm{~mol} \mathrm{dm}^{-3}$
(iii) Suggest a suitable indicator for this titration, giving a reason for your choice.

Methyl orange.
The working range for methyl orange (is in the region of 3 to 5 and) coincides with the equivalence point of a strong acid-weak base titration (<7).
(e) Thiophenol are the sulfur analogue of phenol, that is, sulfur takes the place of oxygen in the hydroxyl group of phenol. A common reaction that phenol and thiophenol have is shown in Figure 1 below.

Figure 1
Consider the reaction scheme below.

(i) Suggest reagent and condition for step I.

Reagents and Conditions: Na metal at room temperature

OR

Reagents and Conditions: $\mathrm{NaOH}(\mathrm{aq})$ at room temperature
(ii) What type of reaction is step I and step II?

Step I
Acid- Metal (if student answer is Na metal)

Accept: Redox

OR
Acid-base if student answer is $\mathrm{NaOH}(\mathrm{aq})$

Step II

Nucleophilic substitution
(iii) Suggest the structure of $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~S}$.

[Total: 23]
3 Halogenated organic compounds are widespread throughout nature and have a vast array of uses in modern industrial processes. They find many uses in the industries such as solvents and pesticides.

The rate of hydrolysis of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ with aqueous NaOH was studied in a series of 3 experiments in which the initial rate of the reaction was measured. The following results were obtained.

Experiment	$\left[\mathrm{OH}^{-}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial Rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.100	0.010	4×10^{-6}
2	0.200	0.010	8×10^{-6}
3	0.200	0.020	16×10^{-6}

(a) Explain the meaning of the following terms.
(i) order of reaction
(ii) half-life

The order of reaction with respect to a given reactant is the power to which the concentration of that reactant is raised to in the rate equation.

The half-life ($\mathrm{t}_{1 / 2}$) of a reaction is the time taken for the concentration of a reactant to decrease to half its initial value.
(iii) Using the data given, derive the rate equation for the hydrolysis of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$.

For $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
(inspection method)
Using experiment 1 and 2, when [OH^{-}] doubles, keeping $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$ constant, rate doubled. Hence order of reaction with respect to $\left[\mathrm{OH}^{-}\right]$is one.

Using experiment 2 and 3 , when $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$ is doubled, keeping $[\mathrm{OH}]$ constant, rate doubled. Hence order of reaction with respect to $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$ is one.
(Substitution method)
Let the rate law be:
Rate $=\mathrm{k}\left[\mathrm{OH}^{-}\right]^{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]^{\mathrm{b}}$
Using experiment 1 and 2
$\frac{4 \times 10^{-6}}{8 \times 10^{-6}}=\frac{k(0.100)^{a}(0.010)^{b}}{k(0.200)^{a}(0.010)^{b}}$
$\left(\frac{1}{2}\right)^{a}=\frac{1}{2}$
$a=1$
Using experiment 2 and 3
$\frac{8 \times 10^{-6}}{16 \times 10^{-6}}=\frac{k(0.010)^{b}}{k(0.020)^{b}}$
$\left(\frac{1}{2}\right)^{b}=\frac{1}{2}$
$b=1$
Rate $=\mathrm{k}[\mathrm{OH}-]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$
(iv) Using your rate equation, determine a value for the rate constant, including units for this reaction.

Rate $=\mathrm{k}[\mathrm{OH}-]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]$
$6 \times 10^{-6}=k(0.100)(0.010)$
$k=6.00 \times 10^{-3} \quad$ allow ecf
$\mathrm{k}=\frac{\text { Rate }}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]}$
$\mathrm{k}=\frac{\mathrm{moldm}^{-3} \mathrm{~s}^{-1}}{\left(\mathrm{moldm}^{-3}\right)^{2}}=\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}[1]$
(v) Using the Maxwell-Boltzmann distribution curve, explain how the reaction rate might change with an increase in temperature.

- correct axes
- two graphs with higher temperature graph shifted to the left and lower peak, both graph must start from origin.
- both graphs should be labelled, Ea indicated with shading
- legend of shading provided.

An increase in temperature will result in an increase in the average kinetic energy of the particles.
There is an increase in the fraction of particles with energy equal to or greater than the activation energy, E_{a}. This is as shown by the larger shaded area at a higher temperature in the above diagram.
This result in an increase in the frequency of effective collisions.
Since rate is proportional to the frequency of effective collision, rate increases.
(vi) Given that the rate equation for the hydrolysis of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ is rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$, suggest possible mechanisms for both of the reactions of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ with aqueous NaOH which are consistent with the observed kinetics.

For $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
Nucleophilic substitution, $\mathrm{S}_{\mathrm{N}} 1$
Step 1 (formation of carbocation):

Step 2 (attack by nucleophile)

- $\quad \delta+$ and $\delta-$ on C-Br
- arrow to show breaking of C-Br bond, arrow must start from the bond
- slow and fast step
- Correct intermediate and Br^{-}formed
- Ione pair on O of OH-
- arrow starting from lone pair to $\mathrm{C}+$

For $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
Nucleophilic substitution, $\mathrm{S}_{\mathrm{N}} 2$

- $\quad \delta+$ and δ - on $\mathrm{C}-\mathrm{Br}$
- arrow to show breaking of $\mathrm{C}-\mathrm{Br}$ bond, arrow must start from the bond
- lone pair on O of OH-
- arrow starting from lone pair to C
- square bracket and negative charge for transition state
- initial reactant and final product should be inversed (solid wedge and dash is not necessary) and Br^{-}as product
(b) Bromine reacts with 2-methylpropane in the presence of sunlight to produce monobrominated products via a free radical mechanism.
(i) Explain why the mono-bromination of 2-methylpropane results in the formation of two products in unequal amounts.

In the propagation step, two alkyl radicals will be formed. Tertiary $\left(\mathrm{CH}_{3}\right) \mathrm{C} \bullet$ is more stable than primary $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$. / There are 9 primary H atom and only 1 tertiary H atom.
(ii) By quoting appropriate data from the Data Booklet, explain the difference in the reactivity of fluorine with 2-methylpropane compare with that of bromine.

Bond energy of $\mathrm{F}_{2}=158 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Bond energy of $\mathrm{Br}_{2}=193 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Fluorine will react more vigorously/ more reactive because the F-F bond is weaker than $\mathrm{Br}-\mathrm{Br}$ bond.

Or
Bond energy of C-F $=485 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Bond Energy of C-Br $=280 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Fluorine will react more vigorously because C-F bond formed is stronger than CBr bond.
(c) A student was not successful in making \mathbf{X} from (chloromethyl)benzene with the proposed reaction route as shown.

(chloromethyl)benzene

X

Instead, a different product with molecular formula $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ was obtained.
(i) Draw the displayed formula of the product obtained.

(ii) Suggest how \mathbf{X} can be synthesised from (chloromethyl)benzene. You should include the reagents, conditions and intermediate(s) formed in your answer.

Step 1: Conc HNO_{3}, Conc $\mathrm{H}_{2} \mathrm{SO}_{4}, 30^{\circ} \mathrm{C}<$ temp $<55^{\circ} \mathrm{C}(30 / 55$ will not be accepted)

Step 2:

1) Sn , conc HCl , heat
2) $\mathrm{aq} \mathrm{NaOH}, \mathrm{rtp}$

Section B

Answer one question from this section
4 Hydrogen gas is needed in a large number of processes in the chemical industries such as hydrocracking of petroleum, production of margarine and production of ammonia.

Hydrogen gas can be produced in many chemical reactions.
(a) One of the reactions that produces hydrogen is the reaction of sodium with ethanol.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})+\mathrm{Na}(\mathrm{~s}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}(\mathrm{~s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})
$$

This is also a chemical test for the presence of alcohol.
(i) Write the full electronic configuration of Na .

Electronic configuration of sodium: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(ii) Describe how you would use the ionisation energies found in the Data Booklet to conclude that sodium is in group 1 of the periodic table.

Since there is a large increase between the first ionisation energy ($494 \mathrm{~kJ} \mathrm{~mol}^{-}$ ${ }^{1}$) and the second ionisation energy ($4560 \mathrm{~kJ} \mathrm{~mol}^{-1}$) of sodium. This means that the second electron is removed from the inner principal quantum shell, hence there is only one valence electron in sodium.
(iii) Ethanoic acid reacts with sodium in a similar way. However, when ethanol and ethanoic acid is reacted with solid sodium carbonate separately, only ethanoic acid gives off a gas that forms white precipitate with calcium hydroxide.

Explain the difference in reactions of ethanol and ethanoic acid with sodium carbonate.

Reasons: Ethanoic acid is a stronger acid than ethanol hence it is acidic enough to react with sodium carbonate.
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
For the ethanoate anion, the negative charge can be delocalised over two electronegative oxygen atoms. This disperses the negative charge on the oxygen atom and leads to a stabilisation of the ethanoate anion.
Hence, ethanoic acid is the more acidic.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
For the ethoxide anion, the electron-donating ethyl group intensifies the negative charge on the oxygen atom. Thus, the ethoxide anion is less stable.
(iv) An unknown compound $\mathbf{M}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ was found to be an alcohol when tested with sodium metal.

When \mathbf{M} is treated with hot acidified potassium dichromate, compound $\mathbf{N}, \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$ is formed. \mathbf{N} gives a yellow precipitate, \mathbf{P} when warmed with alkaline aqueous iodine.

When \mathbf{M} is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, compound $\mathbf{R}, \mathrm{C}_{8} \mathrm{H}_{8}$ is formed. \mathbf{R} gives compound \mathbf{S} when reacted with hydrogen chloride gas.
\mathbf{M} also gave compound \mathbf{S} when reacted with phosphorous pentachloride at room temperature.

Deduce the structures of $\mathbf{M}, \mathbf{N}, \mathbf{P}, \mathbf{R}$ and \mathbf{S}.

Explanation not required.
Comparable number of C and $\mathrm{H} \rightarrow \mathbf{M}$ contained benzene ring.
\mathbf{M} undergoes oxidation with hot acidified potassium dichromate $\boldsymbol{\rightarrow} \mathbf{N}$ is aldehyde or ketone
\mathbf{N} undergoes oxidation with alkaline aqueous iodine to give yellow precipitate,
P: $\underline{C H I}_{3}$
$\rightarrow \mathrm{N}$ has structure $-\mathrm{C}-\mathrm{CH}_{3}$ and so M has $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ structure.

M:

N :

M undergoes dehydration when heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathbf{R}$ is an alkene
R:

\mathbf{R} undergoes electrophilic addition when heated with hydrogen chloride gas \rightarrow \mathbf{S} is halogenoalkane

M undergoes substitution with phosphorous pentachloride at room temperature $\boldsymbol{\rightarrow} \mathbf{S}$ is halogenoalkane

(b) Another reaction that produces hydrogen is the reaction of methane with steam at $1000-1400 \mathrm{~K}$.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+206 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

This reaction produces large quantities of hydrogen for industrial use.
(i) State and explain the effect of decreasing the temperature of the reaction on the equilibrium position.

When temperature of the system is decreased, by Le Chatelier's Principle, the equilibrium will favour exothermic reaction to release heat. Hence, the backward reaction is favoured and equilibrium position shifted left.
(ii) Deduce the sign of entropy change for the forward reaction.

Since the no. of moles of gas increases for the forward reaction, disorderness increased as there are more ways to arrange the particles so entropy change (ΔS) is positive.
(iii) Hence, or otherwise, predict and explain the spontaneity of the forward reaction at low temperature.

Since $\Delta G=\Delta H-T \Delta S$
When temperature is low, magnitude of $-\mathrm{T} \Delta \mathrm{S}$ will be smaller than that of magnitude of $\Delta \mathrm{H}$. or similar reasoning.

Since ΔS is positive and hence $-T \Delta S$ is negative and ΔH is positive, $\Delta \mathrm{G}$ would be positive and hence the reaction is not spontaneous
(iv) Comment and explain if there is any discrepancy in your answers in $\mathbf{b}(\mathbf{i})$ and b(iii).

No. Since at low temperature, forward reaction is not spontaneous ($\Delta \mathrm{G}$ is positive) hence the position of equilibrium position should be on the left/ forward reaction is not favoured
(v) Calculate the enthalpy change of vaporisation of water of using the data in Table 1.

Table 1

Enthalpy change of formation of carbon monoxide	$-111 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of formation of methane	$-75 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change of formation of water	$-285 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Enthalpy change of reaction
$=\Sigma \Delta H_{f}$ product $-\Sigma \Delta H_{f}$ reactant
$=(-111+3(0))-(-285+-75)$
$=+249 \mathrm{kJmol}^{-1}$

By Hess' law,

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{vap}}{ }^{\ominus} \mathrm{H}_{2} \mathrm{O} & =+249 \mathrm{kJmol}^{-1}-\left(+206 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\
& =+43.0 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Or any other possible approaches.
(c) Hydrogen gas can also be produced from the reaction of carbon monoxide with steam.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) K_{\mathrm{c}}=6.40 \times 10^{-1} \text { at } 1100 \mathrm{~K}
$$

A mixture containing 0.8 mol of CO and 0.8 mol of $\mathrm{H}_{2} \mathrm{O}$ was placed in a $2 \mathrm{dm}^{3}$ flask and allowed to come to equilibrium at 1100 K .
(i) Write an expression for an expression for K_{c} of this reaction.

$$
\begin{equation*}
K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]} \tag{1}
\end{equation*}
$$

(ii) Calculate the amount of each substance present in the equilibrium mixture at 1100K.

Let the change in number of moles be x .

	$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$						\rightleftharpoons	$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
initial moles	$0.80 \quad 0.80$	0	0					
change in moles	-x	-x	+x	+x				
eqm moles	$(0.80-\mathrm{x})$	$(0.80-\mathrm{x})$	+x	+x				

$$
\begin{gathered}
K_{c}=\frac{\frac{x^{2}}{2}}{\left(\frac{0.80-x}{2}\right)^{2}}=6.40 \times 10^{-1} \\
0.8 \times 0.8-0.8 x=x \\
x=0.356
\end{gathered}
$$

At equilibrium
$n(C O)=n\left(\mathrm{H}_{2} \mathrm{O}\right)=(0.80-0.356)=0.444 \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{CO}_{2}\right)=\mathrm{n}\left(\mathrm{H}_{2}\right)=0.356 \mathrm{~mol}$
(iii) State and explain the effect of decreasing pressure on the equilibrium constant.

Decreasing pressure has no effect on the equilibrium constant as it is only affected by change in temperature.
[Total:20]
5 Methanol can be prepared industrially by reacting together carbon monoxide and hydrogen. This is a reversible reaction:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \Delta H=-94 \mathrm{kJmol}^{-1}
$$

A chemist mixes together $0.114 \mathrm{~mol} \mathrm{CO}(\mathrm{g})$ and $0.152 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})$ in a container. The container is pressurised and then sealed and the total volume is $200 \mathrm{~cm}^{3}$. The mixture is heated to 500 K at constant volume and left to reach equilibrium. The chemist analyses the equilibrium mixture and finds that $0.052 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}$ has formed.
(a) Calculate the value of K_{c} for the equilibrium at 500 K .

	$\mathrm{CO}(\mathrm{g})$	$+2 \mathrm{H}_{2}(\mathrm{~g})$	\rightleftharpoons
	0.114	0.152	0
Initial amount/ mol	-0.052	$-2(0.052)$	+0.052
Change in amount $/ \mathrm{mol}$	0.062	0.048	0.052
Equilibrium amount $/ \mathrm{mol}$	0.31	0.24	0.26
Equilibrium concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$			

All three equilibrium concentrations

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{H}_{2}\right]^{2}[\mathrm{CO}]}=\frac{[0.26]}{[0.24]^{2}[0.31]}
$$

$$
=14.6 \mathrm{~mol}^{-2} \mathrm{dm}^{6}
$$

(b) The chemist repeats the experiment using the same initial amounts of CO and H_{2}. The same procedure is used but the mixture is heated in the $200 \mathrm{~cm}^{3}$ sealed container to a temperature higher than 500 K .
As the gas volume is kept at $200 \mathrm{~cm}^{3}$, the increased temperature also increases the pressure.

Explain why it is difficult to predict how the yield of $\mathrm{CH}_{3} \mathrm{OH}$ would change and state what happens to the value of K_{c}.

At higher pressure, position of equilibrium shifts to the right with fewer gas molecules.

At higher temperature position of equilibrium shifts to the left to favour endothermic reaction.

Since relative effect of pressure and temperature is unknown, it is difficult to predict how the yield of $\mathrm{CH}_{3} \mathrm{OH}$ would change.

The value of K_{c} decreases.
(c) Methanol can be oxidised to formaldehyde, HCHO , by passing its vapour over copper heated to $300^{\circ} \mathrm{C}$.

Explain why the boiling point of methanol $\left(65^{\circ} \mathrm{C}\right)$ is higher than that of formaldehyde ($-19^{\circ} \mathrm{C}$).

Both HCHO and $\mathrm{CH}_{3} \mathrm{OH}$ have simple molecular structures.
$\mathrm{CH}_{3} \mathrm{OH}$ have stronger hydrogen bonds between the molecules while HCHO have weaker permanent dipole-permanent dipole interactions between the molecules .
More energy is required to overcome the stronger hydrogen bonds between $\mathrm{CH}_{3} \mathrm{OH}$ molecules, thus $\mathrm{CH}_{3} \mathrm{OH}$ has a higher boiling point.
(d) State the type of hybridisation shown by the C atom in formaldehyde and draw its hybrid orbitals.

Type of hybridisation: sp^{2}

three sp^{2} hybrid orbitals
with correct shape
(e) Benzaldehyde, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$, is the simplest aromatic aldehyde and has a characteristic smell of almonds.
In the presence of a solution of potassium hydroxide, benzaldehyde undergoes disproportionation to give a mixture of two organic products, \mathbf{E} and \mathbf{F}. \mathbf{F} has a higher solubility in water compared to \mathbf{E}.
(i) Suggest the structures of E and F.

E

F
(ii) Explain why \mathbf{F} is soluble in water.

Ionic salt \mathbf{F} is able to form ion-dipole interactions with water molecules
(f) Alkyllithium compounds, RLi, can be used to increase the number of carbon atoms in an organic compound. Different alkyl groups, R, add carbon chains with different chain lengths.

RLi provides a source of R^{-}ions, which act as a nucleophile.
(i) RLi reacts with benzaldehyde to give an intermediate in stage 1, followed by reaction with aqueous acid to form an alcohol in stage 2.

Describe the mechanism for the above reaction, including curly arrows and relevant dipoles.

- dipoles on $\mathrm{C}=\mathrm{O}$ bond \& lone pair of electrons on R^{-}nucleophile
- 2 electron arrows in step 1
- slow and fast step
- correct intermediate
- lone pair of electrons on O^{-}and electron arrow in step 2
- alcohol product
(ii) 'Ozonolysis' is a technique used in Organic Chemistry to break open a $\mathrm{C}=\mathrm{C}$ double bond. During ozonolysis, an alkene reacts with ozone, O_{3}. The products are carbonyl compounds as shown below.

An aromatic alkene, A undergoes ozonolysis to give benzaldehyde and B, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$. B has no reaction with $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq})$ but gives a yellow precipitate with aqueous alkaline iodine.

B undergoes a reaction with an alkyllithium compound, C, followed by reaction with aqueous acid to give an alcohol, D, which is optically active. The elimination of $\mathrm{H}_{2} \mathrm{O}$ from D produces a mixture of four different isomeric alkenes with the formula, $\mathrm{C}_{7} \mathrm{H}_{14}$, only two of which are cis-trans isomers of each other. Suggest the structural formulae of compounds \mathbf{A} to \mathbf{D} and the two cis-trans isomers. [6]

B

C

D

Cis and trans isomers
[Total: 20]

CANDIDATE

 NAME $\square$$\square$
CLASS
INDEX NUMBER

CHEMISTRY

9729/04
Paper 4 Practical
Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number, name and class on all the work you hand in.
Give details of the practical shift and laboratory when appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Qualitative Analysis Notes are printed on pages 18 and 19.

Shift
Laboratory

At the end of the examination, fasten all your work securely together. The number of marks is given in the brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 19 printed pages and 1 blank page.

1 In this experiment you will determine the relative atomic mass, A_{r}, of magnesium by a titration method.

FA 1 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
FA 3 is $0.120 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH magnesium ribbon bromophenol blue indicator

(a) Method

Reaction of magnesium with FA 1

- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 1 into the $250 \mathrm{~cm}^{3}$ beaker.
- Weigh the strip of magnesium ribbon and record its mass.
mass of magnesium =
- Coil the strip of magnesium ribbon loosely and then add it to the FA 1 in the beaker.
- Stir the mixture occasionally and wait until the reaction has finished.

Dilution of the excess acid

- Transfer all the solution from the beaker into the volumetric flask.
- Make up the solution up to the mark using distilled water.
- Shake the flask to mix the solution before using it for your titrations.
- Label this solution of hydrochloric acid FA 2.

Titration

- Fill the burette with FA 2.
- Rinse the pipette out thoroughly. Then pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add several drops of bromophenol blue indicator.
- Run FA 2 from the burette into this flask until the mixture just becomes yellow.
- Carry out as many titrations as you think necessary to obtain consistent results.
- Make certain that your recorded results show the precision of your working.
- Record in a suitable form below all your burette readings and the volume of FA 2 added in each accurate titration.

Results

M1	
M2	
M3	
M4	
M5	
M6	

[6]
(b) From your titrations, obtain a suitable volume of FA 2 to be used in your calculations. Show clearly how you obtained this volume.

Volume of FA $2=$
(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Deduce the amount of hydrochloric acid in the volume of FA 2 you calculated in (b)

Amount of $\mathrm{HCl}=$
(ii) In (a), you reacted $25.0 \mathrm{~cm}^{3}$ of FA 1 with your weighed piece of magnesium. After the reaction, the unreacted hydrochloric acid was used to prepare $250 \mathrm{~cm}^{3}$ of FA 2.

Calculate the amount of hydrochloric acid that reacted with the magnesium ribbon.

Amount of HCl reacting with $\mathrm{Mg}=$ \qquad [2]
(iii) Hence, calculate the relative atomic mass, A_{r}, of magnesium.
A_{r} of $M g=$
(d) A student carried out the same experiment but used 1.00 g of magnesium ribbon. State and explain why the student's experiment could not be used to determine the value for the A_{r} of magnesium. Include a calculation in your answer.
[$\left.A_{r}: \mathrm{Mg}, 24.3\right]$

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

The iodine, I_{2}, produced can be reacted immediately with thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

When all the thiosulfate has been used, the iodine produced will turn starch indicator blueblack.

The rate of the reaction can therefore be measured by finding the time for the blue-black colour to appear.

FA 4 is aqueous iron(III) chloride, FeCl_{3}.
FA 5 is aqueous potassium iodide, KI.
FA 6 is $0.0060 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
starch indicator
You are advised to read the instructions before starting any practical work and draw a table for your results in the space on page 6.
(a) Method

Experiment 1

- Fill a burette with FA 4.
- Run $20.00 \mathrm{~cm}^{3}$ of FA 4 into a $100 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to place the following in a second $100 \mathrm{~cm}^{3}$ beaker.
- $10 \mathrm{~cm}^{3}$ of FA 5
- $20 \mathrm{~cm}^{3}$ of FA 6
- $10 \mathrm{~cm}^{3}$ of starch indicator
- Add the contents of the second beaker to the first beaker and start timing.
- Stir the mixture once and place the beaker on the white tile.
- The mixture turns brown and then yellow before turning a blue-black colour. Stop timing when this blue-black colour appears.
- Record in your table the volume of FA 4 used, the volume of distilled water used and the time to the nearest second for the blue-black colour to appear.
- Wash both beakers.

For each of Experiments 1-6 you should complete your results table to show the volume of FA 4 used, the volume of distilled water used and the time taken to the nearest second for the blue-black colour to appear.

Experiment 2

- Fill the other burette with distilled water.
- Run $10.00 \mathrm{~cm}^{3}$ of FA 4 into a $100 \mathrm{~cm}^{3}$ beaker.
- Run $10.00 \mathrm{~cm}^{3}$ of distilled water into the same beaker.
- Use the measuring cylinder to place the following in a second $100 \mathrm{~cm}^{3}$ beaker.
- $10 \mathrm{~cm}^{3}$ of FA 5
- $20 \mathrm{~cm}^{3}$ of FA 6
- $10 \mathrm{~cm}^{3}$ of starch indicator
- Add the contents of the second beaker to the first beaker and start timing.
- Stir the mixture once and place the beaker on the white tile.
- Stop timing when a blue-black colour appears.
- Wash both beakers.

Experiments 3-6

Carry out four further experiments to investigate the effect of changing the concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ by altering the volume of aqueous $\mathrm{FeCl}_{3}, \mathrm{FA} 4$, used.

You should not use a volume of FA 4 that is less than $6.00 \mathrm{~cm}^{3}$ and the total volume of the reaction mixture must always be $60 \mathrm{~cm}^{3}$.

M14	
M15	
M16	
M17	
M18	
M19	

The rate of reaction can be found by calculating the change in concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ that occurred when enough iodine was produced to change the colour of the indicator to blue-black.

Use your data and the equations on page 5 to carry out the following calculations.
Show your working and appropriate significant figures in the final answer to each step of your calculations.
(b) (i) Calculate the amount of thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ used in each experiment.
(ii) Calculate the amount of iron(III) ions, Fe^{3+}, that were used to produce the amount of iodine that react with the amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in (i).

Amount of Fe^{3+}
(iii) Using your answer to (ii), calculate the change in Fe^{3+} up to the time of appearance of the blue black colour.
(iv) The following formula can be used as a measure of the 'rate of reaction'.

$$
\text { 'rate of reaction' }=\frac{\text { change in concentration of } \mathrm{Fe}^{3+}(\mathrm{aq})}{\text { reaction time }} \times 10^{6}
$$

Complete the table to show the volume of FA 4, the reaction time and the rate in Experiments 1-6. You should include units.

If you were unable to calculate a value for the change in concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ in (iv), you should assume it is $2.50 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. (Note: this is not the correct value.)

Experiment			
1			
2			
3			
4			
5			
6			M23

(c) On the grid, plot the rate (y-axis) against the volume of FA 4 (x-axis). Draw a line of best fit through the points. You should identify any points you consider anomalous.

(d) Using your graph, what conclusion can you reach about the effect of changing the concentration of FeCl_{3} on the rate of the reaction between $\mathrm{Fe}^{3+}(\mathrm{aq})$ and $\mathrm{I}^{-}(\mathrm{aq})$?
\qquad
\qquad
(e) It was found, by carrying out experiments similar to those used in (a), that increasing the concentration of I^{-}increased the rate of the reaction.

The student suggested a modification to the method by using the same volumes of all reagents but with the concentration of FA4 and FA 5 being doubled their original values. State what the effect would be on the reaction time in Experiment 1 and explain how this change would affect any possible errors in the measurements.
\qquad
\qquad
\qquad
(f) Which of the experiments you carried out in (a) had the greatest percentage error in the reaction time? Calculate this percentage error. Assume that the error in measuring the reaction time is $\pm 0.5 \mathrm{~s}$.

(g) Planning

Aqueous hydrogen peroxide decomposes into oxygen gas and water. The reaction is normally very slow but is catalysed by solid manganese (IV) oxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

You are to plan an experiment to investigate how the rate of the catalysed decomposition of aqueous hydrogen peroxide depends on its concentration.
(i) The rate of decomposition depends on the number of hydrogen peroxide molecules present in a given volume of solution.

Use this information to predict how the rate of decomposition of the hydrogen peroxide depends on the concentration.

Prediction \qquad
\qquad
\qquad
(ii) You are to design a laboratory experiment to test your prediction in (g) (i).

In addition to the standard apparatus present in a laboratory you are provided with the following materials.

- $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrogen peroxide
- A supply of manganese (IV) oxide

Complete the table below to show how you would prepare five solutions of aqueous hydrogen peroxide. Make sure that the correct units are recorded.

expt No.	volume of $\mathrm{H}_{2} \mathrm{O}_{2}$	volume of $\mathrm{H}_{2} \mathrm{O}$	concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$
1			
2			
3			
4			
5			

(iii) Give a step by step description of how you would carry out one complete experiment.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

M33	
M34	
M35	

\qquad
(iv) State a problem which might be experienced by someone having to carry out these experiments alone.
\qquad

3 Qualitative Analysis

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at which stage of the test a change occurs.
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) FA 7 and FA 8 are mixtures. Each mixture contains one cation and two anions from those listed on pages 18 and 19.

Carry out the following tests and record all your observations in the table below.

Test	Observations	
	FA 7	FA 8
(i)Place two spatula measure of FA 7 into a boiling tube, then add approximately $5 \mathrm{~cm}^{3}$ of dilute nitric acid using the measuring cylinder. You are to repeat the steps for FA 8. Then		
add about $5 \mathrm{~cm}^{3}$ of distilled water and shake to mix the solution. Use a 1 cm depth of the solution obtained in a testtube for each of tests (ii) $-(\mathrm{v})$.	No observation required.	
(ii) Add aqueous sodium hydroxide. Then add dilute nitric acid dropwise until in excess		Do not carry out this test.
(iii) Add aqueous ammonia.		Do not carry out this test.
	Observations	
Test	FA7	FA8
(iv) Add aqueous barium nitrate followed by dilute nitric acid.		

	FA7	FA8
(v) Add aqueous silver nitrate		
followed by aqueous ammonia.		

M38	
M39	
M40	

(vi) Use your observations to identify the following ions.

FA 7 contains cation
FA 7 contains anions
and
FA 8 contains anions and

State and explain all the evidence for your identification of the cation in FA 7.
\qquad
\qquad

M41	
M42	
M43	

\qquad
(b) FA 9 contains two cations from the list on page 18.
(i) Transfer approximately half of the FA 9 into a hard-glass test-tube and heat gently at first, and then strongly, until no further change is seen.
Test with litmus papers while you are heating.
Record all your observations below.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Carry out further tests that will enable you to identify both cations in FA 9.

Describe your tests briefly and state your observations.

FA 9 contains cations and

M45	
M46	

(c) Planning

A solder is an alloy of metals which is used to join other metal pieces together.
A specialist solder that can be used to join together pieces of aluminium is made from a mixture by mass of 65% zinc, 20% aluminium and 15% copper.

You are to plan an experimental procedure to confirm the composition of a powdered sample of this solder, by adding reagents and then extracting from the mixture each of the following in sequence;
(i) the copper metal,
(ii) the aluminium as aluminium hydroxide,
(iii) the zinc as zinc hydroxide

You are provided with

- a sample of this solder, with approximate mass 4 g ,
- $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid,
- $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonia

No other reagents should be used. Standard laboratory equipment is available including a balance, accurate to two decimal places.
(i) Complete the flowchart below to show the order in which the reagents would be added to the solder to allow you to extract and separate the components as copper metal, (Step 1), aluminium hydroxide, (Step 2), and zinc hydroxide, (Step 3).
You are reminded that aqueous ammonia contains both the base OH^{-}and the complex-forming molecule NH_{3}.

Step 1

reagent(s) added
\qquad
\qquad
substance(s) present at the end of the reaction

Step 2

reagent(s) added
\qquad
substance(s) present at the end of the reaction

Step 3

reagent(s) added
\qquad
\qquad
\qquad
substance(s) removed by filtration (if any)
substance(s) removed
by filtration (if any)
substance(s) removed by filtration (if any)

M47	
M48	
M49	
M50	
M51	

(ii) For some of the steps in the procedure you would need to be careful to add an appropriate quantity of a reagent.
For each step of your procedure explain why particular quantities of reagent should be chosen.

Step 1

\qquad
\qquad

Step 2

\qquad
\qquad
\qquad

Step 3

\qquad
\qquad
\qquad
(iii) If the mass of aluminium hydroxide obtained was 1.50 g , calculate the mass of aluminium that was present in the solder.
[$A_{\mathrm{r}}: \mathrm{Al}, 27.0 ; \mathrm{O}, 16.0$]
[Total: 19]

Qualitative Analysis Notes
[ppt. = precipitate]
(a) Reactions of aqueous cations

cation	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	no ppt. (if reagents are pure)	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white. ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
$\begin{aligned} & \text { iron(II), } \\ & \mathrm{Fe}^{2+}(\mathrm{aq}) \end{aligned}$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
$\begin{aligned} & \text { zinc, } \\ & \mathrm{Zn}^{2+}(\mathrm{aq}) \end{aligned}$	white ppt. soluble in excess	white ppt. soluble in excess

(b) Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives pale cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	SO_{2} liberated on warming with dilute acids; gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in dilute strong acids)

(c) Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint
sulfur dioxide, SO_{2}	turns aqueous acidified potassium manganate(VII) from purple to colourless

(d) Colour of halogens

halogen	colour of element	colour in aqueous solution	colour in hexane
chlorine, Cl_{2}	greenish yellow gas	pale yellow	pale yellow
bromine, Br_{2}	reddish brown gas / liquid	orange	orange-red
iodine, I_{2}	black solid / purple gas	brown	purple

BLANK PAGE

Higher 2

CANDIDATE NAME \square

CLASS

\square
\square

CHEMISTRY

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number, name and class on all the work you hand in.
Give details of the practical shift and laboratory when appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.
Qualitative Analysis Notes are printed on pages 18 and 19.
At the end of the examination, fasten all your work securely together. The number of marks is given in the brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	17
3	
Total	

This document consists of $\mathbf{1 5}$ printed pages.

In this experiment you will determine the relative atomic mass, A_{r}, of magnesium by a titration method.

FA 1 is $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl .
FA 3 is $0.120 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, NaOH magnesium ribbon
bromophenol blue indicator

(a) Method

Reaction of magnesium with FA 1

- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 1 into the $250 \mathrm{~cm}^{3}$ beaker.
- Weigh the strip of magnesium ribbon and record its mass.
mass of magnesium =
\qquad
- Coil the strip of magnesium ribbon loosely and then add it to the FA 1 in the beaker.
- Stir the mixture occasionally and wait until the reaction has finished.

Dilution of the excess acid

- Transfer all the solution from the beaker into the volumetric flask.
- Make up the solution up to the mark using distilled water.
- Shake the flask to mix the solution before using it for your titrations.
- Label this solution of hydrochloric acid FA 2.

Titration

- Fill the burette with FA 2.
- Rinse the pipette out thoroughly. Then pipette $25.0 \mathrm{~cm}^{3}$ of FA 3 into a conical flask.
- Add several drops of bromophenol blue indicator.
- Run FA 2 from the burette into this flask until the mixture just becomes yellow.
- Carry out as many titrations as you think necessary to obtain consistent results.
- Make certain that your recorded results show the precision of your working.
- Record in a suitable form on below all your burette readings and the volume of FA 2 added in each accurate titration.

Results

The following readings are recorded

- Mass of Mg used
- Initial and final burette reading for two (or more) accurate titrations M1

Titre values recorded for accurate titrations and appropriate headings for the accurate

 titration tables and cm^{3} units.- Initial (burette) reading
- Final (burette) reading
- Titre or volume of FA 2 used/added (not "difference" or "total")
- Unit: cm^{3} (for each heading)

If cm^{3} units are not given in the headings, every entry in the table must have the correct unit. M2

[^0]- $50.00 \mathrm{~cm}^{3}$ is used as an initial burette reading
- Any burette reading is greater than $50.00 \mathrm{~cm}^{3}$
- There is only one accurate titration M3

There are two uncorrected accurate titres within $0.10 \mathrm{~cm}^{3}$. Do not award this mark if, having performed two titre within 0.10 cm a further titration is performed. M4

Calculate the student's mean titre based on the following hierarchy:

- Value of 2 identical titres
- Average of titres within $0.05 \mathrm{~cm}^{3}$
- Average of titres within $0.1 \mathrm{~cm}^{3}$

Award based on the difference, Δ titre, between Student's and Supervisor's mean titre. Give 2 marks if $\Delta t i t r e \leq 0.20 \mathrm{~cm}^{3}$
Give 1 marks if $0.20<\Delta$ titre $\leq 0.50 \mathrm{~cm}^{3}$ M5,M6
(b) From your titrations, obtain a suitable volume of FA 2 to be used in your calculations. Show clearly how you obtained this volume.

Student obtains appropriate "average" to 2 d.p., from any experiments with uncorrected end - point titre values within $0.10 \mathrm{~cm}^{3}$
Do not award this mark if the titres used are not identified either in the table (by, for example, a tick) or in a calculation.
Do not award this mark if there are arithmetic error in the table. M7

$$
\begin{equation*}
\text { Volume of FA } 2 \text { = } \tag{1}
\end{equation*}
$$

(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.

Units should be either in final calculation or dotted line.
Sf will be deducted $1 / 2$ for overall, max 1 mark
Units will be deducted $1 / 2$ for overall, max 1 mark
Working must be shown for all parts.
(i) Deduce the amount of hydrochloric acid in the volume of FA 2 you calculated in (b)

$$
\begin{aligned}
& \text { Amount of } \mathrm{NaOH}=0.120 \times \frac{25.0}{1000}=0.003000 \mathrm{~mol} \\
& \begin{aligned}
& \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \begin{aligned}
\text { Amount of } \mathrm{HCl} & =\text { amount of } \mathrm{NaOH} \\
& =0.00300 \mathrm{~mol} \text { M8 }
\end{aligned}
\end{aligned} \begin{aligned}
\\
\text { amo }
\end{aligned} \\
& \hline
\end{aligned}
$$

$$
\begin{equation*}
\text { Amount of } \mathrm{HCl}= \tag{1}
\end{equation*}
$$

(ii) In (a), you reacted $25.0 \mathrm{~cm}^{3}$ of FA 1 with your weighed piece of magnesium. After the reaction, the unreacted hydrochloric acid was used to prepare $250 \mathrm{~cm}^{3}$ of FA 2.

Calculate the amount of hydrochloric acid that reacted with the magnesium ribbon.

Amount of HCl in volumetric flask $=0.00300 \times \frac{250}{(b)}=\mathrm{a} \mathrm{mol}$
Amount of HCl used initially $=2.00 \times \frac{25.0}{1000}=0.0500 \mathrm{~mol}$ M9

$$
\text { Amount of hydrochloric acid that reacted with } \begin{align*}
\mathrm{Mg} & =0.0500-\mathbf{a} \\
& =\mathbf{b} \mathbf{~ m o l} \mathbf{~ M 1 0 ~} \tag{2}
\end{align*}
$$

Amount of HCl reacting with $\mathrm{Mg}=$
(iii) Hence, calculate the relative atomic mass, A_{r}, of magnesium.

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \\
& \mathrm{Amount} \text { of } \mathrm{Mg}=\mathbf{b} / 2 \mathrm{~mol} \\
& \mathrm{~A}_{\mathrm{r}}
\end{aligned}=\text { mass of } \mathrm{Mg} /(\mathrm{b} / 2) .
$$

Must be 1dp otherwise 0 mark.

$$
\begin{equation*}
\mathrm{A}_{\mathrm{r}} \text { of } \mathrm{Mg}= \tag{1}
\end{equation*}
$$

(d) A student carried out the same experiment but used 1.00 g of magnesium ribbon. State and explain why the student's experiment could not be used to determine the value for the A_{r} of magnesium.
Include a calculation in your answer.
[Ar: Mg, 24.3]
Amount of $\mathrm{Mg}=1 / 24.3=0.0412 \mathrm{~mol}$
Amount of HCl needed $=0.0412 \times 2=0.0824 \mathrm{~mol}$ but only 0.05 mol present $\mathbf{M 1 2}$
If 1.0 g of Mg is used, Mg would be in excess/ acid would be the limiting reagent/ all the acid would be used up. M13
[Total: 13]

2 You will investigate the rate of reaction between iron(III) ions, Fe^{3+}, and iodide ions, I^{-}.

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

The iodine, I_{2}, produced can be reacted immediately with thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

$$
\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})
$$

When all the thiosulfate has been used, the iodine produced will turn starch indicator blueblack.

The rate of the reaction can therefore be measured by finding the time for the blue-black colour to appear.

FA 4 is aqueous iron(III) chloride, FeCl_{3}.
FA 5 is aqueous potassium iodide, KI.
FA 6 is $0.0060 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. starch indicator

You are advised to read the instructions before starting any practical work and draw a table for your results in the space on page 6.
(a) Method

Experiment 1

- Fill a burette with FA 4.
- Run $20.00 \mathrm{~cm}^{3}$ of FA 4 into a $100 \mathrm{~cm}^{3}$ beaker.
- Use the measuring cylinder to place the following in a second $100 \mathrm{~cm}^{3}$ beaker.
- $10 \mathrm{~cm}^{3}$ of FA 5
- $20 \mathrm{~cm}^{3}$ of FA 6
- $10 \mathrm{~cm}^{3}$ of starch indicator
- Add the contents of the second beaker to the first beaker and start timing.
- Stir the mixture once and place the beaker on the white tile.
- The mixture turns brown and then yellow before turning a blue-black colour. Stop timing when this blue-black colour appears.
- Record in your table the volume of FA 4 used, the volume of distilled water used and the time to the nearest second for the blue-black colour to appear.
- Wash both beakers.

For each of Experiments 1-6 you should complete your results table to show the volume of FA 4 used, the volume of distilled water used and the time taken to the nearest second for the blue-black colour to appear.

Experiment 2

- Fill the other burette with distilled water.
- Run $10.00 \mathrm{~cm}^{3}$ of FA 4 into a $100 \mathrm{~cm}^{3}$ beaker.
- Run $10.00 \mathrm{~cm}^{3}$ of distilled water into the same beaker.
- Use the measuring cylinder to place the following in a second $100 \mathrm{~cm}^{3}$ beaker.
- $10 \mathrm{~cm}^{3}$ of FA 5
- $20 \mathrm{~cm}^{3}$ of FA 6
- $10 \mathrm{~cm}^{3}$ of starch indicator
- Add the contents of the second beaker to the first beaker and start timing.
- Stir the mixture once and place the beaker on the white tile.
- Stop timing when a blue-black colour appears.
- Wash both beakers.

Experiments 3-6
Carry out four further experiments to investigate the effect of changing the concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ by altering the volume of aqueous FeCl_{3}, FA 4, used.

You should not use a volume of FA 4 that is less than $6.00 \mathrm{~cm}^{3}$ and the total volume of the reaction mixture must always be $60 \mathrm{~cm}^{3}$.

Experiment	Vol. of FA4/ $\mathrm{cm}^{\mathbf{3}}$	Vol. of water/ cm^{3}	Time taken/s
$\mathbf{1}$	20.00	0.00	20
$\mathbf{2}$	10.00	10.00	27
$\mathbf{3}$	7.00	13.00	32
$\mathbf{4}$	13.00	7.00	24
$\mathbf{5}$	15.00	5.00	22
$\mathbf{6}$	18.00	2.00	21

Recording:

- Constructs a table for 6 results. M14
- Correct headings and units for FA4, distilled water and time. Volumes / V/vol in cm^{3} or / cm^{3} or $\left(\mathrm{cm}^{3}\right)$, time / t in seconds or / s or (s). M15

Precision:

- All times recorded to the nearest second and volumes of FA4 and distilled water to $0.05 \mathrm{~cm}^{3}$. M16

Decision:

- Four further experiments chosen with intervals not less than $2 \mathrm{~cm}^{3}$ and no volume less than $6 \mathrm{~cm}^{3}$. At least one volume must be less than $10 \mathrm{~cm}^{3}$ and at least one must be more than $10 \mathrm{~cm}^{3}$. M17
- Water added to make total volume of FA 4 and water $20 \mathrm{~cm}^{3}$ in each experiment and no other changes in volume. M18

M17 and M18 penalised if students change volume of other reagents other than FA4 and water.

Accuracy:

- Times increase with decrease in volume FA 4.
- Examiner rounds times to nearest second and calculates (time for expt 2) / (time for expt 1) to 2 decimal place. Ratio is compared with that of Supervisor.
Award marks as follows:
if ratio within 0.2 of Supervisor. M19

Calculations

The rate of reaction can be found by calculating the change in concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ that occurred when enough iodine was produced to change the colour of the indicator to blue-black.

Use your data and the equations on page 5 to carry out the following calculations.
Show your working and appropriate significant figures in the final answer to each step of your calculations.
(b) (i) Calculate the amount of thiosulfate ions, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ used in each experiment.

$$
\text { Amount } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=\frac{20}{1000} \times 0.0060
$$

$$
\begin{equation*}
=1.20 \times 10^{-4} \mathrm{~mol} \mathrm{M20} \tag{1}
\end{equation*}
$$

Amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
(ii) Calculate the amount of iron(III) ions, Fe^{3+}, that were used to produce the amount of iodine that react with the amount of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ in (i).
$2 \mathrm{Fe}^{3+} \equiv \mathrm{I}_{2} \equiv 2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$
Amount of $\mathrm{Fe}^{3+}=1.20 \times 10^{-4} \mathrm{~mol} \mathrm{M21}$
OR

$$
\begin{aligned}
\text { Amount of iodine } & =\frac{1}{2} \times 1.2 \times 10^{-4} \\
& =0.600 \times 10^{-4} \mathrm{~mol} \\
\text { Amount of } \mathrm{Fe}^{3+} & =2 \times 0.600 \times 10^{-4} \\
& =1.20 \times 10^{-4} \mathrm{~mol} \mathbf{~ M 2 1}
\end{aligned}
$$

$$
\text { Amount of } \mathrm{Fe}^{3+}
$$

(iii) Using your answer to (ii), calculate the change in Fe^{3+} up to the time of appearance of the blue black colour.

Change in concentration of $\mathrm{Fe}^{3+}=\frac{1.20 \times 10^{-4}}{\frac{60}{1000}}=0.00200 \mathrm{~mol} \mathrm{dm}^{-3} \mathbf{~ M} 22$
Change in concentration of Fe^{3+}
(iv) The following formula can be used as a measure of the 'rate of reaction'.

$$
\text { 'rate of reaction' }=\frac{\text { change in concentration of } \mathrm{Fe}^{3+}(\mathrm{aq})}{\text { reaction time }} \times 10^{6}
$$

Complete the table to show the volume of FA 4, the reaction time and the rate in Experiments 1-6. You should include units.

If you were unable to calculate a value for the change in concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ in (iv), you should assume it is $2.50 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$. (Note: this is not the correct value.)

Experiment	Vol. of FA4/ $\mathbf{c m}^{\mathbf{3}}$	Time taken/s	Rate/ $\mathbf{m o l} \mathbf{~ d m}^{\mathbf{- 3}} \mathbf{s}^{-1}$
$\mathbf{1}$	20.00	20	100
$\mathbf{2}$	10.00	27	74.0
$\mathbf{3}$	7.00	32	62.5
$\mathbf{4}$	13.00	24	83.3
$\mathbf{5}$	15.00	22	90.9
$\mathbf{6}$	18.00	21	95.2

Rates correctly calculated using $\frac{0.00200}{\text { reaction time }} \times 10^{6}$
Units for volume given as cm^{3}. Units for time given as s. Units for rate given as $\mathrm{mol} \mathrm{dm}^{-3}$ $\mathrm{s}^{-1}, 3$ correct columns used and 3 sig fig. Ignore precision for volume of FA4 and time. M23
(c) On the grid, plot the rate (y-axis) against the volume of FA 4 (x-axis). Draw a line of best fit through the points. You should identify any points you consider anomalous.

Axes labelled - rate/ mol dm ${ }^{-3} \mathrm{~s}^{-1}$ on y-axis and volume or FA $4 / \mathrm{cm}^{3}$ on x-axis. Scales to use at least half of each axis including 0.0 if point plotted. M24

Correct plotting - all points recorded plotted and within half a small square and within correct small square. Scale must be drawn correctly. M25

Draws a line of best fit (can be straight line or curve). Straight lines must be straight (single line with no kinks, drawn using a ruler) or a smooth curve (gradual change in gradient).
Points not on the line must be balanced on either side of the best fit line but any points ringed or labelled as anomalous should be ignored. M26
(d) Using your graph, what conclusion can you reach about the effect of changing the concentration of FeCl_{3} on the rate of the reaction between $\mathrm{Fe}^{3+}(\mathrm{aq})$ and $\mathrm{I}^{-}(\mathrm{aq})$?

Rate increases as concentration of Fe^{3+} increases/ rate directly proportional to concentration M27 since either straight line that pass through the origin shows rate is directly proportional to concentration or gradient is positiveM28 shows that rate increase with increase in concentration (or other words to that effect).
(e) It was found, by carrying out experiments similar to those used in (a), that increasing the concentration of I^{-}increased the rate of the reaction.

The student suggested a modification to the method by using the same volumes of all reagents but with the concentration of FA4 and FA 5 being doubled their original values. State what the effect would be on the reaction time in Experiment 1 and explain how this change would affect any possible errors in the measurements.

Reaction time less/shorter. (Less accurate) since larger \% error (in time). M29 Not "Reaction time faster".
(f) Which of the experiments you carried out in (a) had the greatest percentage error in the reaction time? Calculate this percentage error. Assume that the error in measuring the reaction time is $\pm 0.5 \mathrm{~s}$.

Experiment 1.

percentage error $=\frac{0.5}{20} \times 100 \%$ M30
(g) Planning

Aqueous hydrogen peroxide decomposes into oxygen gas and water. The reaction is normally very slow but is catalysed by solid manganese (IV) oxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

You are to plan an experiment to investigate how the rate of the catalysed decomposition of aqueous hydrogen peroxide depends on its concentration.
(i) The rate of decomposition depends on the number of hydrogen peroxide molecules present in a given volume of solution.

Use this information to predict how the rate of decomposition of the hydrogen peroxide depends on the concentration.

Prediction
Prediction: Predicts any direct proportionality e.g. Increasing concentration increases rate or doubling the molecules per unit volume (concentration) doubles the rate. M31
(ii) You are to design a laboratory experiment to test your prediction in (g) (i).

In addition to the standard apparatus present in a laboratory you are provided with the following materials.

- $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous hydrogen peroxide
- A supply of manganese (IV) oxide

Complete the table below to show how you would prepare five solutions of aqueous hydrogen peroxide. Make sure that the correct units are recorded.

expt No.	volume of $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{cm}^{3}$	volume of $\mathrm{H}_{2} \mathrm{O} /$ cm^{3}	concentration of $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{mol} \mathrm{dm}^{-3}$
1	40.00	0.00	0.100
2	35.00	5.00	0.0875
3	30.00	10.00	0.0750
4	25.00	15.00	0.0625
5	20.00	20.00	0.0500

Whole table completed. Correct units required for each column. $0 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ not accepted. Total volume of solutions need not be constant. M32

Pre-calculation

Assuming burette is used, maximum volume of O_{2} that can be collected will be $50 \mathrm{~cm}^{3}$.

$$
\text { Amount of } \mathrm{O}_{2}=50 / 24000=2.0833 \times 10^{-3} \mathrm{~mol}
$$

Amount of $\mathrm{H}_{2} \mathrm{O}_{2}=2 \times 2.0833 \times 10^{-3}=4.1667 \times 10^{-3} \mathrm{~mol}$
Volume of original $\mathrm{H}_{2} \mathrm{O}_{2}=\left(4.1667 \times 10^{-3}\right) / 0.1$

$$
=41.67 \mathrm{~cm}^{3}
$$

Note: If gas syringe is used in planning, maximum volume of original $\mathrm{H}_{2} \mathrm{O}_{2}$ will be around $80 \mathrm{~cm}^{3}$.
(ii) Give a step by step description of how you would carry out one complete experiment.

1. Using a burette, introduce $35.00 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution into a $100 \mathrm{~cm}^{3}$ conical flask.
2. Using another burette, introduce $5.00 \mathrm{~cm}^{3}$ of distilled water into the same conical flask.
3. Attach a small tube containing some solid manganese (IV) oxide with a string and stopper it.
4. Record initial volume reading of the syringe.
5. Let the manganese (IV) oxide comes in contact with the solution by loosening the stopper.
6. Start the stopwatch immediately. Swirl to mix gently.
7. Stop the stopwatch once $20 \mathrm{~cm}^{3}$ of gas has been collected.

Give marks for shaking to react the catalyst and solution present. If a thistle or dropping funnel used the mark is for adding the liquid reagent to the catalyst. In other situations give marks for adding solid catalyst to the solution and closing the vessel. M33

Start the reaction and a stopwatch simultaneously. M34
Recording the time taken to produce a chosen/fixed volume of gas. M35
(iii) State a problem which might be experienced by someone having to carry out these experiments alone.

Starting the reaction and the stopwatch simultaneously is difficult. Accept any reaction starting process in conjunction with starting the clock. Accept closing the apparatus and starting the clock. M36
[Total: 23]

3 Qualitative Analysis

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at which stage of the test a change occurs.
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) FA 7 and FA 8 are mixtures. Each mixture contains one cation and two anions from those listed on pages 18 and 19.

Carry out the following tests and record all your observations in the table below.
FA 7 is $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NaCl}$; FA 8 is $\mathrm{MgCO}_{3}+\mathrm{KI}$; FA 9 is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$

Test	Observations	
	FA 7	FA 8
(i)Place two spatula measure of FA 7 into a boiling tube, then add approximately 5 cm^{3} of dilute nitric acid using the measuring cylinder. You are to repeat the steps for FA 8. Then	FA 7 dissolves/ A colourless solution is formed. [\downarrow]	FA 8 dissolves and effervescence seen. Gas produced gives a white ppt. with $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$. [$\left.\sqrt{ }\right]$
add about $5 \mathrm{~cm}^{3}$ of distilled water and shake to mix the solution. Use a 1 cm depth of the solution obtained in a testtube for each of tests (ii) $-(\mathrm{v})$.	No observation required.	
(ii) Add aqueous sodium hydroxide. Then add dilute nitric acid dropwise until in excess.	White ppt. formed, soluble in excess [$\sqrt{ }$] White ppt. re-forms, soluble in excess $\mathrm{HNO}_{3}(\mathrm{aq})[\sqrt{ }]$	Do not carry out this test.
(iii) Add aqueous ammonia.	White ppt. formed, insoluble in excess [$\sqrt{ }$]	Do not carry out this test.
Test	Observations	
	FA7	FA8
(iv) Add aqueous barium nitrate followed by dilute nitric acid.	White ppt. formed, insoluble in dilute HNO_{3} [\downarrow]	No ppt or no observable change [\downarrow]

(v)Add aqueous silver nitrate followed by aqueous ammonia.	White ppt formed, soluble in $\mathrm{NH}_{3}(\mathrm{aq})[\sqrt{ }]$	Yellow ppt formed, insoluble in $\mathrm{NH}_{3}(\mathrm{aq})[\sqrt{ }]$

$2[\sqrt{ }]$ - [1], max [4] M37, M38, M39, M40
(vi) Use your observations to identify the following ions.

FA 7 contains cation \qquad
FA 7 contains anions and
FA 8 contains anions and
\qquad

State and explain all the evidence for your identification of the cation in FA 7.
M41 cation is $\mathrm{A}^{\beta^{+}}$and while ppt with $\mathrm{NH}_{3}(\mathrm{aq})$ insoluble in excess, white ppt with NaOH soluble in excess.
M42 FA 7 anions: $\mathrm{SO}_{4}{ }^{2-}$ and C^{-}
M43 FA 8 anions: $\mathrm{CO}_{3}{ }^{2-}$ and I^{-}
(b) FA 9 contains two cations from the list on page 18.
(i) Transfer approximately half of the FA 9 into a hard-glass test-tube and heat gently at first, and then strongly, until no further change is seen.
Test with litmus papers while you are heating.
Record all your observations below.
Any two observations correct M44

- FA 9 is (pale) green
- steam/ vapour/ condensation/ water liquid
- damp litmus paper turns blue
- yellow/ white/ brown residue formed
- white smoke (produced on strong heating)
- damp litmus turns red on strong heating
(ii) Carry out further tests that will enable you to identify both cations in FA 9. Describe your tests briefly and state your observations.

> With NaOH or NH_{3}, dirty green ppt formed which turns brown on contact with air and Fe^{2+} identified. M45
> With $\mathrm{NaOH}(\mathrm{aq})$ and heat, pungent gas $\left(\mathrm{NH}_{3}\right)$ turns damp red litmus paper blue and $\mathrm{NH}_{4}+$ identified. M46

FA 9 contains cations \qquad Fe^{2+} and \qquad $\mathrm{NH}_{4}{ }^{+}$ \qquad

(c) Planning

A solder is an alloy of metals which is used to join other metal pieces together.
A specialist solder that can be used to join together pieces of aluminium is made from a mixture by mass of 65% zinc, 20% aluminium and 15% copper.

You are to plan an experimental procedure to confirm the composition of a powdered sample of this solder, by adding reagents and then extracting from the mixture each of the following in sequence;
(i) the copper metal,
(ii) the aluminium as aluminium hydroxide,
(iii) the zinc as zinc hydroxide

You are provided with

- a sample of this solder, with approximate mass 4 g ,
- $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid,
- $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonia

No other reagents should be used. Standard laboratory equipment is available including a balance, accurate to two decimal places.
(i) Complete the flowchart below to show the order in which the reagents would be added to the solder to allow you to extract and separate the components as copper metal, (Step 1), aluminium hydroxide, (Step 2), and zinc hydroxide, (Step 3).
You are reminded that aqueous ammonia contains both the base OH^{-}and the complex-forming molecule NH_{3}.

Step 1	Step 2	Step 3		
reagent(s) added	reagent(s) added	reagent(s) added		
sulfuric acid $[\sqrt{ }]$	$\begin{array}{l}\text { (excess, aqueous) } \\ \text { ammonia }[\sqrt{ }]\end{array}$	sulfuric acid $[\sqrt{ }]$	$\}$	substance(s) present at
:---				
the end of the reaction	\quad	substance(s) present at		
:---				
the end of the reaction	\quad	substance(s) present at		
:---				
the end of the reaction				

Allow: Correct formulae or ions instead of names. 2[$\sqrt{ }$] - 1 mark; max [5] M47, M48, M49, M50, M51

Substances present for each step is conditional based on correct reagent added.
(ii) For some of the steps in the procedure you would need to be careful to add an appropriate quantity of a reagent.
For each step of your procedure explain why particular quantities of reagent should be chosen.

Step 1

Sufficient/ enough/ excess sulfuric acid to dissolve the zinc and aluminium M52

Step 2

Sufficient/ enough/ excess aqueous ammonia (to precipitate aluminium hydroxide) and to completely dissolve the zinc hydroxide M53

Step 3

Sufficient/ enough sulfuric acid to:
Neutralise ammonia M54 OR
(re)precipitate the zinc hydroxide but not so much that the zinc hydroxide reacts/ dissolves M54
(iii) If the mass of aluminium hydroxide obtained was 1.50 g , calculate the mass of aluminium that was present in the solder.
[A_{r} : Al, 27.0; O, 16.0]
Mass of Al in solder $=\frac{27}{27+17 \times 3} \times 1.50 \mathrm{~g}=\underline{\mathbf{0 . 5 1 9} \mathrm{g}}$ M55

[^0]: All accurate burette reading are to the nearest $0.05 \mathrm{~cm}^{3}$. Do not award this mark if:

