

1 During a laboratory practical exercise, a student tried to determine the concentration of $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$ in a given mixture through two different experiments.

1. $25.0 \mathrm{~cm}^{3}$ aliquot of the $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$ mixture solution required $15.00 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ of acidified KMnO_{4} solution for complete oxidation.
2. Using another $25.0 \mathrm{~cm}^{3}$ aliquot, all the $\mathrm{Fe}^{3+}(\mathrm{aq})$ was first reduced to $\mathrm{Fe}^{2+}(\mathrm{aq})$ using zinc metal before requiring $34.20 \mathrm{~cm}^{3}$ of the same KMnO_{4} solution for complete oxidation.

What is the concentration of $\mathrm{Fe}^{2+}(\mathrm{aq})$ and $\mathrm{Fe}^{3+}(\mathrm{aq})$ in the given mixture?
A $\quad 0.012 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}(\mathrm{aq})$ and $0.0154 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{3+}(\mathrm{aq})$
B $\quad 0.180 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}(\mathrm{aq})$ and $0.230 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{3+}(\mathrm{aq})$
C $\quad 0.300 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}(\mathrm{aq})$ and $0.384 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{3+}(\mathrm{aq})$
D $\quad 0.300 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{2+}(\mathrm{aq})$ and $0.684 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Fe}^{3+}(\mathrm{aq})$

2 A number of elements in the actinoid series are radioactive and undergo decay to other elements. The following equation is an example of such decay.

$$
{ }_{94}^{241} \mathrm{Pu} \rightarrow \text { element } \mathbf{A}+9{ }_{2}^{4} \mathrm{He}+5{ }_{-1}^{0} \mathrm{e}
$$

Which of the following gives the identity of element \mathbf{A} ?

Mass number
A
205

205
223
237

3 Which of the following shows an increase in the bond angle of the compound from left to right?
A
NH_{3}
$\mathrm{H}_{2} \mathrm{~S}$
NH_{3}
PF_{3}
SCl6
SiH_{4}
AlCl_{3}
PCl_{3}
CCl 4

4 In which of the following does Statement II give a correct explanation for Statement I?

1

2
Glycine, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$, has a higher melting point than
2-hydroxyethanoic acid, $\mathrm{HOCH}_{2} \mathrm{COOH}$.

Chloromethane undergoes nucleophilic substitution more easily than fluoromethane.

Statement II
Magnesium has more delocalised valence electrons which results in stronger metallic bonds.

Glycine can form stronger hydrogen bonds than
2-hydroxyethanoic acid.

The $\mathrm{C}-\mathrm{Cl}$ bond in chloromethane is weaker than the $\mathrm{C}-\mathrm{F}$ bond in fluoromethane.

A 2 and 3
B 1 and 2
C 1 and 3
D 1,2 , and 3

5 The graph of $p V$ against p is plotted for an ideal gas at constant temperature for a fixed mass of gas at T_{1}.

Which diagram shows the new graph at a lower temperature at T_{2} ?
A
B

C

6 The enthalpy change of formation of carbon monoxide and carbon dioxide are given below.
$\Delta H_{\mathrm{f}}(\mathrm{CO})=-110 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H_{\mathrm{f}}\left(\mathrm{CO}_{2}\right)=-393 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Which of these statements are correct?
1 Carbon dioxide is energetically more stable than carbon monoxide.
2 The enthalpy change of combustion of carbon is $-283 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
$3 \Delta H_{f}\left(\mathrm{CO}_{2}\right)-\Delta H_{\mathrm{c}}(\mathrm{CO})$ has the same value as enthalpy change of formation of CO .
A 1 and 3
B 1 and 2
C 2 and 3
D 1 only

7 A raw egg white contains the protein, albumin, which is made of chains of amino acids that fold into specific and stable three-dimensional structure.

Heating the protein in an egg white causes the intermolecular forces to break and "unfold" the protein. In this state, albumin is denatured and will readily coagulate to form an extensive protein network.

Albumin
What are the correct signs of $\Delta S, \Delta H$, and ΔG for denaturation of albumin during cooking?
ΔS
ΔH
ΔG
$\mathrm{A}+\quad+\quad$ -
B + + +
C - \quad -
D - + -

8 The diagram shows the Maxwell-Boltzmann energy distribution curves for air molecules at room temperature and inside the car engines where it is being combusted. The letters $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{S} refer to the separate areas.

Which expression gives the fraction of the air molecules present inside the car engine?

Fraction of
molecules with

A
$\frac{S}{P}$
B
$\frac{R+S}{P+Q+S}$
C $\frac{S}{P+Q+S}$
D
$\frac{S}{P+Q}$

9 An experiment was carried out to investigate the kinetics of the reaction between ammonium peroxodisulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, an oxidising agent, and potassium iodide, KI, in the presence of a little starch.

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})
$$

The volume of the $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and KI solutions in the mixture, together with the time taken for the mixture to darken for the various experimental runs are given below:

Experiment	Volume used / cm 3			Time / s
	$1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ KI	$0.040 \mathrm{~mol} \mathrm{dm}^{-3}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	$\mathrm{H}_{2} \mathrm{O}$	
	10.0	5.0	25.0	170
2	15.0	5.0	20.0	113
3	15.0	10.0	15.0	56.5
4	20.0	20.0	0.0	$?$

Which of the following statements about the reaction is false?

A The reaction can be catalysed by $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$.
B The reaction involves the formation of an intermediate.
C The time taken for the mixture to darken in Experiment 4 is 40.5 s .
D The slow step involves the reaction between 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and 1 mole of KI.

10 Silver chloride establishes an equilibrium with the relatively stable complex ion, $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

$$
\mathrm{AgCl}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Which of the following statements is correct?

A When acid is slowly added to the mixture, a white precipitate is observed.
B The K_{c} expression is $K_{c}=\frac{\left[\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}\right]\left[\mathrm{Cl} l^{-}\right]}{[\mathrm{AgCl}]\left[\mathrm{NH}_{3}\right]^{2}}$
C Added more NH_{3} to the solution when equilibrium is established will decrease its K_{c} value.

D Removal of some $\mathrm{AgCl}(\mathrm{s})$ causes the position of equilibrium to shift left.

11 At a total pressure of 1.2 atm , sulfur trioxide is 50% dissociated according to the following equation at 150 K .

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

What is the mole fraction of oxygen in this equilibrium mixture?
A 0.60
B $\quad 0.20$
C $\quad 0.30$
D $\quad 0.24$

12 Which of the following mixtures when dissolved in large amount of water could act as buffer solutions?

12 mol of HI and 1 mol of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
22 mol of $\mathrm{CH}_{3} \mathrm{COCl}$ and 3 mol of NaOH
32 mol of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ and 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$

A 2 only
B 2 and 3
C 1 and 3
D None of the above

13 The solubility of 2 sparingly soluble solids $M X_{2}$ and $L Y$ is being determined experimentally.

Which of the following statements is always true?
A The solubility product of $M X_{2}$ increases with increasing temperature.
B MX_{2} will always be more soluble than LY if MX_{2} has a higher $K_{\text {sp }}$ value.
C The $K_{\text {sp }}$ value of LY can be calculated from any concentration of L^{+}and Y^{-}.
D Given that the solubility of $L Y$ is exothermic, the $K_{\text {sp }}$ of $L Y$ will only change when temperature changes.

14 The following graphs show the variation of a property of the elements Na to P .

Proton Number
Graph 1

Proton Number
Graph 2

Proton Number
Graph 3

Which of the following correctly describes the property of the graphs?

	Graph 1	Graph 2	Graph 3
A	Electronegativity	Melting point of oxide	pH of oxide
B	Ionic radius	Melting point of element	pH of oxide
C	Covalent character	Melting point of chlorides	pH of chloride
D	Electronegativity	Melting point of element	pH of chloride

$151.0 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solutions of three elements in Group 17 of the Periodic Table have standard electrode potentials as follows.
$\mathrm{X}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{X}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\ominus}=+1.36 \mathrm{~V}$
$\mathrm{Y}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Y}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\ominus}=+1.07 \mathrm{~V}$
$\mathrm{Z}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Z}^{-}(\mathrm{aq}) \quad \mathrm{E}^{\ominus}=+0.54 \mathrm{~V}$
Which statements are correct?

1 There is an increase in oxidising power in the sequence X_{2}, Y_{2}, Z_{2}.
2 The reaction $\mathrm{X}_{2}(\mathrm{aq})+2 \mathrm{Z}^{-}(\mathrm{aq}) \longrightarrow 2 \mathrm{X}^{-}(\mathrm{aq})+\mathrm{Z}_{2}(\mathrm{aq})$ is spontaneous under standard conditions.
$3 \quad Z$ has the lowest electron affinity.
A 1 and 2

B 1 and 3

C 2 and 3

D 1,2 and 3

16 Which of the following shows the correct type of reaction(s) occurring for each step of the synthesis?

	Step I	Step II	Step III
A	Oxidation	Substitution followed by condensation	Condensation
B	Oxidation	Acid base reaction followed by oxidation	Substitution followed by condensation
C	Reduction	Substitution followed by hydrolysis	Substitution followed by condensation
D	Reduction	Hydrolysis followed by oxidation	Condensation

17 An energy level diagram for a single reaction step is shown below.

To which of the following steps in the reaction of ethane with bromine in the presence of light does this diagram apply?
$\mathrm{A} \mathrm{Br}_{2} \longrightarrow \mathrm{Br} \bullet+\mathrm{Br} \bullet$
B $\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{Br} \bullet \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \bullet+\mathrm{HBr}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{Br} \bullet$
D $\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet+\mathrm{CH}_{3} \mathrm{CH}_{2} \bullet \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
18 The structure of Vitamin A is shown below.

Vitamin A
Which of the following statements about Vitamin A is true?
A White fumes is observed when it is treated with excess ethanoyl chloride.
B When it reacts completely with LiAlH_{4} in dry ether, a saturated compound that contains 4 chiral carbon centres is produced.
C Effervescence is observed when it reacts with hot alkaline potassium manganate(VII) solution.

D 1 mol of Vitamin A reacts with excess sodium metal to produce $22.7 \mathrm{dm}^{3}$ of hydrogen gas at 273 K and 1 bar.

19 An optically active sample of 2-chlorobutane, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}$, was heated under reflux with aqueous sodium hydroxide to produce compound \mathbf{Q}, which rotates plane of polarised light.

Which of the following statements about the reaction are correct?
1 The reaction occurred via a $S_{N} 1$ mechanism.
$2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$ is a functional group isomer of \mathbf{Q}.
3 The rate of reaction increases when the sample is replaced with 2-bromobutane.

4 Q reacts with concentrated sulfuric acid at $170^{\circ} \mathrm{C}$ to give a mixture of three isomeric alkenes.

A 1 and 3 only
B 2 and 3 only
C 2 and 4 only
D 2, 3 and 4 only

20 Which of the following salts has the smallest $\mathrm{p} K_{\mathrm{b}}$?
A

B

C

D

21 The uncatalysed reaction between propanal and HCN proceeds via two steps and the rate equation for the formation of cyanohydrin is as follows.

$$
\text { Rate }=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}\right]\left[\mathrm{CN}^{-}\right]
$$

Which of the following statements is correct?
A The intermediate formed in this reaction is planar.
B Only one product is obtained since this is an addition reaction.

C The uncatalysed reaction between propanone and HCN occurs at a faster rate than that of propanal.

D The same product can be obtained by heating 1-chloropropan-1-ol with ethanolic NaCN .
$22 \quad{ }^{18} \mathrm{O}$ is an isotope of oxygen.
When butylethanoate is hydrolysed with dilute sulfuric acid in the presence of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$, a mixture of 2 products is formed. Which of the following pairs gives the correct structures of the two products?

A $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CO}^{18} \mathrm{OH}$

B $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}^{18} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
C $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}^{18} \mathrm{OH}$
D $\mathrm{CH}_{3} \mathrm{CH}_{2}^{18} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

Which of the following sequence of reagents and conditions can be used to carry out the conversion above?

	Stage 1	Stage 2	Stage 3
A	warm with ammonical silver nitrate solution	hot $\mathrm{NaOH}(\mathrm{aq})$	heat in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
B	warm with Fehling's solution	heat in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$	hot $\mathrm{NaOH}(\mathrm{aq})$
C	warm with ammonical silver nitrate solution	hot $\mathrm{NaOH}($ alc $)$	heat in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
D	warm with Fehling's solution	heat in the presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$	hot $\mathrm{NaOH}($ alc $)$

24 Compound \mathbf{W} has the following properties:

- Empirical formula : $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
- Decolourises aqueous bromine
- Reacts with hot acidified KMnO_{4} to form an α-amino acid

Which of the following could be compound W?
$1 \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$
$2 \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHNH}_{2}$
$3 \mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
$4 \mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{NH}_{2}$
A 1 and 3
B 1 and 4
C 2 and 3
D 2 and 4

25 Which of the following reagents would give different observations when added to both compounds in separate test-tubes?

Compound \mathbf{Y}

Compound \mathbf{Z}

A aqueous bromine
B 2,4-dinitrophenylhydrazine

C LiAlH_{4} in dry ether, followed by hot acidified KMnO_{4}

D ethanolic silver nitrate

26 Compound \mathbf{X} is an isomer of the antibiotic Aureomycin.

Which of the following statements are true for compound \mathbf{X} ?
11 mole of \mathbf{X} reacts with 5 moles of propanoyl chloride.
21 mole of compound \mathbf{X} reacts with 3 moles of hydrogen gas in the presence of Ni catalyst at $150^{\circ} \mathrm{C}$.

31 mole of compound \mathbf{X} reacts with 6 moles of $\mathrm{HBr}(\mathrm{g})$ at room temperature.

A 1 only

B 1 and 2

C 2 and 3

D 1, 2 and 3

27 Alkyl halides can be prepared from alcohol. The first step in the mechanism involves the following:

What is the role of the alcohol in the above step?
A Brønsted-Lowry acid

B Lewis base

C Ligand

D Electrophile

28 A microbial fuel cell (MFC) is a bio-electrochemical system that drives an electric current by using bacteria and mimicking bacterial interactions found in nature. An example of an MFC is as shown below with E^{θ} cell $=+1.25 \mathrm{~V}$.

Which of the following statements about the above MFC is not correct?

A Electrons flow from the right electrode to the left electrode.
B H^{+}is produced at the anode.

C Sucrose is oxidised in this reaction.

D E^{θ} (anode) is -0.02 V .
290.0170 mol of chromium(III) iodide reacts with excess ammonia to form compound \mathbf{Y} which has a coordination number of 6 . When a solution of \mathbf{Y} is treated with an excess of aqueous silver nitrate, 0.0340 mol of solid is precipitated.

What is the formula of compound \mathbf{Y} ?
A $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{I}_{3}$
B $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{3}$
C $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{I}_{3}$

D $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{I}_{3}$

30 The table shows the electronic configuration of three elements in the Periodic Table. (The elements are represented by letters which are not their symbols.)

Element	Electronic configuration
\mathbf{P}	$[\mathrm{Ar}] 4 \mathrm{~s}^{1}$
\mathbf{Q}	$[\mathrm{Ar}] 3 \mathrm{~d}^{7} 4 \mathrm{~s}^{2}$
\mathbf{R}	$[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$

Which of the following statements are correct?
$1 \mathrm{Q}_{2} \mathrm{O}_{3}$ is likely to exist.
2 First ionisation energy of \mathbf{P} is lower than that of \mathbf{R}.
3 The compound RI is a white solid.
A 1 only
B 1 and 2

C 2 and 3

D 1, 2 and 3

| NAME | Class | |
| :--- | :--- | :--- | :--- |

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

Chemistry (9729)
Paper 2 Structured Questions

11 September 2017
2 hours

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS:

Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
For Examiner's use:

Question	1	2	3	4	5	6	Total
Marks							

This document consists of 19 printed pages (including this page).

Answer all the questions

1 Sulfur is a common element on Earth that forms many important chemical compounds.
One of these compounds is sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, an ionic compound used to treat several medical conditions, such as cyanide poisoning and fungal growths.
(a) (i) Draw a dot-and-cross diagram for sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. State the shape and bond angle in the thiosulfate ion.
(ii) Below are the melting points of sodium thiosulfate and sulfur.

Compound	Melting point $/{ }^{\circ} \mathbf{C}$
Sodium thiosulfate	49
Sulfur, S_{8}	115

Explain why sulfur has a higher melting point than sodium thiosulfate.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Another important sulfur compound is sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. Before the Contact Process was discovered, concentrated sulfuric acid for industrial purposes was produced by the following method.

The mineral pyrite, FeS_{2}, was first heated in air and oxidised to solid $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and sulfur dioxide gas.
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ decomposes at $480^{\circ} \mathrm{C}$ to form iron(III) oxide and sulfur trioxide gas. The sulfur trioxide gas could be mixed with any volume of water to produce sulfuric acid of the desired concentration. However, this process was expensive and not efficient.
(i) Write a balanced equation, with state symbols for the reaction between pyrite, FeS_{2}, and oxygen to form $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
\qquad
(ii) With the aid of an equation, define the term standard enthalpy change of formation of gaseous sulfur trioxide, SO_{3}.
\qquad
\qquad
\qquad
\qquad
(iii) Given the following information, determine the enthalpy change of formation of gaseous sulfur trioxide SO_{3}.

$$
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H_{\mathrm{rxn}}=+95 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Substance	$\Delta \boldsymbol{H}_{\mathbf{f}} / \mathbf{k J} \mathbf{~ m o l}^{\mathbf{- 1}}$
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})$	-2107
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-824

(iv) Use the appropriate bond energies given in the Data Booklet and the data below to calculate another value for the standard enthalpy change of formation of gaseous sulfur trioxide SO_{3}.
$1 / 8 \mathrm{~S}_{8}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})$
$\Delta H_{\mathrm{f}}=-297 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(v) Suggest a reason for the discrepancy between the values in (b)(iii) and (b)(iv).
\qquad
\qquad
(c) The value of pV is plotted against p for 1 mol of oxygen O_{2}, where p is the pressure and V is the volume of the gas at 300 K .

(i) On the diagram above, draw and label the graph of pV against p for SO_{3} at 300 K.
(ii) Explain the difference between the graph of SO_{3} and the graph of O_{2}.
\qquad

2 Transition elements show typical properties that distinguish them from s-block elements, such as calcium. These include variable oxidation states in their compounds, and the formation of coloured complex ions.
(a) An ion of manganese has 3 electrons in its 3d subshell. Suggest the oxidation state of this manganese ion.
\qquad
(b) The following table gives data about some physical properties of the elements calcium, chromium, and manganese.

Property	$\mathbf{C a}$	$\mathbf{C r}$	$\mathbf{M n}$
Atomic radius (metallic) / nm	0.197	0.129	0.132
lonic radius $(2+) / \mathrm{nm}$	0.099	0.073	0.083
Melting point / K	1112	1907	1246
Density / g cm			
Electrical conductivity $/ \times 10^{6} \mathrm{~S} \mathrm{~cm}^{-1}$	1.54	7.19	7.43

(i) Explain why the atomic radii of chromium and manganese are similar to each other.
\qquad
\qquad
\qquad
\qquad
(ii) Explain why the density of manganese is significantly greater than that of calcium, using relevant data from the table and the Data Booklet. (No calculations are required.)
\qquad
\qquad
\qquad
\qquad

3 A student investigated the thermal decomposition of two carbonates, calcium carbonate and barium carbonate in the following way to determine its exact composition. He used the same amount, in moles, of each carbonate.
$\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad M$ is Ca or Ba

He heated the carbonates separately for 5 minutes. The solid obtained after heating was then shaken with distilled water to form an alkaline solution. A portion of the solid remained insoluble and was filtered. A sample of the alkaline filtrate was titrated with hydrochloric acid. No effervescence was observed during the titration.

(a) (i) Suggest which carbonate is less likely to decompose completely. Explain your answer.

\qquad
\qquad
\qquad
\qquad
(ii) It was observed that the volume of acid used in the titration was smaller for the carbonate which did not decompose completely.

Explain how the incomplete decomposition can result in a lower volume of acid used in the titration.
\qquad
\qquad
\qquad
\qquad
(b) Explain the difference between the magnitude of the lattice energies of calcium carbonate and calcium oxide.
\qquad
\qquad
\qquad
\qquad
(c) Given that the decomposition of calcium carbonate is an endothermic reaction.

$$
\Delta H=+178 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and } \Delta S=+159 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Calculate the minimum temperature at which this reaction becomes spontaneous.
(d) Beryllium oxide can react with sodium hydroxide.

$$
\mathrm{BeO}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{BeO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Explain this behaviour despite Be being a Group 2 element.
\qquad
\qquad
\qquad
\qquad

4 Gaseous phosphorus (V) chloride dissociates according to the following equation.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Different amounts of the three gases were placed in a closed container and allowed to come to equilibrium at $200^{\circ} \mathrm{C}$. The experiment was repeated at $425^{\circ} \mathrm{C}$.
The equilibrium partial pressure of the three gases at each temperature are given in the table below.

	Partial pressure $/ \times 10^{-3} \mathrm{~N} \mathrm{~m}^{-2}$		
temperature ${ }^{\circ} \mathrm{C}$	PCl_{5}	PCl_{3}	Cl_{2}
200	1.46	11.8	2.77
425	7.61	0.211	0.368

(a) (i) Write the expression for the equilibrium constant, K_{p}, for this reaction. Give the units.
Expression \qquad
Units.
(ii) Calculate the value of K_{p} at each of the temperatures given.
(iii) Is the forward reaction exothermic or endothermic? Explain your answer.
\qquad
(b) What will be the effect on the equilibrium partial pressure of PCl_{5} when the following changes are carried out on this new equilibrium? Explain your answers clearly.
(i) The pressure of the system is halved at constant temperature.
\qquad
\qquad
\qquad
\qquad
(ii) Helium gas is added at constant volume and temperature.
\qquad
\qquad
\qquad

Chloroethane can be made by reacting PCl_{3} with ethanol, via nucleophilic substitution mechanism.

$$
\mathrm{PCl}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HOPCl}_{2}
$$

(c) Outline a simple chemical test that can be carried out to see if chloroethane is produced in the mixture after reacting with PCl_{3}.
\qquad
\qquad
\qquad
\qquad
(d) The mechanism is thought to involve these steps.

- The first step is where $\mathrm{P}-\mathrm{Cl}$ bond breaks. P is electron deficient and reacts with alcoholic O to form a protonated oxygen intermediate.
- The $\mathrm{C}-\mathrm{O}$ bond is broken. Cl^{-}act as a nucleophile.

Complete the diagram to suggest a mechanism to show how chloroethane is formed. Show all charges and relevant lone pairs and show the movement of electron pairs by using curly arrows.

(e) Explain why chlorobenzene cannot be made in the same way using phenol and PCl_{3}.
\qquad

5 Bromine reacts with organic compounds in different ways.
(a) When butane reacts with gaseous bromine in the presence of ultraviolet light, the major product was 2-bromobutane instead of 1-bromobutane. Using the stability of the intermediates, explain the observation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A solution of 2-bromobut-2-ene, upon heating with ethanolic silver nitrate solution, does not form a cream precipitate.

Upon addition of concentrated sulfuric acid in the cold and followed by heating with ethanolic silver nitrate, 2-bromobut-2-ene formed a cream precipitate.

Explain the above observations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6 Proteins, found within the human body, are formed by amino acids. These amino acids are classified as either essential (cannot be synthesised by the human body) or non-essential (can be synthesised by the human body) amino acids.
(a)

Proline
Proline, one of the non-essential amino acids, is associated with the production of collagen which promotes healthy skin and heart muscle. Protonated proline can potentially be synthesised in the following manner.

The reaction of compound \mathbf{A} with liquid bromine occurs via a two-step mechanism.

- compound \mathbf{A} reacts with bromine to form a carbocation intermediate in the first step.
- the ammonium ion is formed in the second step.
(i) Name and suggest the mechanism for this reaction. Show any relevant lone pairs, dipoles and charges, and indicate the movement of electron pairs with curly arrows.
(ii) This synthesis also produces another organic compound (molecular formula $\left.\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{Br}\right)$. Suggest the skeletal formula of the cation.
(iii) Compound \mathbf{C} was extracted and reacted with 1 mole of ethanoyl chloride to form a neutral compound \mathbf{D} with molecular formula $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$. Draw the structure of compound \mathbf{D}. Explain why this product is formed.

Structure

Explanation \qquad
\qquad
\qquad
(b)

Threonine
Threonine, one of the essential amino acids, maintains protein balance within the human body and supports the cardiovascular, liver, central nervous and immune system functions.
In the laboratory, threonine could be synthesised from but-2-enoic acid.
(i) State the type of isomerism exhibited by but-2-enoic acid.
(ii) Suggest a 2-step synthesis for the formation of threonine from but-2-enoic acid, showing the intermediate clearly in your answer.
(iii) By considering the stereoisomers of threonine, suggest why only 25% of the synthesised threonine could be used in the human body.
\qquad
\qquad
\qquad
\qquad
(c) (i) Suggest whether threonine or proline has the more basic amine group. Explain your answer.
\qquad
\qquad
\qquad
\qquad
(ii) Explain, in terms of their structures, the higher solubility of threonine in water as compared to benzoic acid in water.
\qquad
\qquad
\qquad
\qquad
(d) According to dieticians, a teenager requires approximately 1.00 g of calcium each day. This particular mineral is found predominantly in milk, cheeses and yogurts, which most individuals consume in the morning.
(i) Procedure to extract calcium ions is stated as follows :

1. A cup of milk (300 ml) was first filtered to remove impurities before excess amounts of sodium carbonate was added to form CaCO_{3}.
2. The mixture was then refiltered and the white residue (assumed to be solely calcium carbonate) was washed once again with deionised water and filtered again.
3. The white residue was then dissolved in $0.500 \mathrm{dm}^{3}$ of $0.160 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. $25.0 \mathrm{~cm}^{3}$ of this resulting solution was then titrated against $0.125 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. The titre volume was found to be $26.45 \mathrm{~cm}^{3}$.

What is the recommended number of cups of milk each day a teenager should consume to meet the daily requirements?

(ii) | Compound | Amount per serving |
| :--- | :--- |
| Vitamin A | 5000 IU |
| Vitamin C | 300 mg |
| Vitamin D | 600 IU |
| Vitamin E | 30 IU |
| Vitamin K | 80 mcg |
| Thiamin (Vitamin B-1) | 50 mcg |
| Riboflavin (Vitamin B-2) | 50 mg |
| Vitamin B-12 (as Cyanocobalamin) | 50 mcg |
| Calcium (as in calcium carbonate) | 200 mg |
| Magnesium (as magnesium oxide) | 50 mg |
| Zinc (as zinc oxide) | 25 mg |
| Selenium (as L-Selenomethionate) | 200 mcg |
| Molybdenum (as sodium molybdate) | 75 mcg |

A typical multivitamin dietary supplement tablet would have the above composition. Given that the teenager does not consume any form of dairy products, how many tablets would a teenager need to take to achieve the daily requirement of calcium?
(iii) A student wants to test the validity of the composition of calcium in this tablet and decided to follow the steps mentioned in (d)(i).

State 1 possible problem that the student would face.
\qquad
\qquad

| NAME | Class | |
| :--- | :--- | :--- | :--- |

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION
 Chemistry (9729)
 Paper 3 Free Response
 15 September 2017
 Additional Materials: Data Booklet, Writing Paper

READ THESE INSTRUCTIONS:

Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions. Marks [60]

Section B

Answer one question. Marks [20]
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 14 printed pages (including this page).

Section A

Answer all the questions in this section.
1 (a) Iodine is a lustrous purple-black solid at standard conditions that sublimes readily to form a violet gas.
(i) Give the equation that represents the second ionisation energy of iodine.
(ii) The graph below shows the second ionisation energies of eight elements [2] with consecutive atomic number.

Which of the above elements, \mathbf{A} to \mathbf{H}, is iodine? Explain your answer.
(iii) Explain the trend in second ionisation energies from elements \mathbf{A} to \mathbf{G}, [4] including the irregularity for element \mathbf{B}.
(iv) Suggest, with reason, which of the above elements, \mathbf{A} to \mathbf{H}, can form an amphoteric oxide.
Hence, write an equation to show the reaction of this amphoteric oxide with hydrochloric acid. (You are not required to provide the identity of the element in the equation.)
(b) Hydrogen peroxide reacts with acidified iodide ions to liberate iodine, according to the following equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{I}_{2}(\mathrm{aq})
$$

The rate of reaction can be measured by the increase in the concentration of iodine formed over time. The reaction was determined to be zero order with respect to $\left[\mathrm{H}^{+}\right]$.

The following results were obtained by varying the concentrations of hydrogen peroxide and iodide ions.

Expt	Initial [H2O2(aq)] $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial [I-(aq)] $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$
1	0.020	0.040	1.2×10^{-4}
2	0.020	0.050	1.5×10^{-4}
3	0.050	0.040	3.0×10^{-4}
4	0.020	0.500	1.5×10^{-3}
5	0.050	1.000	7.5×10^{-3}

(i) What is understood by the terms order of reaction and half-life.
(ii) Determine the order of the reaction with respect to $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and $\left[\mathrm{I}^{-}\right]$and hence suggest the units of the rate constant of this reaction.
(iii) The half-life of hydrogen peroxide in experiment 4 was 9.24 min. Predict the half-life of hydrogen peroxide in experiment 5.

To investigate the rate of the above reaction, a teacher suggested titrating the iodine formed with sodium thiosulfate solution at specified time intervals.
(iv) Write an equation for the reaction between iodine and thiosulfate.

1 (b) (v) Suggest how the reaction can be quenched at specified time intervals.
(vi) With reference to the Data Booklet, explain why hydrochloric acid is not a suitable acid used for the reaction between hydrogen peroxide and iodide.
[Total:19]

2 Metals have been used widely since ancient times.
(a) An electrochemical cell is constructed using solutions of $\mathrm{NaHSO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$, and MnSO_{4} with suitable electrodes.

The relevant half reactions are:
$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\ominus}=+0.17 \mathrm{~V}$
$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{s}) \quad \mathrm{E}^{\ominus}=-1.18 \mathrm{~V}$
(i) Draw a fully labelled diagram of the above electrochemical cell to measure [3] the cell potential under standard conditions, indicating clearly the direction of the electron flow in the external circuit.
(ii) Write a balanced equation for the reaction that would take place if the [1] electrodes of the cell were connected together by an external circuit.
(iii) Calculate the standard cell potential for this cell
(iv) Calculate the standard Gibbs free energy change, ΔG°, for the cell above.
(v) Suggest, with reasons, what happens to the E^{\ominus} cell when the following are [4] done to the electrochemical cell above.

1) The pH of the $\mathrm{HSO}_{4}^{-} / \mathrm{H}_{2} \mathrm{SO}_{3}$ half-cell is increased.
2) A solution of sodium hydroxide to the $\mathrm{Mn}^{2+} / \mathrm{Mn}$ half-cell.

2 (b) In an electrolytic cell, a current of 0.250 A is passed through a concentrated solution of a chloride of iron, producing iron metal and gas, \mathbf{Y}.
(i) Write the equation for the half-reaction take occurs at the anode.
(ii) When the cell operates for 2 hours, 0.521 g of iron is deposited at one of the electrodes. Determine the formula of the chloride of iron in the original solution.
(iii) Write a balanced equation for the overall reaction that occurs in the cell.
(iv) Calculate the current that would produce the gas \mathbf{Y} from the solution at a rate of 2.50 g per hour.
(c) Metals are also used as catalysts in organic synthesis. The derivative of acetaminophene is investigated for the treatment of headaches.

Derivative of acetaminophene
(i) A student suggested a flawed synthesis of the derivative of [3] acetaminophene starting from phenol. Identify and explain the error in each step.

2 (c) (ii) Compound \mathbf{Z} is an isomer of the derivative of acetaminophene. Suggest a [2] simple chemical test to distinguish between the derivative of acetaminophene and compound \mathbf{Z}.

compound \mathbf{Z}
[Total:21]

3 (a) Blood obtains its colour from its respiratory proteins which occur as octahedral metal complexes. It is different in different organisms.

Protein	Source	Metal per subunit	De- oxygenated colour	Oxygenated colour
Haemoglobin	Mammals, birds, fish, reptiles, insects	1 Fe	red-purple	red
Haemocyanin	mollusks, crustaceans, spiders	2 Cu	colourless	blue

(i) Explain why oxygenated haemoglobin and haemocyanin are coloured.
(ii) Using the Cartesian axes, like those shown in Figure 3.1, draw fully [2] labelled diagrams of the following.

- One of the d-orbitals at the lower energy level in an octahedral complex. Label the diagram "lower".
- One of the d-orbtials at the upper energy level in an octahdral complex. Label this diagram "upper".

Figure 3.1
(iii) Explain why the splitting of the d subshell occurs in an octahedral complex using your answer in (a)(ii).

3 (b) Oxygenated haemoglobin and haemocyanin were analysed and the absorption spectrum was observed.

Colour	Wavelength $(\mathbf{n m})$	Colour	Wavelength $(\mathbf{n m})$
Violet	$380-400$	Yellow	$560-580$
Blue	$400-490$	Orange	$580-620$
Green	$490-560$	Red	$620-800$

(i) Which graph represents the absorption spectrum of oxygenated [2] haemocyanin? Explain your answer.
(ii) Which oxygenated blood (haemoglobin or haemocyanin) has a larger [2] energy gap between the d subshells after splitting? Explain your answer.
(iii) The deoxygenated haemocyanin has a Cu^{+}central ion. State the electronic configuration of Cu^{+}. Hence, suggest why the deoxygenated haemocyanin is colourless?

3 (c) Carbon monoxide, chlorine and phosgene are the best known toxic gases. Many of these gases are assigned an NFPA 704 health rating of 4 (may be lethal) or 3 (may cause serious or permanent injury).

Toxic Gas	Chemical formula	Colour	Odour	NFPA 704 Health Rating
carbon monoxide	CO	colourless	No	3
chlorine	Cl_{2}	green	Yes	4
phosgene	$\mathrm{CCl}_{2} \mathrm{O}$	colourless	No	4

(i) Describe, in terms of bonding, what happens when carbon monoxide is absorbed in the human blood and hence, explain why it is given a NFPA 704 health rating of 3 .
(ii) Chlorine was widely used as a chemical warfare in World War I. However, it was replaced by phosgene as a more effective chemical warfare.
Suggest one possible reason why chlorine was replaced by phosgene.
(d) Phosgene reacts with water to release hydrogen chloride and carbon dioxide gas.

$$
\mathrm{CCl}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+2 \mathrm{HCl} \quad----------- \text { Reaction } 1
$$

(i) Draw the dot-and-cross diagram of phosgene and suggest its bond angle.
(ii) Suggest the type of reaction involved in Reaction 1.
(iii) Gaseous spills of phosgene can be removed using ammonia. The reaction is similar to Reaction 1. Suggest how phosgene reacts with ammonia, using a chemical equation .

Section B

Answer one question from this section.
4. Pyruvic acid is an important component in the human body. It is involved in various processes such as the Krebs Cycle.

Pyruvic acid
(a) $30.0 \mathrm{~cm}^{3}$ of pyruvic acid was titrated against $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ of NaOH . The following titration curve was obtained.

(i) Given that the solution of pyruvic acid is only 15.3% dissociated, calculate the value of K_{a} for pyruvic acid, stating clearly its units.
(ii) Calculate the volume of NaOH added to obtain a solution of pH 12.
(iii) Suggest a suitable indicator for this titration.

4 (a) (iv) Blood has a working pH of 7.35 to 7.45 . Suggest why pyruvic acid is found in trace amounts in blood. Hence, draw the major species of pyruvic acid in blood.
(b) An experiment to study the equilibrium between pyruvic acid and its hydrated form was done by Y. Pocker in 1969. The following data was obtained.

Temperature/ K	[pyruvate hydrate] [pyruvic acid]
278	3.47
294	1.75
304	1.06
324	0.47

(i) Deduce whether the hydration of pyruvic acid is an endothermic or exothermic reaction.
(ii) The pyruvate hydrate has a higher $\mathrm{p} K_{\mathrm{a}}$ value than pyruvic acid. Explain.
(c) Suggest a 2-step synthesis for the formation of carbon dioxide from pyruvic acid.

4 (d) Pyruvic acid was first synthesised in the laboratory through the distillation of tartaric acid with potassium hydrogen sulfate. The structure of tartaric acid is shown below.

Tartaric acid
(i) Suggest why tartaric acid has a much higher melting point than pyruvic acid.
(ii) There are three stereoisomers present in tartaric acid. Two of them rotate plane of polarised light in opposite direction, whereas one has no effect on plane of polarised light.

Draw all the stereoisomers of tartaric acid and explain why one of the stereoisomers does not rotate the plane of polarised light.
[Total: 20]

5 (a) Thallium(I) chromate, $\mathrm{Tl}_{2} \mathrm{CrO}_{4}$, has a solubility product of $8.67 \times 10^{-13} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ at $25^{\circ} \mathrm{C}$.
(i) Calculate the solubility of $\mathrm{T}_{2} \mathrm{CrO}_{4}$ in $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~K}_{2} \mathrm{CrO}_{4}$.
(ii) Given that the numerical $K_{\text {sp }}$ value of BaCrO_{4} is 1.17×10^{-10}, deduce which precipitate will be formed first if $\mathrm{K}_{2} \mathrm{CrO}_{4}$ was added slowly into a solution containing $0.015 \mathrm{~mol} \mathrm{dm}^{-3}$ of Ba^{2+} and $0.015 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Tl}^{+}$.
(b) Transition elements are known to form coloured complexes. Chromium is one of the common transition element used today.
(i) An equilibrium exists between chromate(VI) ion and dichromate(VI) ions.

$$
2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightleftharpoons \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O}
$$

Explain why changes in pH will cause changes in the colour of the solution.
(ii) When gallium, Ga, is added to an acidified $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution, a series of colour changes takes place until a blue solution is obtained.
Using relevant data from the Data Booklet and the data given below, explain the observation of the colour changes.

$$
\mathrm{Ga}^{3+}+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ga} \quad \mathrm{E}^{\ominus}=-0.53 \mathrm{~V}
$$

(iii) Suggest why the blue solution slowly changes to a green solution when it is left standing in air.
(c) Chromium oxidation is a special type of reaction in which oxidation and a rearrangement takes place. An example of a chromium oxidation is as shown.

(i) Draw the structure of the product when the following compound undergoes chromium oxidation.

(ii) Suggest a simple chemical test to distinguish between

1-methylcyclohex-2-enol and 3-methylcyclohex-2-enone.

5 (d) Compound $\mathbf{F}, \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$, is a neutral and chiral compound which is soluble in water. When compound \mathbf{F} is heated with dilute sulfuric acid and potassium dichromate(VI), compound $\mathbf{G}, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$, is formed. 1 mol of compound \mathbf{G} reacts with aqueous sodium carbonate to produce 1 mol of CO_{2}. If compound \mathbf{F} is heated with concentrated sulfuric acid and potassium dichromate(VI), compound \mathbf{H}, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$, is formed instead. When compound \mathbf{F} reacts with LiAlH_{4} in dry ether, a compound \mathbf{J} which is no longer neutral is formed.

Deduce the structures of compounds $\mathbf{F}, \mathbf{G} \mathbf{H}$ and \mathbf{J}, and explain the reactions involved.

Name:	Shift:		
Class:	ST ANDREW'S JUNIOR COLLEGE	Laboratory:	

PRELIMINARY PRACTICAL EXAMINATION

Chemistry

29 August 2017
Higher 2
2 hours 30 minutes

Additional Materials: Qualitative Analysis notes

READ THESE INSTRUCTIONS FIRST.

Write your name and class on all the work you hand in.
Give details of the practical shift and laboratory in the boxes provided above.
Write in dark blue or black pen.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.
The number of marks is given in the brackets [] at the end of each question or part question.

Planning	Practical
14	41

This paper consists of 18 printed pages including this page and quantitative analysis notes.

Determination of the M_{r} of a hydrated ethandioate salt

Calcium ethanedioate is the major component of the most common type of human kidney stones. It is one of a series of salts formed from ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Another of these salts can be represented by the formula $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, where \mathbf{X} is a Group 1 metal.

Solution \mathbf{Q} contains $64.5 \mathrm{~g} \mathrm{dm}^{-3}$ of $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$ in deionised water. You are not provided with \mathbf{Q}.

FA 1 is a diluted solution of \mathbf{Q}, in which $35.70 \mathrm{~cm}^{3}$ of \mathbf{Q} was made up to $250 \mathrm{~cm}^{3}$ with deionised water in a graduated flask.
FA 2 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 3 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

In this question, you will perform a titration. The data from this titration will be used to determine:

- the concentration of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in \mathbf{Q},
- the M_{r} of $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and hence the identity of \mathbf{X}.

(a) Titration of FA 1 against FA 2

In this titration, FA $\mathbf{2}$ is run from the burette into the conical flask containing FA 1 and FA 3. Initially, the colour of the FA 2 will take some time to disappear.
After some FA 2 has been added, sufficient $\mathrm{Mn}^{2+}(\mathrm{aq})$ ions will be present to allow the reaction to occur faster.

The end-point is reached when a permanent pale pink colour is obtained.
(i) 1. Fill the burette with FA 2.
2. Using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into the conical flask.
3. Using an appropriate measuring cylinder, transfer $50.0 \mathrm{~cm}^{3}$ of FA 3 to the same conical flask.
4. Heat this solution to about $65^{\circ} \mathrm{C}$.
5. Run FA 2 from the burette into this flask until a permanent pale pink colour is obtained.
6. Record your titration results in the space provided on page 3. Make certain that your recorded results show the precision of your working.
7. Repeat points $\mathbf{1}$ to $\mathbf{6}$ as necessary until consistent results are obtained.
8. Turn off your Bunsen burner.

Results

(ii) From your titrations, obtain a suitable volume of FA 2 to be used in your calculations.

Show clearly how you obtained this volume.

Volume of FA $2=$
(b) (i) The equation for the reaction between ethanedioate ions and manganate(VII) ions is shown below.
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Calculate the amount, in moles of ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}$ of FA 1.

1 (b) (ii) Determine the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in \mathbf{Q}.

$$
\text { Concentration of } \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \text { in } \mathbf{Q}=\text {. }
$$

(iii) Use your answer to (b)(ii) to calculate the M_{r} of the ethanedioate salt.
M_{r} of the ethanedioate salt =

Hence, deduce the identity of \mathbf{X}.
Show your working.
[Ar: C, 12.0; O, 16.0; H, 1.0; Li, 6.9; Na, 23.0; K, 39.1; Rb, 85.5; Cs, 132.9; Fr. 223.0]
\qquad
(c) A student performed the experiment in (a)(i) using a sample of another ethanedioate salt. The student obtained a mean titre value of $22.20 \mathrm{~cm}^{3}$. The teacher calculated that the volume of FA 2 required should have been $22.40 \mathrm{~cm}^{3}$. The teacher told the student that the total percentage error from the apparatus in the experiment was 0.4 \%.

Calculate the error in the student's result, based on these data. State and explain whether or not the student's result is accurate.
\qquad
\qquad

2 Evaluation of the reliability of a gas collection method in determining a value for the M_{r} of the ethanedioate salt.

In this experiment, you will react the ethanedioate salt with potassium manganate(VII), in the presence of a small amount of manganese(II) ions. You will measure the volume of CO_{2} gas produced at timed intervals and determine the maximum volume of CO_{2} gas produced.

FA 4 is a solution containing manganese(II) ions, Mn^{2+}.

You will need access to the FA 1, FA 2 and FA 3 solutions you used earlier.

Fig. 2.1
You will measure the level of water in the burette at timed intervals.

In an appropriate format in the space provided on page 7, prepare a table in which you may record each burette reading and the time it was taken.

In addition, your table will need to show the total volume of CO_{2} collected up to that time, recorded to one decimal place.

1. Set up the apparatus as shown in Fig. 2.1. You should insert the plastic/rubber tubing to a sufficient depth so that it will not subsequently shake loose.
2. Adjust the water level in the burette until it is between $48.0 \mathrm{~cm}^{3}$ and $50.0 \mathrm{~cm}^{3}$. You may find it helpful to use an empty dropping pipette to introduce small amounts of air from the bottom of the burette tube.
3. Use appropriate measuring cylinders to add to the $250 \mathrm{~cm}^{3}$ conical flask.

- $\quad 20.0 \mathrm{~cm}^{3}$ of FA 1
- $50.0 \mathrm{~cm}^{3}$ of FA 3

4. Using a dropping pipette, add about $1 \mathrm{~cm}^{3}$ of FA 4 to the conical flask.
5. Using an appropriate measuring cylinder, measure out $30.0 \mathrm{~cm}^{3}$ of FA 2.
6. Transfer the FA $\mathbf{2}$ into the conical flask and insert the bung into the conical flask.
7. Allow any bubbles created in the burette when the bung was inserted in the conical flask to rise to the top. Start the stopwatch, read and record the initial water level in the burette.
8. Note: Once you have started the stopwatch, allow it to continue running for the duration of the experiment. You must not stop the stopwatch until the reaction is complete.
9. Check that the plastic/rubber tubing is securely positioned in the burette.
10. Hold the flask by its neck and gently swirl it continuously.
11. At $t=0.5 \mathrm{~min}$, read and record the water level in the burette, to 1 decimal place, together with the time it was measured, in your table.
12. Continue to gently swirl the flask. Read and record the water level in the burette every half minute, until the reaction is complete.
(a) (i) Experimental Results

2 (a) (ii) Plot on the grid below, a graph of the volume of CO_{2} on the y-axis, against
time, t, on the x-axis.
Draw the most appropriate line, taking into account all of your points.
Accaccac

2 (a) (iii) The equation for the reaction between ethanedioate ions and manganate(VII) ions is shown below.
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}-(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Use this equation, and appropriate data from your graph, to calculate a value for the amount, in moles of ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, present in $20.0 \mathrm{~cm}^{3}$ of FA 1.
[molar volume of gas $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at r.t.p.]

Amount of ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, in $20.0 \mathrm{~cm}^{3}$ of $\mathrm{FA} 1=$
(b) (i) Using your answer to question 1(b)(i), calculate the amount of ethanedioate ions in $20.0 \mathrm{~cm}^{3}$ of FA 1. Hence, determine the maximum volume of CO_{2} at r.t.p. that could have been produced from $20.0 \mathrm{~cm}^{3}$ of FA 1.
maximum volume of CO_{2} produced from $20.0 \mathrm{~cm}^{3}$ of $\mathbf{F A} 1=$ \qquad
(ii) Suggest a reason for the difference between the total volume of CO_{2} you collected and the maximum volume of CO_{2} calculated in $\mathbf{2 (b)}$ (i).
\qquad
(iii) Suggest an improvement to this experiment that would overcome this problem.
\qquad

2 (b) (iv) In Question 1 you calculated a value for the M_{r} of the ethanedioate salt. The total volume of CO_{2} collected in 2(a)(i) could also be used to calculate a value for the M_{r} of the ethanedioate salt.

Suggest which of these two Mr values would be higher. Explain your answer.
\qquad
\qquad
(c) The presence of Mn^{2+} ions, which are produced in the reaction between MnO_{4}^{-} ions and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions, is thought to catalyse this reaction.
(i) A student performed the experiment you performed in 2(a)(i) but forgot to add FA 4 to the mixture of FA 1 and FA 3 before adding the FA 2.
The student performed the experiment at the same temperature as your experiment and obtained the graph shown in Fig. 2.2.

Fig. 2.2
(c) (i) Consider the shape of the graph in Fig 2.2 and your graph in 2(a)(ii).

Describe one major difference between the shapes. Suggest an explanation for your answer.

Difference \qquad
\qquad
Explanation \qquad
\qquad
\qquad
(ii) For the titration in $\mathbf{1 (a) (i)}$ between ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, and manganate(VII) ions, MnO_{4}^{-}, the solution needs to be at about $65{ }^{\circ} \mathrm{C}$ at the start. As cold FA 2 is added, the temperature of the mixture decreases. However, this decrease in temperature does not cause the rate of reaction between $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions and MnO_{4}^{-}ions added from the burette to decrease.
Suggest an explanation for this.
\qquad
\qquad
\qquad
\qquad

The oxidation of iodide ions, I^{-}, by peroxodisulfate ions, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, is known to be catalysed by Fe^{2+} or Fe^{3+} ions.

A similar reaction, shown below, in which ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, are oxidised by peroxodisulfate ions, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, may be catalysed by Cu^{2+} ions and by Ag^{+}ions.

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{SO}_{4}^{2-}+2 \mathrm{CO}_{2}
$$

(i) Suggest an explanation why both of these reactions are slow when performed in the absence of a catalyst.
\qquad
\qquad
\qquad
(ii) Plan an investigation to test how well, if at all, Cu^{2+} ions and by Ag^{+}ions catalyse the reaction between $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions and $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ ions. In your plan, you should include details of:

- the reactants and conditions that you would use,
- the apparatus you would use and the procedure you would follow,
- the measurements you would take,
- an outline of how you would use your results to compare the effectiveness of each ion as a potential catalyst.
\qquad

3 You are provided with the solid K12 which contains one cation given in the Qualitative Analysis Notes.

You are to perform the tests below to identify the cation present in K12 and suggest the nature of K12. Record your observations in the spaces provided. Your answers should include

- Details of colour changes and precipitates formed,
- The names of any gases evolved and details of the test used to identify each one.

You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations.
No additional or confirmatory tests for ions present should be attempted.

Tests	Observations and Deductions	
$\mathbf{1}$	Heat K12 alone.	
$\mathbf{2}$	Warm K12 with dilute hydrochloric acid. Keep the solution.	
3	To the solution from test 2, add dilute nitric acid and barium nitrate(V) solution	
$\mathbf{4}$	Warm K12 with a freshly made solution of iron(II) sulfate solution.	
$\mathbf{5}$	Dissolve K12 in dilute nitric acid. Add manganese(II) sulfate solution and two drops of silver nitrate(V) solution to act as a catalyst. Boil the mixture.	
$\mathbf{6}$	Warm K12 solution.	

Nature of K12: \qquad

Cation it contains: \qquad

4 Planning

You are provided with 3 unlabelled bottles and each bottle contains one of the following organic compounds,

- Butanamide
- Lactic acid, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$
- Pyruvic acid, $\mathrm{CH}_{3} \mathrm{COCO}_{2} \mathrm{H}$
(a) Outline a sequence of simple chemical tests to identify each of the above organic substances. You may use any other common laboratory chemical reagents and apparatus, if necessary. You are not allowed to identify the substances by elimination. You are reminded that most of the compounds listed are flammable liquids.

Test	 Deductions

(b) Suggest a safety measure that you would consider in carrying out your plan.
\qquad
(c) State the required reagents and conditions. Draw a set-up of the apparatus for the synthesis of pyruvic acid from lactic acid.

2017 SAJC H2 Chemistry Preliminary Practical Examination PREPARATION LIST

Apparatus List:

$2 \times$ burettes
$1 \times 25.0 \mathrm{~cm}^{3}$ pipette
$1 \times$ pipette filler
$1 \times$ retort stand and clamp
$2 \times$ funnels
$2 \times 250 \mathrm{~cm}^{3}$ conical flasks
$2 \times 50 \mathrm{~cm}^{3}$ measuring cylinders
$1 \times 25 \mathrm{~cm}^{3}$ measuring cylinder
$2 \times$ dropping pipettes
$1 \times$ white tile
1 x thermometer
$1 \times$ stopwatch, reading to at least 0.1 s
$1 \times 250 \mathrm{~cm}^{3}$ conical flask complete with rubber bung and glass delivery tube with at least 35 cm of plastic/ rubber tubing attached
$1 \times$ large container (water trough)
$1 \times$ wash bottle (deionised water)
1 x test-tube rack
$7 x$ test tubes
$1 \times$ test tube brush;
$1 \times$ spatula
1 x test-tube holder;
$1 \times$ Bunsen burner
$1 \times$ tripod stand
$1 \times$ wire gauze
$1 \times$ delivery tube
$1 \times$ glass rod
$1 \times$ wooden splinter
$1 \times$ marker
$1 \times$ goggles
toilet roll
lighter

Communal:

K12
Reagent Rack
aqueous sodium hydroxide aqueous ammonia aqueous silver nitrate(V) solution aqueous nitric acid aqueous sulfuric acid aqueous hydrochloric acid aqueous barium nitrate (V) solution aqueous potassium manganate (VII) aqueous calcium hydroxide iron (II) sulfate solid aqueous manganese(II) sulfate

Q1 and Q2

hazard	label	per candida te	identi ty	Notes (hazards given in this column are for the raw materials)
	FA 1	$\begin{aligned} & 150 \\ & \mathrm{~cm}^{3} \end{aligned}$	$0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium ethanedioate	Dissolve 9.21 g of $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$ [HH] in deionised water and make up the solution to $1 \mathrm{dm}^{3}$.
	FA2	$\begin{aligned} & 150 \\ & \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & 0.0200 \mathrm{~mol} \mathrm{dm}^{-3} \\ & \text { potassium } \\ & \text { manganate(VII) } \end{aligned}$	Dissolve 3.16 g of KMnO_{4} [O][MH][N] in about $250 \mathrm{~cm}^{3}$ of deionised water, then add deionised water to $1 \mathrm{dm}^{3}$.
[MH]	FA3	$\begin{aligned} & 250 \\ & \mathrm{~cm}^{3} \end{aligned}$	$1.0 \mathrm{moldm}^{-3}$ sulfuric acid	Cautiously pour $55 \mathrm{~cm}^{3}$ of concentrated (98\%) sulfuric acid [C] into $500 \mathrm{~cm}^{3}$ of deionised water with continuous stirring. Make the solution up to $1 \mathrm{dm}^{3}$ with deionised water. Care: concentrated sulfuric acid is very corrosive.
	FA4	$5 \mathrm{~cm}^{3}$	0.100 moldm $^{-3}$ manganese(II) sulfate	Dissolve 16.9 g of $\mathrm{MnSO}_{4} . \mathrm{H}_{2} \mathrm{O}$ $[\mathrm{HH}][\mathrm{N}]$ in each $1 \mathrm{dm}^{3}$ of solution.

Q3

Title	Practical Inorganic Analysis Deduce the identities of the organic compounds K 12		
Label Code	Chemicals	Preparation	Per Student
	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	-	2-3 g/student
[MH]	$\begin{aligned} & 1.0 \mathrm{~mol} \mathrm{dm}^{3} \\ & \mathrm{HCl} \\ & \text { (bench } \\ & \text { reagent) } \end{aligned}$	Standard lab preparation	$5 \mathrm{~cm}^{3} /$ student (bench reagent)
	Nitric acid		$2 \mathrm{~cm}^{3} /$ student
	Barium nitrate (V) solution		$2 \mathrm{~cm}^{3} /$ student
	Iron(II) sulfate crystal		$2 \mathrm{~cm}^{3} /$ student
	Manganese (II) sulfate solution		$2 \mathrm{~cm}^{3} /$ student
	Silver nitrate(V) solution		$1 \mathrm{~cm}^{3} /$ student (bench reagent)
aqueous sodium hydroxide [C]	$\begin{aligned} & 2.0 \mathrm{~mol} \mathrm{dm}^{3} \\ & \mathrm{NaOH} \end{aligned}$	Dissolve 80.0 g of NaOH [C] in each dm^{3} of solution. Care: the process of solution is exothermic and any concentrated solution is very corrosive.	$4 \mathrm{~cm}^{3} /$ student (bench reagent)

2017 H2 Chemistry Paper 1 Worked Solution

| 1. | C | 2. | A | 3. | B | 4. | C | 5. | C | 6. | A | 7. | A | 8. | B | 9. | C | 10. | A |
| :--- |
| 11. | B | 12. | A | 13. | D | 14. | D | 15. | C | 16. | C | 17. | D | 18. | A | 19. | D | 20. | B |
| 21. | D | 22. | A | 23. | C | 24. | B | 25. | C | 26. | B | 27. | B | 28. | A | 29. | C | 30. | D |

1 Amt of KMnO_{4} used for first experiment $=0.1 \times 15 / 1000=1.5 \times 10^{-3} \mathrm{~mol}$
$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Amt of Fe^{2+} present $=1.5 \times 10^{-3} \times 5=7.5 \times 10^{-3} \mathrm{~mol}$
$\left[\mathrm{Fe}^{2+}\right]=7.5 \times 10^{-3} /(25 / 1000)=0.3 \mathrm{~mol} \mathrm{dm}^{-3}$
Amt of KMnO_{4} used for second experiment $=0.1 \times 34.2 / 1000=3.42 \times 10^{-3}$ mol

Amt of Fe^{2+} present $=0.0171 \mathrm{~mol}$
Amt of Fe^{3+} originally in $25 \mathrm{~cm}^{3}=0.0171-\left(7.5 \times 10^{-3}\right)=9.6 \times 10^{-3} \mathrm{~mol}$
$\left[\mathrm{Fe}^{3+}\right]=9.6 \times 10^{-3} /(25 / 1000)=0.384 \mathrm{~mol} \mathrm{dm}^{-3}$
Ans: C
$29 \times 4=36$ nuclides were lost, hence the mass number of element A is now $241-36=205$.
$9 \times 2=18$ protons were lost, hence the atomic number of element A before accounting for the electrons is $94-76$. However, the implication of ${ }_{-1}^{0} e$ is that each electron lost increases the atomic number by 1 , so 5 electrons means that the atomic number increases by 5 . Hence $76+5=81$.

Ans: A

3 A is not correct. From NH_{3} to $\mathrm{H}_{2} \mathrm{~S}$, the shape changes from trigonal pyramidal to bent, hence the bond angle actually decreases.
B is correct. PH_{3} has a smaller bond angle than NH_{3} as P is less electronegative than N, hence the bond pairs are further away from the central atom and experience less bond-pair-bond pair repulsion, hence leading to a
smaller bond angle in $\mathrm{PH}_{3} . \mathrm{AlCl}_{3}$ has a larger bond angle than NH_{3} as it is trigonal planar with a bond angle of 120°.

C is not correct. From PH_{3} to $\mathrm{PF}_{3}, \mathrm{H}$ is less electronegative than F , hence the bonding electron pairs are closer to the central atom in PH_{3}, hence experience greater bond-pair-bond pair repulsion, hence leading to a greater bond angle in PH_{3}. From PH_{3} to PF_{3}, there is a decrease in bond angle.

D is not correct. XeF_{4} is square planar with bond angle of 90°. SCl_{6} is also square planar with bond angle of 90°. Hence there is no increase in bond angle.

Ans: B

4 Glycine forms zwitterions and has an ionic lattice structure with strong electrostatic forces of attraction between the zwitterions, hence has a higher melting point than 2-hydroxyethanoic acid.

Ans: C
$5 \quad \mathrm{pV}=\mathrm{nRT}$. For fixed mass of gas at constant T, pV a k. Hence graph should be horizontal line with gradient k .

At lower T, pV should be be lower than original.
Ans: C

6

Ans: A
$7 \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta \mathrm{H}$ will be positive, because interactions in the protein are broken going to the unfolded state. $\Delta \mathrm{S}$ will also be positive, because the unfolded state is more disordered with coil being more random. $\Delta \mathrm{G}$ is negative as denaturation is spontaneous when egg is cooked.

Ans: A

8 At a higher temperature, the graph is skewed towards the right. Area under the graph represents the number of molecules with energy greater than or equal to EA_{A}

Ans: B

9 Since total vol is constant, [reactants] is α to its vol
Rate α 1/time
Comparing expt 1 \& 2, when $\left[I^{-}\right]$increases 1.5 times, rate increases 170/113 $=1.5$ times. Hence $1^{\text {st }}$ order wrt [$\left.I^{-}\right]$

Comparing expt 2 and 3, [$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$] increases 2 times, rate increases 113/56.5 $=2$ times.
Hence $1^{\text {st }}$ order wrt $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]$
\Rightarrow Rate $=k\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]$
Comparing Expt 1 \& 4, when [I^{-}] increases 2 times and $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right.$] increases 4 times, rate should increase 8 times. Hence time in Expt $4=170 / 8=21.3 \mathrm{~s}$.

Since Rate $=k\left[\mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]$, slow step should involve 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and 1 mole of KI. Since overall eqn involves 2 moles of I^{-}, the reaction must have more than 1 step. Hence reaction should involve intermediates.
Fe^{2+} can act as homogenous catalyst in the reaction which is slow due to the reaction between two anions:
Step 1: $\underline{\mathbf{2 F e}}{ }^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4} \underline{\underline{2-}}$
$E_{\text {cell }}=+2.01-(+0.77)=+1.24 \mathrm{~V}(>0$, reaction is feasible $)$
Step 2: $\underline{\mathbf{2 F e}}{ }^{3+}+\mathbf{2 I ^ { - }} \rightarrow \mathbf{2 F e}{ }^{2+}+\mathrm{I}_{\underline{2}}$
E^{\ominus} cell $=+0.77-(+0.54)=+0.23 \mathrm{~V}(>0$, reaction is feasible $)$

Ans: C

10 A: When acid is added, NH_{3} is removed. Hence POE will shift left and white precipitate of AgCl is formed.

B: K_{c} expression does not include solids.
C: K_{c} expression is not affected by concentration
D: Removing solid does not shift POE.
Ans: A

11

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Initial/atm	x	0	0
Eqm/atm	$0.5 x$	$0.5 x$	$0.25 x$

$0.5 x+0.5 x+0.25 x=1.2$
$x=0.96$
Mole fraction of $\mathrm{O}_{2}=0.25(0.96) / 1.2=0.2$
Alternatively,
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Initial/mol x 0
$\begin{array}{lll}\text { Eqm } / \mathrm{mol} & 0.5 x & 0.5 x\end{array} 0.25 x$
Mole Fraction of $\mathrm{O}_{2}=(0.25 \mathrm{x}) /(0.5 \mathrm{x}+0.5 \mathrm{x}+0.25 \mathrm{x})=0.2$
Ans: B

12 1) HI is a strong acid. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ will be protonated. No more weak base present. Not a buffer.
2) 2 mol of HCl and 2 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ will be formed from the hydrolysis of $\mathrm{CH}_{3} \mathrm{COCl} .2$ mole of HCl reacts with 2 moles of NaOH , leaving 1 mole of NaOH .1 mol of $\mathrm{CH}_{3} \mathrm{COONa}$ will be formed from the acid base reaction of 2 moles of $\mathrm{CH}_{3} \mathrm{COOH}$ with 1 mole of NaOH , leaving 1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$. Since there is 1 mol of
$\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mol of $\mathrm{CH}_{3} \mathrm{COOH}$, a buffer is formed (Think about the species and the possibility of reacting)
3) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}$ is a stong dibasic acid which will cause $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ to be protonated. Not a buffer

Ans: A

13
$\mathrm{MX}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{X}^{-}(\mathrm{aq})$
$\mathrm{LY}(\mathrm{s}) \rightleftharpoons \mathrm{L}^{+}(\mathrm{aq})+\mathrm{Y}^{-}(\mathrm{aq})$
A: Ksp increase only when the fwd reaction is endothermic while Ksp decrease when the reaction is exothermic.
B: For solute containing different number of ions, solubility should be calculated to determine which is more soluble. Ksp can only be used for comparison of the no. of ions that made up the two solutes are similar.

C: To calculate for any concentration of ion, it should be IONIC PRODUCT
D: If the solublity of LH is exothermic, a higher temperature will lower the Ksp since the k_{b} increase a greater extent than k_{f}.
Ans: D

14 Graph 1: Electronegativity increases across the period.
Graph 2: Si has the highest melting point as it requires the most energy to overcome the strong network of covalent bonding in its giant covalent lattice. P_{4} are held by weak id-id interaction, hence low mpt.

Graph 3:

	NaCl	MgCl_{2}	AlCl_{3}	SiCl_{4}	PCl_{5}
pH	7	6.5	3	$1-2$	$1-2$

Ans: D

15 1. From the more positive E^{\ominus}, it can be seen the X_{2} has the greatest tendency to be reduced. Hence, it has the greatest oxidising power.
2. The E^{\ominus} cell will be $+1.36-(+0.54)=+1.90>0$. Hence, the reaction will occur.
3. From the data booklet, Z_{2} is I_{2} which is the largest atomic radius, so it has the least tendency to attract electrons to form negatively charge species.
Hence, lowest E.A.

Ans: C
16 Which of the following shows the correct type of reaction(s) occurring for each step of the synthesis?

In Step I, - COOH undergoes reduction to form an alcohol.

Step 2 involves an increase in carbon chain. The alcohol group probably underwent a substitution reaction to form an alkyl halide before undergoing another substitution reaction with CN^{-}followed by acid hydrolysis.

Step 3 involves the formation of an acid chloride followed by the condensation of the amine with acid chloride. Ans: C

17 The reaction does not have an activation barrier (zero E_{A}) which means it must be a very energetically favourable reaction which does not involve any bond breaking.

Ans: D
$18 \mathrm{~A}: \mathrm{HCl}$ (white fumes) is formed when the alcohol reacts with ethanoyl chloride.
B: is wrong as alkene does not undergo reduction with LiAlH_{4}.

C : is wrong since CO_{2} would not be produced when the compound undergoes strong oxidation. No presence of ethanedioic acid that can break down into CO_{2}.

D: 1 mol of Vitamin A produces 0.5 mol of H_{2} and that is $22.7 / 2=11.35 \mathrm{dm}^{3}$ at stp.

Ans: A

19 Option 1 is wrong since $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHC/CH}_{3}$ undergoes $\mathrm{S}_{\mathrm{N}} 2$ nucleophilic to give a optically active product, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$. The product would be a racemic mixture if it underwent $\mathrm{S}_{\mathrm{N}} 1$ mechanism.

Option 2 is correct as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}$ are functional group isomers.

Option 3 is correct as $\mathrm{C}-\mathrm{Br}$ bond is weaker than $\mathrm{C}-\mathrm{Cl}$ bond and so rate of substitution will increase when the sample is 2 -bromobutane.

Option 4 is correct as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ undergoes elimination with conc, $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give but-1-ene, cis-but-2-ene and trans-but-2-ene.

Ans: D

20 Conjugate base with smallest $\mathrm{p} K_{\mathrm{b}}$ (largest K_{b}) is the strongest conjugate base; it must come from the weakest acid (smaller K_{a}).

Strength of acidity is dependent on stability of conjugate anion. The greater the extent of charge dispersal, the more stable the conjugate anion.

Order of decreasing stability of conjugate anion:

$\mathrm{CHF}_{2} \mathrm{CH}_{2} \mathrm{O}^{-},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{-}$
Correct order in increasing K_{b} :

 ,

$$
\text { , } \mathrm{CHF}_{2} \mathrm{CH}_{2} \mathrm{O}^{-},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}^{-}
$$

Ans: B
21 Option A is wrong since the intermediate $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{CN}) \mathrm{O}^{-}$has a tetrahedral shape.
Option B is wrong since a racemic mixture of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$ would be obtained.
Option C is wrong since there are more -R groups surrounding the carbonyl C in propanone, making the C less electron deficient and also hindering the attack of the nucleophile. Hence the rate should be slower.
Option D is correct due to nucleophilic substitution where the Cl is substituted by CN to give the same product. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CN}$
Ans: D

22 Butyl ethanoate is formed from butanol and ethanoic acid

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}+\mathrm{H}^{18} \mathrm{O}-\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \text { and } \\
& \mathrm{CH}_{3} \mathrm{CO}^{18} \mathrm{OH}
\end{aligned}
$$

Ans: A

23

Ans: C

24 a-amino acid has a $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}(\mathrm{R})-\mathrm{COOH}$ structure. Hence, after oxidative cleavage Option 1 and 4 are probable with the correct empirical formulae.

Ans: B

25 Which of the following reagents would give different observations when added to both compounds in separate test-tubes?

Compound \mathbf{Y}

Compound \mathbf{Z}

A aqueous bromine

Both compounds would decolourise orange aqueous bromine and form white precipitates.
product of compound \mathbf{Y}

product of compound \mathbf{Z}

B 2,4-dinitrophenylhydrazine

Neither compounds have carbonyl functional groups and hence not form orange precipitate.

C LiAlH_{4} in dry ether, followed by hot acidified KMnO_{4}

Both compounds would undergo reduction with LiAlH_{4} and form the following :
product of compound \mathbf{Y}

products of compound \mathbf{Z}

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

The ethanol would undergo oxidation and decolourise KMnO_{4}.
D ethanolic silver nitrate

Aryl halides would not form precipitate with ethanolic silver nitrate.
Ans: C
26 1. Acid chloride reacts with phenol and alcohol to form ester and amine to form amide. Note that the lone pair of e on N (next to the $\mathrm{C}=\mathrm{C}$) is delocalised into the double bond hence nucleophilic subst to form amide is not possible.
2. Alkenes and ketones can be reduced by hydrogen gas to form alkane and secondary alcohol respectively.
3. $\mathrm{HBr}(\mathrm{g})$ can react with the alkene via electrophilic addition, the aliphatic alcohol to form RBr via nucleophilic substitution, and both amine functional groups in an acid base reaction.

Ans: B

27 Lone pair of electron on O in alcohol is donated into the empty orbital of H^{+}.
Ans: B

28 Sucrose is oxidised to carbon dioxide gas while oxygen is reduced to water. Hence electrons will flow from left (anode) to right (cathode).
$\mathrm{E}^{\theta}\left(\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)=+1.23 \mathrm{~V}$
$+1.25=+1.23-E^{\theta}$ (anode)
$E^{\theta}($ anode $)=-0.02 \mathrm{~V} \quad$ Ans: A

29 Since 1 mol of complex forms 2 mol of AgI (s), only one iodide ion is present in the complex. Therefore, there should be 5 ammonia ligands in the complex (since complex has co-ordination number 6). Y is $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{I}\right] \mathrm{I}_{2}$.

Ans: C

30 1) Q can use its 3 unpaired $3 d$ and 4 s electrons to form ions or bonds hence can exhibit oxidation states from +1 to +5 . Therefore $\mathbf{Q}_{2} \mathbf{O}_{3}$ (oxidation number of Q is +3) is likely to exist.
2) R has a higher nuclear charge than P. Although R has additional electrons (i.e. the 10 3d electrons) in an inner sub-shell, they provide relatively poor shielding (when compared to the $3 s$ and 3 p electrons) to the outermost 4 s electrons because they are occupying highly diffuse d orbitals. (strength of shielding effect: $s>p>d)$. Hence, the valence $4 s$ electrons of R experience greater effective nuclear charge and are attracted more strongly to the nucleus, resulting in R having a larger $1^{\text {st }} I E$ than P.
3) R^{+}has a fully filled d orbital hence d-d transition is not able to take place. Hence the compound is a white solid.

Ans: D

NAME \quad| | Class |
| :--- | :--- |

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION

Chemistry (9729)
Paper 2 Structured Questions

11 September 2017
2 hours

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS:

Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Answer all questions in the spaces provided on the Question Paper.
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's use:

Question	1	2	3	4	5
Marks		5	10	16	6

This document consists of $\mathbf{X X}$ printed pages (including this page).

Answer all the questions
1 Sulfur is a common element on Earth that forms many important chemical compounds. One of these compounds is sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, an ionic compound used to treat several medical conditions, such as cyanide poisoning and fungal growths.
(a) (i) Draw a dot-and-cross diagram for sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. State the shape and bond angle in the thiosulfate ion.

shape around sulfur - tetrahedral
bond angle - 109°
1 mark for correct dot-cross diagram
1 mark for both shape and bond angle
Double bond between S-S atoms is accepted
Additional electrons can be shown as either dot or cross. Triangle/square/circle/any other shape cannot accept.
(ii) Below are the melting points of sodium thiosulfate and sulfur.

Compound	Melting point $/{ }^{\circ} \mathrm{C}$
Sodium thiosulfate	49
Sulfur, S8	115

Explain why sulfur has a higher melting point than sodium thiosulfate.
Sodium thiosulfate has a giant ionic lattice structure with electrostatic forces of attraction between Na^{+}and $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ ions. [1]

Sulfur/ S_{8} is a simple non-polar covalent molecules with instantaneous-dipole-induced-dipole (id-id) interactions between its molecules.[1]

> The large number of electrons in each sulfur molecule leads to strong id-id interactions, which require more energy to overcome compared to the ionic bonds in sodium thiosulfate, hence it has a higher melting point than sodium thiosulfate[1]
(b) Another important sulfur compound is sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$. Before the Contact Process was discovered, concentrated sulfuric acid for industrial purposes was produced by the following method.

The mineral pyrite, FeS_{2}, was first heated in air and oxidised to solid $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ and sulfur dioxide gas.
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ decomposes at $480^{\circ} \mathrm{C}$ to form iron(III) oxide and sulfur trioxide gas. The sulfur trioxide gas could be mixed with any volume of water to produce sulfuric acid of the desired concentration. However, this process was expensive and not efficient.
(i) Write a balanced equation, with state symbols for the reaction between pyrite, FeS_{2}, and oxygen to form $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
$2 \mathrm{FeS}_{2}(\mathrm{~s})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})[1]$
(ii) With the aid of an equation, define the term standard enthalpy change of formation of gaseous sulfur trioxide, SO_{3}.
Standard enthalpy of formation of gaseous SO_{3} is the energy released or required when 1 mole of gaseous SO_{3} is formed from its constituent elements under standard conditions of 298 K and 1 bar. [1]
$1 / 8 \mathrm{~S} 8(\mathrm{~s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g})[1]$
(iii) Given the following information, determine the enthalpy change of formation of gaseous sulfur trioxide SO_{3}.

$$
\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=+95 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Turn Over

Substance	$\Delta \boldsymbol{H}_{\mathbf{f}} /$ kJ mol $^{\mathbf{- 1}}$
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{~s})$	-2107
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-824

(iv) Use the appropriate bond energies given in the Data Booklet and the data below to calculate another value for the standard enthalpy change of formation of gaseous sulfur trioxide SO_{3}.
$1 / 8 \mathrm{~S}_{8}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}=-297 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\Delta \mathrm{H}_{\mathrm{f}}\left(\mathrm{SO}_{3}(\mathrm{~g})\right)=-549 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2 marks for energy cycle, $1 / 2$ mark for each correct arrow with reactants and products

1 mark for calculation
(v) Suggest a reason for the discrepancy between the values in (b)(iii) and (b)(iv).

The bond energy data from the data booklet are only average values and would not apply exactly to particular compounds.[1]
(c) The value of pV is plotted against p for 1 mol of oxygen O_{2}, where p is the pressure and V is the volume of the gas at 300 K .

(i) On the diagram above, draw and label the graph of pV against p for SO_{3} at 300 K.

Can cut the ideal gas line at any point, but negative and positive deviation must be more than O_{2}.
(ii) Explain the difference between the graph of SO_{3} and the graph of O_{2}.
SO_{3} has more electrons than O_{2}, hence it has stronger instantaneous-dipole-induced-dipole interactions and has greater deviation from ideality. [1]

OR
SO_{3} has a larger size, hence the volume of SO_{3} compared to the total volume occupied by the gas is more significant. [1]
[Total: 17]

2 Transition elements show typical properties that distinguish them from s-block elements, such as calcium. These include variable oxidation states in their compounds, and the formation of coloured complex ions.
(a) An ion of manganese has 3 electrons in its 3d subshell. Suggest the oxidation state of this manganese ion.
+4 [1]
(b) The following table gives data about some physical properties of the elements calcium, chromium, and manganese.

Property	$\mathbf{C a}$	$\mathbf{C r}$	$\mathbf{M n}$
Atomic radius (metallic) / nm	0.197	0.129	0.132
lonic radius (2+) / nm	0.099	0.073	0.083
Melting point / K	1112	1907	1246
Density / g cm			
Electrical conductivity / $\times 10^{6} \mathrm{~S} \mathrm{~cm}^{-1}$	0.298	0.0774	0.00695

(i) Explain why the atomic radii of chromium and manganese are similar to each other.

Mn has more proton and hence greater nuclear charge. However, the two paired electrons in the 4 s subshell of Mn also experience interelectronic repulsion.[1] The effect on the radius due to nuclear charge is counteracted by the interelectronic repulsion between the two paired electrons in the 4 s subshell.[1]

Accept
Proton number increases and hence nuclear charge increases from Cr to Mn . Shielding effect increases because the electrons are added to the inner 3d subshell. [1] The effect on the radius due to nuclear charge is counteracted by the effect on the radius due to the shielding effect / effective nuclear charge is approximately constant/similar. [1]
(ii) Explain why the density of manganese is significantly greater than that of calcium, using relevant data from the table and the Data Booklet. (No calculations are required.)
Density = mass / volume
Manganese has atomic mass of 54.9 , which is greater than the atomic mass of calcium, 40.1. [1]

Manganese has atomic radius of 0.132 nm , which is less than the atomic radius of calcium, 0.197 nm . [1] Or

> Manganese has ionic radius of 0.083 nm or 0.058 nm , which is less than the ionic radius of calcium, 0.099 nm . [1]

[Total: 5]

3 A student investigated the thermal decomposition of two carbonates, calcium carbonate and barium carbonate in the following way to determine its exact composition. He used the same amount, in moles, of each carbonate.
$\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{M}$ is Ca or Ba

He heated the carbonates separately for 5 minutes. The solid obtained after heating was then shaken with distilled water to form an alkaline solution. A portion of the solid remained insoluble and was filtered. A sample of the alkaline filtrate was titrated with hydrochloric acid. No effervescence was observed during the titration.
(a) (i) Suggest which carbonate is less likely to decompose completely. Explain your answer.
BaCO_{3} is more thermally stable and not decomposed completely.
lonic radius of $\mathrm{Ba}^{2+}>\mathrm{Ca}^{2+}$ Hence charge density(charge/volume \approx charge/ionic radius) of Ba^{2+} smaller than Ca^{2+}. [1] Polarising power of Ba^{2+} weaken, less able to polarise the electron cloud of carbonate, less weakening of the $\mathrm{C}-\mathrm{O}$ bond in the carbonate. Hence the carbonate is less likely to decompose.[1]
(ii) It was observed that the volume of acid used in the titration was smaller for the carbonate which did not decompose completely.

Explain how the incomplete decomposition can result in a lower volume of acid used in the titration.
Incomplete decomposition of BaCO_{3} will result in smaller amount of BaO being formed [1] BaO is a basic oxide and will dissolve in water to give an
alkaline solution and hence less $\mathrm{Ba}(\mathrm{OH})_{2}$ being produced hence requiring lower volume of HCl for titration.[1]
$\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}$
$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(b) Explain the difference between the magnitude of the lattice energies of calcium carbonate and calcium oxide.

LE a $\left|\frac{q_{+} \times q_{-}}{r_{+}+r_{-}}\right|$
$\mathrm{r}^{+}, \mathrm{q}^{+}$and q^{-}same for both compound. $\mathrm{CO}_{3}{ }^{2-}$ has a larger ionic radius than O^{2-}.[1]
Thus magnitude of LE of CaCO_{3} is smaller than that of CaO .[1]
(c) Given that the decomposition of calcium carbonate is an endothermic reaction.

$$
\Delta \mathrm{H}=+178 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { and } \Delta \mathrm{S}=+159 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Calculate the minimum temperature at which this reaction becomes spontaneous.
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}<0$
T > 178000/159 [1]
T > 1120K
Minimum temperature is 1120 K. [1]
(d) Beryllium oxide can react with sodium hydroxide.

$$
\mathrm{BeO}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{BeO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Explain this behaviour despite Be being a Group 2 element.

Due to the high charge density of $\mathrm{Be}^{2+}[1], \mathrm{BeO}$ shows a degree of covalent character / amphoteric [1] and thus able to react with a base.

4
Gaseous phosphorus(V) chloride dissociates according to the following equation.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Different amounts of the three gases were placed in a closed container and allowed to come to equilibrium at $200^{\circ} \mathrm{C}$. The experiment was repeated at $425^{\circ} \mathrm{C}$.
The equilibrium partial pressure of the three gases at each temperature are given in the table below.

	Partial pressure / $10^{-3} \mathrm{~N} \mathrm{~m}^{-2}$		
temperature $/{ }^{\circ} \mathrm{C}$	PCl_{5}	PCl_{3}	Cl_{2}
200	1.46	11.8	2.77
425	7.61	0.211	0.368

(a) (i) Write the expression for the equilibrium constant, K_{p}, for this reaction. Give the units.
$K_{p}=\frac{P_{P C l 3} P_{C l 2}}{P_{P C l 5}}[1]$
Units: $\mathrm{N} \mathrm{m}^{-2}$ [1]
(ii) Calculate the value of K_{p} at each of the temperatures given.

At $200^{\circ} \mathrm{C}$

$K_{p}=\left(11.8 \times 10^{-3}\right)\left(2.77 \times 10^{-3}\right) /\left(1.46 \times 10^{-3}\right)$
$=0.0224 \mathrm{~N} \mathrm{~m}^{-2}$ [1]

At $425^{\circ} \mathrm{C}$
$K_{p}=\left(0.211 \times 10^{-3}\right)\left(0.368 \times 10^{-3}\right) /\left(7.61 \times 10^{-3}\right)$
$=1.02 \times 10^{-5} \mathrm{~N} \mathrm{~m}^{-2}[1]$
(iii) Is the forward reaction exothermic or endothermic? Explain your answer.

Abstract

According to Le Chatelier's Principle, when temperature is increased, endothermic reaction is favoured to "absorb" the additional heat. Since the positon of equilibrium shifts to the left (as evident from the higher partial pressure of PCl_{5}) at higher temperature, this suggests that the backward reaction is endothermic and hence the forward reaction is exothermic.[1]

Or Since $K_{p}=\frac{k_{f}}{k_{b}}$, a drop in K_{p} as temperature increases implies that the rate of backward reaction increases to a greater extent [1]than rate of the forward reaction. This suggests that the backward reaction is endothermic and hence the forward reaction is exothermic.[1]

(b) What will be the effect on the equilibrium partial pressure of PCl_{5} when the following changes are carried out on this new equilibrium? Explain your answers clearly.
(i) The pressure of the system is halved at constant temperature.

When pressure is halved, position of equilibrium will shift right [1] as there are more moles of gaseous products to increase the number of moles of gases [1] to increase the pressure. Less PCl5.
(ii) Helium gas is added at constant volume and temperature.

Individual partial pressures for each gas did not change.[1]
No change in position of equilibrium. [1]

Chloroethane can be made by reacting PCl_{3} with ethanol, via nucleophilic substitution mechanism.

$$
\mathrm{PCl}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{HOPCl}_{2}
$$

Turn Over

(c) Outline a simple chemical test that can be carried out to see if chloroethane is produced in the mixture after reacting with PCl_{3}.

Heat chloroethane with aq NaOH . Cool, acidify with nitric acid, then add dilute AgNO_{3} to sample. [1] A white precipitate should be obtained. [1]
(d) The mechanism is thought to involve these steps.

- The first step is where $\mathrm{P}-\mathrm{Cl}$ bond breaks. P is electron deficient and reacts with alcoholic O to form a protonated oxygen intermediate.
- The C-O bond is broken. Cl^{-}act as a nucleophile.

Complete the diagram to suggest a mechanism to show how chloroethane is formed. Show all charges and relevant lone pairs and show the movement of electron pairs by using curly arrows.

[3]

Nucleophilic Substitution
2marks for both sets of arrows
1 mark for intermediate
dipoles

Lone pair on Cl during intermediate step
No penalty for slow/fast
(e) Explain why chlorobenzene cannot be made in the same way using phenol and PCl_{3}. [1]
The lone pair of electrons on O can delocalise into the benzene ring and resulting in strengthening of the C-O bond. [1] Hence the bond does not break easily for NS to take place.
[Total: 16]

5 Bromine reacts with organic compounds in different ways.
(a) When butane reacts with gaseous bromine in the presence of ultraviolet light, the major product was 2-bromobutane instead of 1-bromobutane. Using the stability of the intermediates, explain the observation.
The reaction of gaseous bromine and butane is free radical substitution, where the ultraviolet light splits the bromine-bromine sigma bond in the bromine molecule homolytically to form 2 bromine radicals / atoms. [1 mark for either stating FRS or the formation of bromine radical]

The bromine radical formed reacts with the butane molecule to form the following 2 different radicals.

radical A

radical B
can describe in words - 2 alkyl groups vs 1 alkyl group / lone electron on $1^{\text {st }}$ vs $2^{\text {nd }}$ carbon / primary vs secondary radical

Radical \mathbf{A} is formed in a larger proportion than radical \mathbf{B} because the carbon with the radical in radical \mathbf{A} has 1 additional electron donating alkyl group than in radical
B. This stabilises the radical to a greater extent and hence lead to the higher

Turn Over

proportion of 2-bromobutane formed despite having a smaller number of hydrogen atoms to be substituted.[1]
(b) A solution of 2-bromobut-2-ene, upon heating with ethanolic silver nitrate solution, does not form a cream precipitate.

Upon addition of concentrated sulfuric acid in the cold and followed by heating with ethanolic silver nitrate, 2-bromobut-2-ene formed a cream precipitate.

Explain the above observations.
The bromine atom's lone pair of electrons would delocalise into the alkene functional group, forming a partial double bond. This partial double bond is very strong and hence would not break upon heating and thus no cream-white precipitate was formed. [1]

Upon addition of sulfuric acid, the pi-bond in the alkene would undergo electrophilic addition and hence break. [1] Therefore the bromine atom no longer delocalises its electrons and the carbon-bromine single bond remains. Upon heating with silver nitrate solution, nucleophilic substitution occurs / the carbon-bromine single bond would break heterolytically, forming the bromide ion. [1] Upon addition of aqueous silver nitrate, would result in the formation of silver bromide, the cream precipitate.
[Total: 6]

6 Proteins, found within the human body, are formed by amino acids. These amino acids are classified as either essential (cannot be synthesised by the human body) or nonessential (can be synthesised by the human body) amino acids.
(a)

Proline
Proline, one of the non-essential amino acids, is associated with the production of collagen which promotes healthy skin and heart muscle. Protonated proline can potentially be synthesised in the following manner.

The reaction of compound \mathbf{A} with liquid bromine occurs via a two-step mechanism.

- compound \mathbf{A} reacts with bromine to form a carbocation intermediate in the first step.
- the ammonium ion is formed in the second step.
(i) Name and suggest the mechanism for this reaction. Show any relevant lone pairs, dipoles and charges, and indicate the movement of electron pairs with curly arrows.

[1] - for each equation (inclusive of dipoles, lone pairs, slow/fast, etc.)
(ii) This synthesis also produces another organic compound (molecular formula $\left.\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{Br}\right)$. Suggest the skeletal formula of the cation.

[1]
(iii) Compound C was extracted and reacted with 1 mole of ethanoyl chloride to form a neutral compound \mathbf{D} with molecular formula $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{2}$. Draw the structure of compound D. Explain why this product is formed.

[1]
The amine functional group reacts with ethanoyl chloride as it is a stronger nucleophile as the lone pair of electrons on the nitrogen atom are more available / likely to attack the electron-deficient carbon on ethanoyl chloride than the oxygen atom in the alcohol functional group. [1 - availability of lone pair of electrons]

OR

N is less electronegative than O , hence I.p more available to attack. [to be confirmed as answer]
(b)

Threonine, one of the essential amino acids, maintains protein balance within the human body and supports the cardiovascular, liver, central nervous and immune system functions.

In the laboratory, threonine could be synthesised from but-2-enoic acid.
(i) State the type of isomerism exhibited by but-2-enoic acid.
cis-trans isomerism
(ii) Suggest a 2-step synthesis for the formation of threonine from but-2-enoic acid, showing the intermediate clearly in your answer.

reagents and conditions [1] for each step intermediate [1]
(iii) By considering the stereoisomers of threonine, suggest why only 25% of the synthesised threonine could be used in the human body.

Threonine exhibits enantiomerism due to the presence of 2 chiral carbons. [1] There is a total of 4 possible enantiomers and only one of which matches the threonine within the human body. [1]
Accept optical isomers / isomerism
(c) (i) Suggest whether threonine or proline has the more basic amine group. Explain your answer.
Proline's amine functional group is more basic than that of threonine's.[1]
Proline's amine functional group is a secondary amine whereas threonine's amine functional group is a primary amine. The lone pars are more available for protonation due to two/more electron-donating groups in the secondary amine, hence proline is more basic. [1]
OR
On top of which threonine has an additional secondary alcohol functional group, which causes the availability of the lone pair of electrons on the nitrogen atom in the amine to be less available to be donated to a proton.[1]
(ii) Explain, in terms of their structures, the higher solubility of threonine in water as compared to benzoic acid in water.
Threonine exist as a zwitterion [1] in water whereas benzoic acid exist as a simple covalent molecule in water.

Threonine would form ion-dipole interactions with water molecules and releases significantly more energy as compared to the hydrogen bonds formed between benzoic acid molecules with water molecules. Thus threonine is more soluble in water as compared to benzoic acid.[1]
(d) According to dieticians, a teenager requires approximately 1.00 g of calcium each day. This particular mineral is found predominantly in milk, cheeses and yogurts, which most individuals consume in the morning.
(i) Procedure to extract calcium ions is stated as follows :

1. A cup of milk (300 ml) was first filtered to remove impurities before excess amounts of sodium carbonate was added to form CaCO_{3}.
2. The mixture was then refiltered and the white residue (assumed to be solely calcium carbonate) was washed once again with deionised water and filtered again.
3. The white residue was then dissolved in $0.500 \mathrm{dm}^{3}$ of $0.160 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid. $25.0 \mathrm{~cm}^{3}$ of this resulting solution was then titrated against $0.125 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. The titre volume was found to be $26.45 \mathrm{~cm}^{3}$.

What is the recommended number of cups of milk each day a teenager should consume to meet the daily requirements?
amount of sodium hydroxide used $=0.00330 \mathrm{~mol}$
amount of excess hydrochloric acid present in $0.500 \mathrm{dm}^{3}$ of resulting solution $=0.0661 \mathrm{~mol}$ [1]
amount of hydrochloric acid used to dissolve the white precipitate $\left(\mathrm{CaCO}_{3}\right)=$ 0.0138 mol
amount of calcium carbonate $=0.00693 \mathrm{~mol}$ [1]
mass of calcium ions in 1 cup of milk $=0.278 \mathrm{~g}$
no. of cups needed $=1 / 0.278=3.60$
hence the teenager should drink about 4 cups of milk a day. [1]

3.6 cups also accepted as answer

(ii)

Compound	Amount per serving
Vitamin A	5000 IU
Vitamin C	300 mg
Vitamin D	600 IU
Vitamin E	30 IU
Vitamin K	80 mcg
Thiamin (Vitamin B-1)	50 mcg
Riboflavin (Vitamin B-2)	50 mg
Folic Acid	600 mcg
Vitamin B-12 (as Cyanocobalamin)	50 mcg
Calcium (as in calcium carbonate)	200 mg

lodine (as Potassium iodide)	150 mcg
Magnesium (as magnesium oxide)	50 mg
Zinc (as zinc oxide)	25 mg
Selenium (as L-Selenomethionate)	200 mcg
Molybdenum (as sodium molybdate)	75 mcg

A typical multivitamin dietary supplement tablet would have the above composition. Given that the teenager does not consume any form of dairy products, how many tablets would a teenager need to take to achieve the daily requirement of calcium?

No. of tablets $=1.0 \mathrm{~g} / 0.2 \mathrm{~g}=5$ [1]
(iii) A student wants to test the validity of the composition of calcium in this tablet and decided to follow the steps mentioned in (d)(i).

State 1 possible problem that the student would face.

1. The calcium carbonate precipitate would be formed along with copper carbonate, magnesium carbonate, etc.
OR
2. The tablet would have to be treated initially to dissolve it completely. [1 mark for any point]

| NAME | Class | |
| :--- | :--- | :--- | :--- |

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATION
 Chemistry (9729)
 15 September 2017
 Paper 3 Free Response
 Additional Materials: Data Booklet, Writing Paper

READ THESE INSTRUCTIONS:

Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions. Marks [60]

Section B

Answer one question. Marks [20]
The use of an approved scientific calculator is expected, where appropriate.
A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

This document consists of $\mathbf{X X}$ printed pages (including this page).

Section A

Answer all the questions in this section.
1 (a) lodine is a lustrous purple-black solid at standard conditions that sublimes readily to form a violet gas.
(i) Give the equation that represents the second ionisation energy of iodine.
$\mathrm{I}^{+}(\mathrm{g}) \rightarrow \mathrm{I}^{2+}(\mathrm{g})+\mathrm{e}^{-}[1]$
$\Delta H>0$ is not required since this is not a definition question.
(ii) The graph below shows the second ionisation energies of eight elements with consecutive atomic number.

Which of the above elements, \mathbf{A} to \mathbf{H}, is iodine? Explain your answer.
Element \mathbf{E}. [1] The sharp drop from \mathbf{G} to \mathbf{H} indicates that \mathbf{G} is from Group 1 where the second ionisation energy involves the removal of an electron from the inner principal quantum shell, which is nearer to the nucleus, requiring more energy. [1] Hence Element \mathbf{E} is in Group 17 and is iodine.
(iii) Explain the trend in second ionisation energies from elements \mathbf{A} to \mathbf{G}, [4] including the irregularity for element \mathbf{B}.

The second IE generally increases from \mathbf{A} to \mathbf{G} because from \mathbf{A} to \mathbf{G}, there is an increase in proton number and hence nuclear charge while shielding effect is almost constant as electrons are added to the same quantum shell. [1] Hence effective nuclear charge increases and the attraction for the outermost electron becomes increasingly stronger. [1] More and more energy is required to remove the strongly attracted valence electron as we move across the period.

Second IE of \mathbf{B} is lower than that of \mathbf{A} because the electron is removed from the valence 5 p subshell which is further away from the nucleus compared to the 5 s subshell in A. [1] It also experiences additional screening effect by the two 5s. These factors outweigh the effect of increase in nuclear charge from A to B, resulting in a weaker attraction by the nucleus. [1] Less energy is required to remove the outermost electron in \mathbf{B} than that in A.
(iv) Suggest, with reason, which of the above elements, \mathbf{A} to \mathbf{H}, can form an amphoteric oxide.
Hence, write an equation to show the reaction of this amphoteric oxide with hydrochloric acid. (You are not required to provide the identity of the element in the equation.)

Element A has amphoteric oxide since it is in Group 13 [1] and its oxide would have both ionic and covalent character.
$\mathrm{A}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{ACl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ [1]
or
$\mathrm{In}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{InCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ [1]
No ecf from part (ii)
(b) Hydrogen peroxide reacts with acidified iodide ions to liberate iodine, according to the following equation:

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{I}_{2}(\mathrm{aq})
$$

The rate of reaction can be measured by the increase in the concentration of iodine formed over time. The reaction was determined to be zero order with respect to $\left[\mathrm{H}^{+}\right]$.

The following results were obtained by varying the concentrations of hydrogen peroxide and iodide ions.

Expt	Initial [H2O2(aq)] $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial $\left[\mathrm{I}^{-}(\mathrm{aq})\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$
1	0.020	0.040	1.2×10^{-4}
2	0.020	0.050	1.5×10^{-4}
3	0.050	0.040	3.0×10^{-4}
4	0.020	0.500	1.5×10^{-3}
5	0.050	1.000	7.5×10^{-3}

(i) What is understood by the terms order of reaction and half-life.

The order of reaction with respect to a reactant is the power to which the concentration of that reactant is raised in the experimentally determined rate equation. [1]

Or Let the Rate $=k[A]^{m}[B]^{n}$, where m and n are the order of reaction wrt $[A]$ and [B] respectively. [1]

Half-life, $\mathrm{t} 1 / 2$, is the time taken for the reactant concentration to decrease to half of its original value.[1]
(ii) Determine the order of the reaction with respect to $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ and $\left[\mathrm{I}^{-}\right]$and [3] hence suggest the units of the rate constant of this reaction.

Let rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]^{\mathrm{m}}\left[\mathrm{I}^{-}(\mathrm{aq})\right]^{\mathrm{n}}$
Compare experiments $1 \& 2$, keeping $\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]$ constant
$\frac{1.2 \times 10^{-4}}{1.5 \times 10^{-4}}=\frac{\mathrm{k}(0.020)^{m}(0.040)^{\mathrm{n}}}{\mathrm{k}(0.020)^{\mathrm{m}}(0.050)^{n}} \quad$ (or use inspection method)
$\mathrm{n}=1$

Rate of reaction is 1 st order with respect to [$\left.I^{-}(\mathrm{aq})\right]$ [1]

Compare experiments $1 \& 3$, keeping $\left[I^{-}(\mathrm{aq})\right]$ constant
$\frac{1.2 \times 10^{-4}}{3.0 \times 10^{-4}}=\frac{\mathrm{k}(0.020)^{\mathrm{m}}(0.040)^{\mathrm{n}}}{\mathrm{k}(0.050)^{\mathrm{m}}(0.040)^{n}} \quad$ (or use comparing method)
$m=1$

Rate of reaction is 1 st order with respect to $\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]$ [1]

Hence,
rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]\left[\mathrm{I}^{-(a q)}\right]$
units of $\mathrm{k}=\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~min}^{-1}[1]$
(iii) The half-life of hydrogen peroxide in experiment 4 was 9.24 min. Predict the half-life of hydrogen peroxide in experiment 5 .

For Expt 4 and 5, since $\left[I^{-}(\mathrm{aq})\right] \gg\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]$, $\left[\mathrm{I}^{-}(\mathrm{aq})\right]$ is approximately constant.

Thus, rate $=\mathrm{k}^{\prime}\left[\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})\right]$ (a pseudo first order reaction) where
$k^{\prime}=k[1-(a q)]$
$\mathrm{t}_{1 / 2}=\frac{\ln 2}{\mathrm{k}^{\prime}}=\frac{\ln 2}{\mathrm{k}\left[\mathrm{I}^{-}\right]}$
$\mathrm{t}_{1 / 2}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ in experiment $4=9.24 \mathrm{~min}\left(\right.$ for $\left[\mathrm{I}^{-}(\mathrm{aq})\right]=0.500 \mathrm{~mol} \mathrm{dm}^{-3}$)
$\mathrm{t}_{1 / 2}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ in experiment $5=4.62 \mathbf{m i n}\left(\right.$ for $\left.\left[\mathrm{I}^{-}(\mathrm{aq})\right]=1.00 \mathrm{~mol} \mathrm{dm}^{-3}\right)[1]$

To investigate the rate of the above reaction, a teacher suggested titrating the iodine formed with sodium thiosulfate solution at specified time intervals.
(iv) Write an equation for the reaction between iodine and thiosulfate.
$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})$ [1]
State symbols not required but penalized when wrong ones are provided.
(v) Suggest how the reaction can be quenched at specified time intervals. The reaction can be quenched by:

- adding $\mathrm{NaOH} / \mathrm{NaHCO}_{3} / \mathrm{Na}_{2} \mathrm{CO}_{3}$ to remove the $\mathrm{H}^{+}(\mathrm{aq})$
- sudden cooling of the reaction mixture
- sudden dilution through the addition of large volume of water any of the above method [1]
(vi) With reference to the Data Booklet, explain why hydrochloric acid is not a suitable acid used for the reaction between hydrogen peroxide and iodide.
$\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-} \mathrm{E}^{\ominus}=+1.36 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}^{\ominus}=+1.77 \mathrm{~V}$
E^{\ominus} cell $=+1.77-1.36=+0.41 \mathrm{~V}$ [1 for quoting and calculating]
$\mathrm{H}_{2} \mathrm{O}_{2}$ can oxidise chloride to chlorine[1] while it itself is reduced to $\mathrm{H}_{2} \mathrm{O}$. Hence, the oxidation of iodide may not be complete.

2 Metals have been used widely since ancient times.
(a) An electrochemical cell is constructed using solutions of $\mathrm{NaHSO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$, and MnSO_{4} with suitable electrodes.

The relevant half reactions are:
$\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\ominus}=+0.17 \mathrm{~V}$
$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{s})$

$$
E^{\ominus}=-1.18 \mathrm{~V}
$$

(i) Draw a fully labelled diagram of the above electrochemical cell to measure [3] the cell potential under standard conditions, indicating clearly the direction of the electron flow in the external circuit.

$$
\mathrm{T}=298 \mathrm{~K}
$$

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]
$$

$$
=1 \mathrm{~mol} \mathrm{dm}^{-3}
$$

[1] - e^{-}flow
[1] - voltmeter, salt bridge (can BOD from diagram) +Mn and Pt electrodes
[1] - label all the solutions $\left(\mathrm{HSO}_{4}^{-}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{H}^{+}\right) \& 1 \mathrm{~mol} \mathrm{dm}^{-3}$ and temperature
(ii) Write a balanced equation for the reaction that would take place if the electrodes of the cell were connected together by an external circuit.
$\mathrm{Mn}+\mathrm{HSO}_{4}^{-}+3 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$ [1]
(iii) Calculate the standard cell potential for this cell

$$
\mathrm{E}_{\text {cell }}=+0.17-(-1.18)=+1.35 \mathrm{~V}[1]
$$

(iv) Calculate the standard Gibbs free energy change, ΔG^{\ominus}, for the cell above.

$$
\begin{aligned}
\Delta G^{\ominus}= & -n F E^{\ominus} \text {, where } n=2 \text { electrons transferred } \\
& =-2 \times 96500 \times(+1.35)=-260550 \mathrm{~J} \mathrm{~mol}^{-1}=-261 \mathrm{~kJ} \mathrm{~mol}^{-1}[1]
\end{aligned}
$$

(v) Suggest, with reasons, what happens to the E° cell when the following are done to the electrochemical cell above.

1) The pH of the $\mathrm{HSO}_{4}^{-} / \mathrm{H}_{2} \mathrm{SO}_{3}$ half-cell is increased.
2) A solution of sodium hydroxide to the $\mathrm{Mn}^{2+} / \mathrm{Mn}$ half-cell.

$$
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}
$$

1. When $\left[\mathrm{H}^{+}\right]$is reduced /pH increases, equilibrium position shifts to the left to replenish the $\left[\mathrm{H}^{+}\right]$, hence E^{θ} cathode becomes less positive [1]. As $E_{\text {cell }}=E$ (cathode) $-E$ (anode), and E (cathode) become less positive, hence, the $\mathrm{E}_{\text {cell }}$ of the cell becomes less positive. [1]
$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{s}) \quad$ Eanode
2. When NaOH is added, $\mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s})$ will be formed and $\left[\mathrm{Mn}^{2+}\right]$ will decrease. Position of equilibrium will shift left to increase $\left[\mathrm{Mn}^{2+}\right]$, hence Eanode becomes more negative.[1] Ecell becomes more positive. [1]
(b) In an electrolytic cell, a current of 0.250 A is passed through a concentrated solution of a chloride of iron, producing iron metal and gas, \mathbf{Y}.
(i) Write the equation for the half-reaction take occurs at the anode.

$$
2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}[1]
$$

(ii) When the cell operates for 2 hours, 0.521 g of iron is deposited at one of the electrodes. Determine the formula of the chloride of iron in the original solution.

Charge $=0.25 \times 2 \times 60 \times 60=1800 C$
Amt of electrons $=1800 / 96500=0.0187 \mathrm{~mol}$
Amt of iron formed $=0.521 / 55.8=0.009336 \mathrm{~mol}$

Mole ratio of electrons taken in: iron deposited $=0.0187: 0.009336 \approx 2: 1$ [1]

Formula of iron chloride $=\mathrm{FeCl}_{2}[1]$
(iii) Write a balanced equation for the overall reaction that occurs in the cell.
$\mathrm{Fe}^{2+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+\mathrm{Fe}$
(iv) Calculate the current that would produce the gas \mathbf{Y} from the solution at a rate of 2.50 g per hour.

Amt of chlorine gas liberated per hour $=2.5 / 71=0.03521 \mathrm{~mol}$
Charge required per hour $=2 \times 96500 \times 0.03521=6795 C[1]$
Current $=$ Charge $/$ time $=6795 /(60 \times 60)=1.89$ A [1]
(c) Metals are also used as catalysts in organic synthesis. The derivative of acetaminophene is investigated for the treatment of headaches.

Derivative of acetaminophene
(i) A student suggested a flawed synthesis of the derivative of [3] acetaminophene starting from phenol. Identify and explain the error in each step

Step I: Only dilute HNO_{3} instead of conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ and conc HNO_{3} need to be used as phenol is more reactive than benzene/ or -OH group is an activating substituent.

OR conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ and conc HNO_{3} will produce a tri-substituted product.
OR the reagents will result in multiple substituted products.
[1]
Step II: HCl will neutralise phenylamine and form a salt instead
OR There is need to perform careful neutralisation of NaOH to remove the proton from phenylammonium ion.

Step III: Acid chloride will hydrolyse to give $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and HCl which will be neutralised by aq NaOH , hence not able to react with the phenol and phenylamine.

OR Acid chloride will react with aq NaOH , hence not able to react with the phenol and phenylamine.

OR Neutralisation takes place between acid chloride and NaOH and hence condensation will not take place.
(ii) Compound \mathbf{Z} is an isomer of the derivative of acetaminophene. Suggest a simple chemical test to distinguish between the derivative of acetaminophene and compound \mathbf{Z}.

compound \mathbf{Z}
Test: aq NaOH , heat. [1]
Observations: Compound \mathbf{Z} produces pungent NH_{3} gas that turns moist red litmus paper blue but derivative of acetaminophene does not produce pungent NH_{3} that turns moist red litmus paper blue.

OR
Compound \mathbf{Z} gives pungent NH_{3} that forms white fumes with concentrated HCl but derivative of acetaminophene does not give pungent NH_{3} that forms white fumes with concentrated HCl [1]
[Total:21]

3 (a) Blood obtains its colour from its respiratory proteins which occur as octahedral metal complexes. It is different in different organisms.

| Protein | Source | Metal per
 subunit | De-
 oxygenated
 colour | Oxygenated
 colour |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Haemoglobin | Mammals,
 birds, fish,
 reptiles,
 insects | 1 Fe | red-purple | red |

Haemocyanin	mollusks, crustaceans, spiders	2 Cu	colourless	blue

(i) Explain why oxygenated haemoglobin and haemocyanin are coloured.

The oxygenated haemoglobin and haemocyanin contains transition metals ion in the centre of the complexes.

In the isolated gas phase, all partially filled 3d orbitals of the transition metal ions are degenerate. In the presence of ligand such as oxygen, the 3d orbitals split into 2 groups with a small_energy gap between them. [1]
An electron from the lower energy d orbital absorbs energy from the
visible region (or visible spectrum) of the electromagnetic spectrum with wavelength corresponding to the energy gap is absorbed and_get promoted to a higher energy d orbital.[1]

The light energy not absorbed is reflected and observed as colour of its the oxygenated blood. (Or the colour observed is complementary to the colour absorbed.) [1]
(ii) Using the Cartesian axes, like those shown in Figure 3.1, draw fully [2] labelled diagrams of the following.

- One of the d-orbitals at the lower energy level in an octahedral complex. Label the diagram "lower".
- One of the d-orbtials at the upper energy level in an octahdral complex. Label this diagram "upper".

Figure 3.1
Lower: any

Upper: either

upper

Students can change the position of x, y and z axes in their respective diagrams. Orbitals must be labelled.
(iii) Explain why the splitting of the d subshell occurs in an octahedral complex using your answer in (a)(ii).

The electrons in the upper d orbitals are pointing towards the lone pairs of electrons on the ligands,[1] hence will be repelled by them and resulting in higher energy. [1]

OR
In octahedral complexes, the lone pairs of electrons on the 6 ligands approach the central ion along the axes. Thus, the energy of an electron in either the upper d orbitals ($3 d_{x^{2}-y^{2}}$ or $3 d_{z^{2}}$) experience greater electronic repulsion, resulting in higher energy. [1]
(b) Oxygenated haemoglobin and haemocyanin were analysed and the absorption spectrum was observed.

Colour	Wavelength (nm)	Colour	Wavelength (nm)
Violet	$380-400$	Yellow	$560-580$
Blue	$400-490$	Orange	$580-620$
Green	$490-560$	Red	$620-800$

(i) Which graph represents the absorption spectrum of oxygenated haemocyanin? Explain your answer.

Graph B. [1] The wavelength not absorbed is $\sim 380-470 \mathrm{~nm}$. This means that the light reflected is blue/violet (accept indigo). [1]
(ii) Which oxygenated blood (haemoglobin or haemocyanin) has a larger energy gap between the d subshells after splitting? Explain your answer.

Haemoglobin has a larger energy gap [1] as $\Delta \mathrm{E}=\mathrm{hc} / \lambda$, haemoglobin absorbs as a lower wavelength, hence it has a larger energy gap. [1]
(iii) The deoxygenated haemocyanin has a Cu^{+}central ion. State the electronic configuration of Cu^{+}. Hence, suggest why the deoxygenated haemocyanin is colourless?
$\mathrm{Cu}^{+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}[1]$
Cu^{+}has a fully filled 3d-subshell or fully filled 3d-orbitals. Hence, $\mathrm{d}-\mathrm{d}$ transition of electrons from the lower d-orbitals to the higher orbital is not possible. [1] Hence, no energy from the visible region of the electromagnetic spectrum with wavelength corresponding to the energy gap is absorbed or reflected.
(c) Carbon monoxide, chlorine and phosgene are the best known toxic gases. Many of these gases are assigned an NFPA 704 health rating of 4 (may be lethal) or 3 (may cause serious or permanent injury).

Toxic Gas	Chemical formula	Colour	Odour	NFPA 704 Health Rating
carbon monoxide	CO	colourless	No	3

chlorine	Cl_{2}	green	Yes	4
phosgene	$\mathrm{CCl}_{2} \mathrm{O}$	colourless	No	4

(i) Describe, in terms of bonding, what happens when carbon monoxide is absorbed in the human blood and hence, explain why it is given a NFPA 704 health rating of 3 .

Carbon monoxide (CO) forms dative bond with Fe^{2+} in haemoglobin more readily than O_{2} molecule (since $\mathrm{Fe}-\mathrm{CO}$ bond is stronger than $\mathrm{Fe}-\mathrm{O}_{2}$ bond); or

CO displaces the oxygen in oxyhaemoglobin $\left(\mathrm{HbO}_{2}\right)$ to form carboxyhaemoglobin (HbCO).

Or

Being a stronger ligand, carbon monoxide, CO can be bonded less reversibly to the metal centre. [1]

$$
\mathrm{HbO}_{2}+\mathrm{CO} \rightarrow \mathrm{HbCO}+\mathrm{O}_{2}
$$

This consequently cuts down the supply of oxygen to the body and so, accounts for the toxic nature of carbon monoxide, resulting in suffocation. This could lead to serious or permanent injury or death. [1]

Hence, it is given a NFPA 704 health rating of 3 .
(ii) Chlorine was widely used as a chemical warfare in World War I. However, it was replaced by phosgene as a more effective chemical warfare. Suggest one possible reason why chlorine was replaced by phosgene.

Chlorine has a distinct odour and is green in colour while phosgene is colourless and have a more subtle smell. Hence, it is more difficult for troops to detect and take counter measure. [1]

Other reasons:

Chlorine is water-soluble and so the effect would be minimised by placing a water-soaked rag over mouth and nose.[1]

Do not accept "Phosgene is much more toxic and deadly than chlorine"; same NFPA value.
(d) Phosgene reacts with water to release hydrogen chloride and carbon dioxide gas.

$$
\mathrm{CCl}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+2 \mathrm{HCl} \quad----------- \text { Reaction } 1
$$

(i) Draw the dot-and-cross diagram of phosgene and suggest its bond angle.

Bond angle $=120^{\circ}[1]$
(ii) Suggest the type of reaction involved in Reaction 1.

Nucleophilic substitution or Hydrolysis [1]
(The water acts as a nucleophile; the lone pair on O of water attacks the $\delta+C$ of phosgene)
(ii) Gaseous spills of phosgene can be removed using ammonia. The reaction is similar to Reaction 1. Suggest how phosgene reacts with ammonia, using a chemical equation .
$\mathrm{CCl}_{2} \mathrm{O}+4 \mathrm{NH}_{3} \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{NH}_{4} \mathrm{Cl}$
Or $\mathrm{CCl}_{2} \mathrm{O}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{HCl}$
[Total:20]

Section B

Answer one question from this section.
4. Pyruvic acid is an important component in the human body. It is involved in various processes such as the Krebs Cycle.

Pyruvic acid
(a) $30.0 \mathrm{~cm}^{3}$ of pyruvic acid was titrated against $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ of NaOH . The following titration curve was obtained.

(i) Given that the solution of pyruvic acid is only 15.3% dissociated, calculate the value of K_{a} for pyruvic acid, stating clearly its units.
[Pyruvic acid] $=\frac{0.15 \times 0.027}{0.03}=0.135 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}^{+}\right]=0.135 \times 0.153=0.02065 \mathrm{~mol} \mathrm{dm}^{-3}[1]$
$K_{a}=\frac{0.02065^{2}}{0.135}=3.16 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ [1 with units]
Or
$K_{a}=(0.135)(0.153)^{2}=3.16 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ [2 with units]
(ii) Calculate the volume of NaOH added to obtain a solution of pH 12.
$\mathrm{pOH}=2$
$\left[\mathrm{OH}^{-}\right]=0.01 \mathrm{~mol} \mathrm{dm}^{-3}[1]$
Let the volume of NaOH added be $\mathrm{x} \mathrm{dm}^{3}$.
$\left[\mathrm{OH}^{-}\right]=\frac{0.15(x-0.027)}{x+0.03}=0.01$
$\mathrm{x}=0.0311 \mathrm{dm}^{3}$
$31.1 \mathrm{~cm}^{3}$ of NaOH was added. [1]
(iii) Suggest a suitable indicator for this titration.

Phenolphthalein [1]
Penalise for wrong spelling
(iv) Blood has a working pH of 7.35 to 7.45 . Suggest why pyruvic acid is found in trace amounts in blood. Hence, draw the major species of pyruvic acid in blood.

Pyruvic acid is a weak acid. Since its $p K_{\text {a }}$ value (as calculated based on (a)(i) calculation is 2.50) is less than 7 ,[1] its tendency to remain as pyruvic acid molecule in blood (which has working pH of 7.35 to 7.45) is low, hence it is only found in trace amounts in blood. [1] Hence, in blood, pyruvic acid will exist in the pyruvate(salt/conjugate base) form.

(b) An experiment to study the equilibrium between pyruvic acid and its hydrated form was done by Y. Pocker in 1969. The following data was obtained.

pyruvate hydrate

Temperature/ K	[pyruvate hydrate] [pyruvic acid]
278	3.47
294	1.75
304	1.06
324	0.47

(i) Deduce whether the hydration of pyruvic acid is an endothermic or exothermic reaction.
Temperature increases, more pyruvic acid is present. Backward and forward reaction both increases. However, rate (constant) of backward reaction increases more that of forward reaction. [1] Backward reaction is the endothermic reaction. Thus hydration of pyruvic acid is exothermic. [1] Or

Temperature increases, more pyruvic acid is present. This implies that position of equilibrium shifts left.[1] Since increase in temperature always favours the endothermic reaction, the backward reaction is endothermic.

Thus hydration of pyruvic acid is exothermic. [1]
Conclusion must be supported by correct reason. 0 if say exothermic but reason contradicts.

BOD and give 1 mark if only state exothermic but no reason provided.
(ii) The pyruvate hydrate has a higher $\mathrm{p} K_{a}$ value than pyruvic acid. Explain. Higher $\mathrm{p} K_{a}$ indicates that pyruvate hydrate is less acidic than pyruvic acid.[1] The - $\mathrm{C}=\mathrm{O}$ group is more electron-withdrawing than the $2-\mathrm{OH}$ groups, hence stabilising the conjugate base of the pyruvic acid more.[1] Hence, pyruvic acid is more acidic.

Alternate answer: Conjugate base of pyruvic acid is more resonancestabilised due to the $\mathrm{C}=\mathrm{O}$ and COO^{-}.
(c) Suggest a 2-step synthesis for the formation of carbon dioxide from pyruvic acid.

Each reagent and condition -[1]
Intermediate - [1]
(d) Pyruvic acid was first synthesised in the laboratory through the distillation of tartaric acid with potassium hydrogen sulfate. The structure of tartaric acid is shown below.

Tartaric acid
(i) Suggest why tartaric acid has a much higher melting point than pyruvic acid.

Tartaric acid and pyruvic acid are both polar simple covalent molecules with intermolecular hydrogen bonding.[1] However, tartaric acid can form more extensive intermolecular hydrogen bonding (since it has more COOH and -OH groups). More energy required to break the more extensive intermolecular hydrogen bonding.[1]

OR
Pyruvic acid would dimerise while tartaric acid would polymerise [1] and hence id-id between the tartaric acid polymers is stronger than the id-id between pyruvic acid dimers. [1]
(ii) There are three stereoisomers present in tartaric acid. Two of them rotate plane of polarised light in opposite direction, whereas one has no effect on plane of polarised light.
Draw all the stereoisomers of tartaric acid and explain why one of the stereoisomers does not rotate the plane of polarised light.

[1m each]
There is a plane/line of symmetry present in that stereoisomer Or it is a meso compound. [1]

5 (a) Thallium(I) chromate, $\mathrm{Tl}_{2} \mathrm{CrO}_{4}$, has a solubility product of $8.67 \times 10^{-13} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ at $25^{\circ} \mathrm{C}$.
(i) Calculate the solubility of $\mathrm{Tl}_{2} \mathrm{CrO}_{4}$ in $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~K}_{2} \mathrm{CrO}_{4}$.

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Tl}^{+}\right]^{2}\left[\mathrm{CrO}_{4}{ }^{2-}\right] \text { units } \mathrm{mol}^{3} \mathrm{dm}^{-9}
$$

Let the solubility be $\times \mathrm{mol} \mathrm{dm}^{-3}$
$8.67 \times 10^{-13}=[2 x]^{2}[0.05][1]$
$x=2.08 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}[1]$
(ii) Given that the numerical $K_{\text {sp }}$ value of BaCrO_{4} is 1.17×10^{-10}, deduce which precipitate will be formed first if $\mathrm{K}_{2} \mathrm{CrO}_{4}$ was added slowly into a solution containing $0.015 \mathrm{~mol} \mathrm{dm}^{-3}$ of Ba^{2+} and $0.015 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Tl}^{+}$.

For $\mathrm{BaCrO}_{4} \mathrm{ppt}$ to form, $\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\frac{1.17 \times 10^{-10}}{0.015}=7.8 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
For $\mathrm{Tl}_{2} \mathrm{CrO}_{4}$ ppt to form, $\left[\mathrm{CrO}_{4}{ }^{2-}\right]=\frac{8.67 \times 10^{-13}}{0.015^{2}}=3.85 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$
[1 for both calculations]
Since less $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ is required to form $\mathrm{Tl}_{2} \mathrm{CrO}_{4}$, it will precipitate first. [1]
(b) Transition elements are known to form coloured complexes. Chromium is one of the common transition element used today.
(i) An equilibrium exists between chromate(VI) ion and dichromate(VI) ions.

$$
\begin{equation*}
2 \mathrm{CrO}_{4}^{2-}+2 \mathrm{H}^{+} \rightleftharpoons \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{H}_{2} \mathrm{O} \tag{2}
\end{equation*}
$$

Explain why changes in pH will cause changes in the colour of the solution. When pH increases, the equilibrium position will shift left as OH^{-}will react with H^{+}. More yellow $\mathrm{CrO}_{4}{ }^{2-}$ formed. [1] When pH decreases, the equilibrium position will shift right to remove the excess H^{+}. More orange $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}$ formed. [1]
(ii) When gallium, Ga , is added to an acidified $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution, a series of colour changes takes place until a blue solution is obtained.
Using relevant data from the Data Booklet and the data given below, explain the observation of the colour changes.

$$
\mathrm{Ga}^{3+}+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ga} \quad \mathrm{E}^{\ominus}=-0.53 \mathrm{~V}
$$

$$
\left.\begin{array}{ll}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e} \rightleftharpoons & \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{Cr}^{2+} & \mathrm{E}^{\ominus}=+1.33 \mathrm{~V} \\
\mathrm{Cr}^{3+}+\mathrm{e} \rightleftharpoons \\
\text { quote }]
\end{array} \quad \mathrm{E}^{\ominus}=-0.41 \mathrm{~V}\right]_{[1 \mathrm{for}}
$$

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+2 \mathrm{Ga}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+2 \mathrm{Ga}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\ominus}=+1.86 \mathrm{~V}[1]$
Orange
green [1]
$3 \mathrm{Cr}^{3+}+\mathrm{Ga} \rightarrow 3 \mathrm{Cr}^{2+}+\mathrm{Ga}^{3+} \quad \mathrm{E}^{\ominus}=+0.12 \mathrm{~V} \quad[1]$
Green blue
$3 \mathrm{Cr}^{2+}+2 \mathrm{Ga} \rightarrow 3 \mathrm{Cr}+2 \mathrm{Ga}^{3+} \quad \mathrm{E}^{\ominus}=-0.382 \mathrm{~V}$
Cr^{2+} cannot be further reduced to Cr by Ga .
(iii) Suggest why the blue solution slowly changes to a green solution when it is left standing in air.
Cr^{2+} is oxidised to Cr^{3+}.
$4 \mathrm{Cr}^{2+}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Cr}^{3+}+4 \mathrm{OH}^{-} \quad \mathrm{E}^{\ominus}$ cell $=+0.81 \mathrm{~V}[1]$
(c) Chromium oxidation is a special type of reaction in which oxidation and a rearrangement takes place. An example of a chromium oxidation is as shown.

(i) Draw the structure of the product when the following compound undergoes chromium oxidation.

[1]
(ii) Suggest a simple chemical test to distinguish between

1-methylcyclohex-2-enol and 3-methylcyclohex-2-enone.
2,4-DNPH, warm [1] No penalty for missing 'warm'
Orange ppt for 3-methylcyclohex-2-enone and no orange ppt for 1-methylcyclohex-2-enol [1]
(d) Compound $\mathrm{F}, \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$, is a neutral and chiral compound which is soluble in water. When compound \mathbf{F} is heated with dilute sulfuric acid and potassium dichromate(VI), compound $\mathbf{G}, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$, is formed. 1 mol of compound \mathbf{G} reacts with aqueous sodium carbonate to produce 1 mol of CO_{2}. If compound \mathbf{F} is heated with concentrated sulfuric acid and potassium dichromate(VI), compound \mathbf{H}, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$, is formed instead. When compound \mathbf{F} reacts with LiAlH_{4} in dry ether, a compound \mathbf{J} which is no longer neutral is formed.

Deduce the structures of compounds $\mathbf{F}, \mathbf{G} \mathbf{H}$ and \mathbf{J}, and explain the reactions involved.

	Deduction [cap at 3 marks]
Compound $\mathrm{F}, \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$, is a neutral compound which is soluble in water.	F is not a carboxylic acid or amine since it is neutral. [1] OR F can be an amide, ester or contains alcohol groups since it can form H bonding with water, making it soluble. [1]
When Compound \mathbf{F} is heated with acidified potassium dichromate(VI), Compound G, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$, is formed	-oxidation of primary alcohol and hydrolysis - - CONH_{2} in $\mathrm{F} /$ Amide is present in \mathbf{F} [1]
1 mol of compound \mathbf{G} reacts with aqueous sodium carbonate to produce 1 mol of CO_{2}.	-acid-carbonate reaction (accept acid-base reaction) G contains two - COOH groups [1]

Compound \mathbf{F} is heated with concentrated sulfuric acid and potassium dichromate(VI), Compound $\mathbf{H}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$, is formed instead	-elimination of water -alkene in H [1]
Compound F reacts with LiAlH_{4} in dry ether, Compound \mathbf{J} is formed	-reduction - - CONH_{2} in F becomes - $\mathrm{CH}_{2} \mathrm{NH}_{2} \text { in } \mathrm{J}[1]$
Max 2 marks	
1 mark each structure	

[Total: 20]

d~END OF PAPER~

H2 Chemistry Preliminary Exam Practical Suggested Solution

1 Determination of the M_{r} of a hydrated ethandioate salt

Calcium ethanedioate is the major component of the most common type of human kidney stones. It is one of a series of salts formed from ethanedioic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$. Another of these salts can be represented by the formula $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, where \mathbf{X} is a Group 1 metal.

Solution \mathbf{Q} contains $64.5 \mathrm{~g} \mathrm{dm}^{-3}$ of $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}$ in deionised water. You are not provided with \mathbf{Q}.

FA 1 is a diluted solution of \mathbf{Q}, in which $35.70 \mathrm{~cm}^{3}$ of \mathbf{Q} was made up to $250 \mathrm{~cm}^{3}$ with deionised water in a graduated flask.

FA 2 is $0.0200 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium manganate(VII), KMnO_{4}.
FA 3 is $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$.

In this question, you will perform a titration. The data from this titration will be used to determine:

- the concentration of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in \mathbf{Q},
- the M_{r} of $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and hence the identity of \mathbf{X}.

(a) Titration of FA 1 against FA 2

In this titration, FA $\mathbf{2}$ is run from the burette into the conical flask containing FA $\mathbf{1}$ and FA 3. Initially, the colour of the FA 2 will take some time to disappear.
After some FA 2 has been added, sufficient $\mathrm{Mn}^{2+}(\mathrm{aq})$ ions will be present to allow the reaction to occur faster.

The end-point is reached when a permanent pale pink colour is obtained.
(i) 1. Fill the burette with FA 2.
2. Using a pipette, transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into the conical flask.
3. Using an appropriate measuring cylinder, transfer $50.0 \mathrm{~cm}^{3}$ of FA 3 to the same conical flask.
4. Heat this solution to about $65^{\circ} \mathrm{C}$.
5. Run FA 2 from the burette into this flask until a permanent pale pink colour is obtained.
6. Record your titration results in the space provided on page 3. Make certain that your recorded results show the precision of your working.
7. Repeat points $\mathbf{1}$ to $\mathbf{6}$ as necessary until consistent results are obtained.
8. Turn off your Bunsen burner.

Results

Final burette reading/ cm^{3}	25.10	25.10
Initial burette reading $/ \mathrm{cm}^{3}$	0.00	0.00
Volume of FA 2/KMnO4/Titrant $/ \mathrm{cm}^{3}$	25.10	25.10
Values used (Tick consistent readings $\pm 0.10 \mathrm{~cm}^{3}$)	\checkmark	\checkmark

(ii) From your titrations, obtain a suitable volume of FA 2 to be used in your calculations.

Show clearly how you obtained this volume.
Average volume of FA $2=(25.10+25.10) / 2=25.10 \mathrm{~cm}^{3}$

$$
\text { Volume of FA } 2=\ldots 25.10 \mathrm{~cm}^{3} \ldots
$$

(b) (i) The equation for the reaction between ethanedioate ions and manganate(VII) ions is shown below.
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Calculate the amount, in moles of ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25.0 \mathrm{~cm}^{3}$ of FA 1.
amount of MnO_{4}^{-}in FA $2=(25.10 / 1000) \times 0.02=0.000502 \mathrm{~mol}$ amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25 \mathrm{~cm}^{3}$ of FA $1=0.000502 / 2 \times 5=0.001255 \mathrm{~mol}$

Amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $25 \mathrm{~cm}^{3}$ of FA $1=\ldots 0.001255 \mathrm{~mol}$ or $0.00126 \mathrm{~mol} .$. .
(b) (ii) Determine the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in \mathbf{Q}. amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $250 \mathrm{~cm}^{3}$ of FA $1=0.001255 \times 10=0.01255 \mathrm{~mol}$ $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]_{\mathrm{in} Q}=0.01255 /(35.70 / 1000)=0.3516 \mathrm{~mol} \mathrm{dm}^{-3}$

Concentration of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $\mathbf{Q}=\ldots .0 .3516$ or $0.352 \mathrm{~mol} \mathrm{dm}^{-3}$
(iii) Use your answer to (b)(ii) to calculate the M_{r} of the ethanedioate salt. M_{r} of $\mathrm{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} . \mathrm{H}_{2} \mathrm{O}=64.5 / 0.3516=183.4$
\qquad

Hence, deduce the identity of \mathbf{X}.
Show your working.
[Ar: C, 12.0; O, 16.0; H, 1.0; Li, 6.9; Na, 23.0; K, 39.1; Rb, 85.5; Cs, 132.9; Fr. 223.0]
Ar of $X=[183.4-2(12.0)-5(16.0)-2(1.0)] / 2=38.7$
X = Potassium
\mathbf{X} is $K \ldots .$.
1 (c) A student performed the experiment in (a)(i) using a sample of another ethanedioate salt. The student obtained a mean titre value of $22.20 \mathrm{~cm}^{3}$. The teacher calculated that the volume of FA 2 required should have been $22.40 \mathrm{~cm}^{3}$. The teacher told the student that the total percentage error from the apparatus in the experiment was 0.4 \%.

Calculate the error in the student's result, based on these data. State and explain whether or not the student's result is accurate.

Student's experimental error $=\frac{22.40-22.20}{22.40} \times 100 \%=0.8928=0.893 \%$
Since student's experimental error (0.893\%) is more than the apparatus error(0.4%), therefore the student's result is inaccurate.

2 Evaluation of the reliability of a gas collection method in determining a value for the M_{r} of the ethanedioate salt.

In this experiment, you will react the ethanedioate salt with potassium manganate(VII), in the presence of a small amount of manganese(II) ions. You will measure the volume of CO_{2} gas produced at timed intervals and determine the maximum volume of CO_{2} gas produced.

FA 4 is a solution containing manganese(II) ions, Mn^{2+}.
You will need access to the FA 1, FA 2 and FA 3 solutions you used earlier.

Fig. 2.1
You will measure the level of water in the burette at timed intervals.

In an appropriate format in the space provided on page 7, prepare a table in which you may record each burette reading and the time it was taken.

In addition, your table will need to show the total volume of CO_{2} collected up to that time, recorded to one decimal place.

1. Set up the apparatus as shown in Fig. 2.1. You should insert the plastic/rubber tubing to a sufficient depth so that it will not subsequently shake loose.
2. Adjust the water level in the burette until it is between $48.0 \mathrm{~cm}^{3}$ and $50.0 \mathrm{~cm}^{3}$. You may find it helpful to use an empty dropping pipette to introduce small amounts of air from the bottom of the burette tube.
3. Use appropriate measuring cylinders to add to the $250 \mathrm{~cm}^{3}$ conical flask.

- $\quad 20.0 \mathrm{~cm}^{3}$ of FA 1
- $50.0 \mathrm{~cm}^{3}$ of FA 3

4. Using a dropping pipette, add about $1 \mathrm{~cm}^{3}$ of FA 4 to the conical flask.
5. Using an appropriate measuring cylinder, measure out $30.0 \mathrm{~cm}^{3}$ of FA 2.
6. Transfer the FA 2 into the conical flask and insert the bung into the conical flask.
7. Allow any bubbles created in the burette when the bung was inserted in the conical flask to rise to the top. Start the stopwatch, read and record the initial water level in the burette.
8. Note: Once you have started the stopwatch, allow it to continue running for the duration of the experiment. You must not stop the stopwatch until the reaction is complete.
9. Check that the plastic/rubber tubing is securely positioned in the burette.
10. Hold the flask by its neck and gently swirl it continuously.
11. At $t=0.5 \mathrm{~min}$, read and record the water level in the burette, to 1 decimal place, together with the time it was measured, in your table.
12. Continue to gently swirl the flask. Read and record the water level in the burette every half minute, until the reaction is complete.
(a) (i) Experimental Results

Time / t / min	Burette reading / cm^{3}	$\left(\right.$ Volume / vol) of $\mathrm{CO}_{2} /$ cm^{3}
0.0	50.0	0.0
0.5	46.5	3.5
1.0	42.0	8.0
1.5	34.5	15.5
2.0	27.0	23.0
2.5	20.2	29.8
3.0	16.5	33.5
3.5	13.8	36.2
4.0	12.5	37.5
4.5	12.0	38.0
5.0	11.6	38.4

5.5	11.5	38.5
6.0	11.4	38.6
6.5	11.4	38.6
7.0	11.4	38.6

2 (a) (ii) Plot on the grid below, a graph of the volume of CO_{2} on the y-axis, against time, t, on the x-axis

Vol of $\mathrm{CO}_{2} / \mathrm{cm}^{3} \quad$ Draw the most appropriate line, taking into account all of your points.

2 (a) (iii) The equation for the reaction between ethanedioate ions and manganate(VII) ions is shown below.
$5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 10 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Use this equation, and appropriate data from your graph, to calculate a value for the amount, in moles of ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, present in $20.0 \mathrm{~cm}^{3}$ of FA 1.
[molar volume of gas $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at r.t.p.]
From graph, max volume of $\mathrm{CO}_{2}=38.55 \mathrm{~cm}^{3}$
amount of CO_{2} produced $=38.55 / 24000=0.001606 \mathrm{~mol}$
amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $20.0 \mathrm{~cm}^{3}$ of FA1 $=0.001606 / 2=0.000803 \mathrm{~mol}$

Amount of ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, in $20.0 \mathrm{~cm}^{3}$ of $\mathrm{FA} 1=0.000803 \mathrm{~mol}$
(b) (i) Using your answer to question 1(b)(i), calculate the amount of ethanedioate ions in $20.0 \mathrm{~cm}^{3}$ of FA 1. Hence, determine the maximum volume of CO_{2} at r.t.p. that could have been produced from $20.0 \mathrm{~cm}^{3}$ of FA 1.
amount of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ in $20 \mathrm{~cm}^{3}$ of FA $1=0.001255 / 25 \times 20=0.0001004 \mathrm{~mol}$
amount of CO_{2} produced $=0.0001004 \times 2=0.002008 \mathrm{~mol}$
maximum volume of $\mathrm{CO}_{2}=0.002008 \times 24000=48.19 \mathrm{~cm}^{3}$
maximum volume of CO_{2} produced from $20.0 \mathrm{~cm}^{3}$ of FA $1=48.2 \mathrm{~cm}^{3}$
(ii) Suggest a reason for the difference between the total volume of CO_{2} you collected and the maximum volume of CO_{2} calculated in 2(b)(i).
Some of the CO_{2} could have stayed dissolved in the water bath/Some CO_{2} could have escaped when the conical flask was stoppered.
(iii) Suggest an improvement to this experiment that would overcome this problem.

Uses a non-aqueous gas collecting system such as a frictionless gas syringe.

Use a dropping funnel to add in FA2 to start the reaction to minimise the escaping of gas.

2 (b) (iv) In Question 1 you calculated a value for the M_{r} of the ethanedioate salt. The total volume of CO_{2} collected in 2(a)(i) could also be used to calculate a value for the M_{r} of the ethanedioate salt.
Suggest which of these two M_{r} values would be higher. Explain your answer.

The M_{r} calculated from the collection of gas method will be higher as the
volume measured will be lower than expected, causing the number of moles of salt to be lower and hence the M_{r} to be higher.
(c) The presence of Mn^{2+} ions, which are produced in the reaction between MnO_{4}^{-} ions and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions, is thought to catalyse this reaction.
(i) A student performed the experiment you performed in 2(a)(i) but forgot to add FA 4 to the mixture of FA 1 and FA 3 before adding the FA 2.
The student performed the experiment at the same temperature as your experiment and obtained the graph shown in Fig. 2.2.

Fig. 2.2

2 (c) (i) Consider the shape of the graph in Fig 2.2 and your graph in 2(a)(ii). Describe one major difference between the shapes. Suggest an explanation for your answer.
Difference The graph in 2(a)(ii) is steeper at the start of the experiment.
Explanation Mn^{2+} was added right from the start and hence the reaction was catalysed right from the beginning unlike the student's experiment where there were little Mn^{2+} at the beginning to catalyse the reaction, causing the student's initial gradient to be gentler.
(ii) For the titration in 1 (a)(i) between ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, and manganate(VII) ions, MnO_{4}^{-}, the solution needs to be at about $65{ }^{\circ} \mathrm{C}$ at the start. As cold FA 2 is added, the temperature of the mixture decreases. However, this decrease in temperature does not cause the rate of reaction between $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions and MnO_{4} - ions added from the burette to decrease. Suggest an explanation for this.

The stable rate is due to Mn^{2+} ions being produced. The presence of the Mn^{2+} catalyst cancels out the effect of the drop in temperature.
(d) Planning

The oxidation of iodide ions, I^{-}, by peroxodisulfate ions, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, is known to be catalysed by Fe^{2+} or Fe^{3+} ions.
A similar reaction, shown below, in which ethanedioate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, are oxidised by peroxodisulfate ions, $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$, may be catalysed by Cu^{2+} ions and by Ag^{+}ions.

$$
\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{CO}_{2}
$$

(i) Suggest an explanation why both of these reactions are slow when performed in the absence of a catalyst.

The reactants are both negatively charged and experience repulsion and thus resulted in a high activation energy barrier between them.
(ii) Plan an investigation to test how well, if at all, Cu^{2+} ions and by Ag^{+}ions catalyse the reaction between $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ions and $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}$ ions.

In your plan, you should include details of:

- the reactants and conditions that you would use,
- the apparatus you would use and the procedure you would follow,
- the measurements you would take,
- an outline of how you would use your results to compare the effectiveness of each ion as a potential catalyst.

Suggested Planning Procedure

Note: It was assumed that the temperature and pressure conditions for the conduct of the 3 experiments is at rtp conditions

Experiment 1 (uncatalysed reaction)

1. Using a $50 \mathrm{~cm}^{3}$ measuring cylinder, measure out $15 \mathrm{~cm}^{3}$ of $\mathbf{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ of concentration 0.05 moldm $^{-3}$ into a $250 \mathrm{~cm}^{3}$ conical flask. Add $5 \mathrm{~cm}^{3}$ of deionised water using a dropping pipette (or $10 \mathrm{~cm}^{3}$ measuring cylinder).
2. Use a separate $50 \mathrm{~cm}^{3}$ measuring cylinder, measure out $20 \mathrm{~cm}^{3}$ of a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ of concentration $0.05 \mathrm{moldm}^{-3}$.
3. Set up the apparatus as shown in Fig. 2.1
4. Check that the plastic/rubber tubing is securely positioned in the burette.
5. Transfer the $20 \mathrm{~cm}^{3}$ of a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ into the conical flask and insert the bung into the conical flask. (Using dropping funnel to transfer $20 \mathrm{~cm}^{3}$ of solution will be better to minimise gas escape.)
6. Allow any bubbles created in the burette when the bung was inserted in the conical flask to rise to the top. Start the stopwatch, read and record the initial water level in the burette.
7. Hold the flask by its neck and gently swirl it continuously.
8. At $t=0.5 \mathrm{~min}$, read and record the water level in the burette, to 1 decimal place, together with the time it was measured, in your table.
9. Continue to gently swirl the flask. Read and record the water level in the burette every half minute, until the reaction is complete. i.e. at least 3 burette readings are the same.
(Estimated volume of CO_{2} is $36 \mathrm{~cm}^{3}$)

Pre-Calculation:

No. of moles of $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (limiting agent) $=0.05 \times 15 / 1000=0.00075 \mathrm{~mol}$
Volume of CO_{2} produced
$=0.00075 \times 2 \times 24000=36 \mathrm{~cm}^{3}$ assuming r.t.p.

Catalysed Experiment 2 and 3

10. Repeat steps 1 to 9 but now with the introduction of the catalysts Ag^{+} (Experiment 2) and Cu^{2+} (Experiment 3), once at each time. Do take note that $5 \mathrm{~cm}^{3}$ of each catalyst (of equal concentration 0.100 mol dm^{-3} is to be added in step 1.
11. Compare the time taken for the maximum amount of CO_{2} to be produced for Experiment 1 (uncatalysed reaction) with Experiment 2 (Ag^{+}as catalyst) and Experiment 3 (Cu^{2+} catalyst). The better catalyst
will be the one that produces the maximum amount of CO_{2} in the shortest period of time.

Or Plot the graph of the volume of CO_{2} against the time taken. The more effective catalyst is determined by the catalyst that produce a steeper gradient.

Alternatively,
9. Record the time required to produce $20 \mathrm{~cm}^{3}$ (a stated volume, based on pre-calculation) of CO_{2}. The more effective catalyst is determined by the catalyst that produce the volume in a shorter time.

3 You are provided with the solid K12 which contains one cation given in the Qualitative Analysis Notes

You are to perform the tests below to identify the cation present in K12 and suggest the nature of K12. Record your observations in the spaces provided. Your answers should include

- Details of colour changes and precipitates formed,
- The names of any gases evolved and details of the test used to identify each one.

You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations.
No additional or confirmatory tests for ions present should be attempted.

Tests	Observations and Deductions	
$\mathbf{1}$	Heat K12 alone.	K 12 turns to a colourless liquid. Gas evolved turns moist blue litmus red Gas evolved turns acidified KMnO_{4} paper colourless $\mathrm{SO}_{2}(\mathrm{~g})$ Gas relights glowing splinter
$\mathbf{2}$Warm K12 with dilute hydrochloric acid. Keep the solution.	$\mathrm{O}_{2}(\mathrm{~g})$	

3 To the solution from test 2, add dilute nitric acid and barium nitrate(V) solution	White ppt forms, insoluble in acid. $\begin{aligned} & \mathrm{SO}_{4}{ }^{2-} \\ & \mathrm{BaSO}_{4} \mathrm{ppt} \end{aligned}$
4 Warm K12 with a freshly made solution of iron(II) sulfate solution.	Pale green solution turns brown/ red brown K 12 is an oxidising agent
5 Dissolve K12 in dilute nitric acid. Add manganese(II) sulfate solution and two drops of silver nitrate(V) solution to act as a catalyst. Boil the mixture.	Pale pink colour turns brown then to black/purple solution (ppt) Mn^{2+} oxidise to MnO_{2} then to MnO_{4}^{-} K 12 is an oxidising agent
6 Warm K12 with sodium hydroxide solution.	Colourless solution obtained. Pungent smell gas which turns moist red litmus blue NH_{3} gas $\mathrm{NH}_{4}{ }^{+}$present

Nature of K12: Oxidising agent
Cation it contains: $\mathrm{NH}_{4}{ }^{+}$
[Total: 9]

Planning
You are provided with 3 unlabelled bottles and each bottle contains one of the following organic compounds,

- Butanamide
- Lactic acid, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CO}_{2} \mathrm{H}$
- Pyruvic acid, $\mathrm{CH}_{3} \mathrm{COCO}_{2} \mathrm{H}$
(a) Outline a sequence of simple chemical tests to identify each of the above organic substances. You may use any other common laboratory chemical reagents and apparatus, if necessary. You are not allowed to identify the substances by elimination. You are reminded that most of the compounds listed are flammable liquids.

Test	Expected Observations \& Deductions
Using a dropper, add $1 \mathrm{~cm}^{3}$ of compound into 3 separate test-tubes. To $1 \mathrm{~cm}^{3}$ of compound in a test-tube, add $2 \mathrm{~cm}^{3}$ of aqueous NaOH . Boil/ Heat in a water bath for 5-10 min. Test any gas evolved with moist red litmus paper	Moist red litmus paper turns blue $\left(\mathrm{NH}_{3}\right)$ - butanamide
To the 2 samples that did not produce a positive observation for test 1 , using a dropper to $1 \mathrm{~cm}^{3}$ of compound in a testtube, add $1 \mathrm{~cm}^{3}$ of 2,4 DNPH dropwise until excess. Warm the mixture.	Orange ppt forms. - pyruvic acid
To $1 \mathrm{~cm}^{3}$ of the compound in a testtube, add $1 \mathrm{~cm}^{3}$ of dilute sulfuric acid, follow by a few drops of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})$. Heat the mixture in a hot water-bath for 3-5 min.	Orange solution turns green-lactic acid
Alternatives: pyruvic acid can be tested with 2,4 DNPH $\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow$ butanamide with $\mathrm{NaOH}(\mathrm{aq})$,	, warm \rightarrow lactic acid with aqueous eat.

(b) Suggest a safety measure that you would consider in carrying out your plan.

Using a hot water bath for heating instead of using a direct naked flame from the Bunsen burner as most organic compounds are highly flammable.
(c) State the required reagents and conditions. Draw a set-up of the apparatus for the synthesis of pyruvic acid from lactic acid.
$\mathrm{KMnO}_{4}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat under reflux $\mathrm{OR} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat under reflux

The End

Marking Procedure
Hierarchy to be used in calculating mean titres in question 1(a)(i): value of 2 identical titres

- average of titres within $0.05 \mathrm{~cm}^{3}$ - average of titres within $0.1 \mathrm{~cm}^{3}$, etc.

Use the selected titres to determine the mean titre for the end-point. onwards will be based on correct method only. Qn

Qn	Skills assessed	Marking Scheme	Mark	Mark Ref (MR)
1(a)(i)	PDO Layout P1	Tabulates initial and final burette readings and volume added in the titration table. Table has correct headers and units. Tabulation may be vertical or horizontal; lines are not essential but there should be no absences of headers. Where units have not been included in the header, there should be the appropriate unit for each entry in the table. Do NOT award this mark if any final and initial burette readings are inverted or 50 is used as the initial burette reading.	1	1
	PDO Record P2	All the final/initial burette readings, for all accurate titres in the titration table, are recorded to the nearest $0.05 \mathrm{~cm}^{3}$. Treat all titres as "accurate" unless labelled 'rough' or first titre is recorded to a lower precision than subsequent titres.	1	2
	MMO Quality M1	Has at least two uncorrected titres for end-point within $0.10 \mathrm{~cm}^{3}$. Uncorrected titres refers to flawed calculated titres by the candidate.	1	3

A student's 'rough'/'trial' titre value can be considered by the examiner when selecting titre values for the mean titre calculation if the student has 'validated' this
value either by ticking it or by using it in an expression in (a)(ii). (By doing either of these, the student has declared it to be no longer a 'rough' / 'trial' value).

\begin{tabular}{|c|c|c|c|c|}
\hline 1(a)(i) \& \begin{tabular}{l}
MMO \\
Quality \\
Accuracy \\
M2 \\
M3
\end{tabular} \& \begin{tabular}{l}
Calculate the student's mean titre as described on page 3. \\
Award MR4 to MR6 based on the difference, \(\Delta\) titre, between Student's and Supervisor's mean titre. Give 2 marks \\
Give 2 marks if this difference is \(\leq \pm 0.20\) \\
Give 1 marks if this difference is \(> \pm 0.20\) but \(\leq \pm 0.40\) \\
Give 0 mark if this difference is \(> \pm 0.40\)
\end{tabular} \& 2 \& 4
5 \\
\hline (ii) \& MMO
Decision
M4 \& \begin{tabular}{l}
Student obtains appropriate "average", to 2 d.p., from any experiments with uncorrected end-point titre values within \(0.20 \mathrm{~cm}^{3}\). \\
Do not award this mark if the titres used are not identified either in the table (by, for example, a tick) or in a calculation. Do not award this mark if there are arithmetic errors in the table.
\end{tabular} \& 1 \& 6 \\
\hline (b)(i) \& \begin{tabular}{l}
ACE \\
Interpret \\
A1
\end{tabular} \& \[
\begin{aligned}
\& \text { (Let mean titre volume }=V_{m} \text {) } \\
\& \mathrm{nMnO}_{4}^{-}=\mathrm{V}_{\mathrm{m}} \times 10^{-3} \times 0.0200=\mathrm{n}_{1} \\
\& \mathrm{nC}_{2} \mathrm{O}_{4}{ }^{2-} \text { in } 25.0 \mathrm{~cm}^{3}=\mathrm{n}_{1} \times 5 / 2=\mathrm{n}_{2}
\end{aligned}
\] \& 1 \& 7 \\
\hline (ii) \& \begin{tabular}{l}
ACE Interpret \\
A2 \\
A3
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] \text { in } \mathrm{FA} 1=\mathrm{n}_{2} \div(25.0 / 1000)} \\
\& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] \text { in } \mathbf{Q}=\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] \text { in } \mathrm{FA} 1 \times 250 \div(35.70 / 1000)}
\end{aligned}
\] \\
Alternative method:
\[
\begin{aligned}
\& \mathrm{nC}_{2} \mathrm{O}_{4}{ }^{2-} \text { in } 250 \mathrm{~cm}^{3}=10 \mathrm{n}_{2} \\
\& {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] \text { in } \mathbf{Q}=10 \mathrm{n}_{2} / 35.7 \times 1000}
\end{aligned}
\]
\end{tabular} \& 1
1 \& 8
9 \\
\hline (iii) \& ACE
Interpret
A4
A5
A6 \& \[
\begin{aligned}
\& \mathrm{M}_{\mathrm{r}}\left(\mathrm{X}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right)=64.5 \div\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right] \text { in } \mathbf{Q}=\mathrm{M}_{\mathrm{r}}(\text { Salt }) \\
\& \mathrm{A}_{\mathrm{r}}(\mathbf{X})=\left(\mathrm{M}_{\mathrm{r}}(\text { Salt })-88-18\right) \div 2 \\
\& \text { Calculates } \mathrm{A}_{\mathrm{r}}(\text { i.e } \div 2) \\
\& \text { and } \\
\& \mathbf{X}=\text { group } 1 \text { metal closest to } \mathrm{A}_{r}(\mathbf{X})=(\text { potassium } / \mathbf{K})
\end{aligned}
\] \& 1
1

1 \& | 10 |
| :--- |
| 11 |
| 12 |

\hline 1(c) \& ACE Interpret A7 \& Overall experimental error $=\frac{22.40-22.20}{22.40} \times 100 \%=0.890 \%$ Candidate states experiment is not accurate \& 1 \& 13

\hline
\end{tabular}

	Conclusion A8	and justifies this in terms of experimental error being> apparatus error. Allow ecf argument based on incorrectly calculated experimental error. (Note: Do not award MR14 if no calculation of error is done)	1	14
Question 2				
2(a)(i)	PDO Layout P3	Tabulates burette readings at times $\mathrm{t}=0$ until the end of the experiment, time $/ \mathrm{min}$ and volume of $\mathrm{CO}_{2} / \mathrm{cm}^{3}$. Tables have correct headers and units Tabulations may be vertical or horizontal; lines are not essential but there should be no absences of headers. Where units have not been included in the header, there should be the appropriate unit for each entry in the table.	1	15
	$\begin{gathered} \text { PDO } \\ \text { Record } \\ \text { P4 } \end{gathered}$	All burette readings and CO_{2} volumes to $\underline{\mathbf{0 . 1} \mathrm{cm}^{3}}$, and times to $\underline{\mathbf{0 . 5 ~ m i n}}$	1	16
	MMO Collecting M5	Full set of results with final readings which have 2 to 3 values that are the same.	1	17
(ii)	$\begin{gathered} \hline \text { PDO } \\ \text { Layout } \\ \text { P5 } \end{gathered}$	Axes correct way round + correct labels + units + scale. Sensible linear scale must be chosen so that plotted points occupy at least half the graph grid in both x and y directions Penalise for	1	18
	$\begin{gathered} \hline \text { PDO } \\ \text { Layout } \\ \text { P6 } \end{gathered}$	All points correctly plotted to within $\pm \frac{1}{2}$ small square. Check all points and put ticks if correct.	1	19
2(a)(ii)	PDO Manipulate P7	Graph line must be best fit line.	1	20

	MMO Quality M6	Award MR22 based on the difference, Δ volume $_{\mathrm{co} 2}$, between student's and Supervisor's values for the maximum volume of CO_{2} collected. Give 1 mark if this difference is $\leq 5.0 \mathrm{~cm}^{3}$ Give 0 marks for a difference $>5.0 \mathrm{~cm}^{3}$	1	21
(a)(iii)	$\begin{gathered} \text { ACE } \\ \text { Interpret } \\ \text { A9 } \end{gathered}$	$\mathrm{nC}_{2} \mathrm{O}_{4}{ }^{2-}=\left(\right.$ volume of CO_{2} collected $\left.\div 24000\right) / 2$	1	22
(b) (i)	ACE Interpret A10	$\begin{aligned} & \mathrm{nC}_{2} \mathrm{O}_{4}{ }^{2-} \text { in } 20 \mathrm{~cm}^{3} \text { of } \mathrm{FA} 1=\mathrm{n}_{2} \times(20.0 / 25.0)=\mathrm{n}_{3} \\ & \text { max volume } \mathrm{CO}_{2}=\mathrm{n}_{3} \times 24000 \times 2\left(\mathrm{~cm}^{3}\right) \end{aligned}$	1	23
	$\begin{gathered} \text { PDO } \\ \text { Display } \\ \text { P8 } \end{gathered}$	Shows working in all calculations in 1(b), 1(c), 2(a)(iii) and 2(b)(i). All calculations must be relevant although they may not be complete or correct. Any calculation not attempted loses this mark.	1	24
	$\begin{gathered} \hline \text { PDO } \\ \text { Display } \\ \text { P9 } \end{gathered}$	Shows appropriate significant figures (3 or 4 sf) in all final answers in 1(b), 1(c), 2(a)(iii) and 2(b)(i). Any calculation not attempted loses this mark.	1	25
	$\begin{gathered} \hline \text { PDO } \\ \text { Display } \\ \text { P10 } \end{gathered}$	Shows appropriate units in all answers in 1(a)(ii), (cm^{3}); 1(b)(i), (mol); 1(b)(ii), (moldm^{-3}); 1(c), (\%); 2(a)(iii), (mol) and 2(b)(i), (cm ${ }^{3}$). Any calculation not attempted loses this mark.	1	26
2(b)(ii)	ACE Conclusion A11	Collected volume of CO_{2} lower than max volume as some CO_{2} dissolved in water. OR Some gas escaped when/before the conical flask was stoppered. Allow other relevant answers.	1	27

(iii)	ACE Improve A12	Uses a non-aqueous gas collecting system such as a syringe. Use a dropping funnel to add in FA2 to start the reaction to minimise the escaping of gas. Allow other relevant	1	28
(b)(iv)	ACE Interpret A13	Argues clearly that as the volume of CO_{2} measured is too low, so $\mathrm{nC}_{2} \mathrm{O}_{4}{ }^{2-}$ will be too low, so $\mathbf{M}_{\mathbf{r}}$ (likely to be) too high.	1	29
(c)(i)		Difference: Describes that the shape of the given graph shows a slow initial rate that increases after some time whilst the candidate's own graph shows a fast rate from the start Explanation: In student's experiment without the addition of $\mathrm{FA} 4, \underline{\mathrm{Mn}^{2+}}$ formed by reaction catalyses the reaction and increases rate so the gradient of the graph becomes steeper. Or at the beginning, there is very little Mn^{2+} to catalyse the reaction, hence the gradient of the graph is gentler.	1	30 31
(ii)	ACE Interpret A16	The stable rate is due to more Mn^{2+} ions being produced. As the concentration of the Mn^{2+} catalyst increases it cancels out the effect of the drop in temperature.	1	32
(d)(i)	$\begin{gathered} \text { Plan } \\ \text { PI1 } \end{gathered}$	Repulsion between two negatively charged ions causes the activation energy to be high.	1	33
(ii)	Plan PI2 PI3 PI4 PI5 PI6	1. Describes a sensible 'end-point'; either the time required to produce a stated volume of CO_{2} or the time needed for the reaction to be completed. 2. Proposes to use the apparatus specified from 2(a) - or improved but workable apparatus and adds the catalyst before one of the reactants. 3. Stipulates that the same temperature must be used. It is not necessary to describe how this is to be done in this case, but simply to state that it must be done. Allow the description of any sensible method of achieving this for this mark, even if 'to ensure that the same temperature is used' is not specifically stated. 4. Controls concentrations and volumes for all other reactants. 5. Proposes the use of a non-catalysed control to identify any TM lons that do not catalyse this reaction.	1 1 1 1 1	36 37 38 39

| PI7 | 6. Uses equal amounts (moles) of each TM ion either weighing out each TM compound or makes up equal
 concentrations of TM compounds solutions and uses equal volumes.
 7. Compares results on the basis of fastest / least time is the best catalyst. Or compare volume within a
 specified time. | 1 |
| :--- | :--- | :--- | :--- | :--- |

3. Carry out the following experiments with K 12. Enter your observations and deductions in the space provided.

Tests	Observation and Deduction
1 Heat K 12 alone	K 12 turns to a colourless liquid. [1] Gas evolved turns moist blue litmus paper red[1] Gas evolved turns acidified KMnO_{4} paper colourless [1] SO_{2} (g) [1] Gas relights glowing splinter [1] $\mathrm{O}_{2}(\mathrm{~g})$ [1]
? Warm K 12 with dilute hydrochloric acid. seep the solution.	Yellowish green gas, pungent smell, turns moist blue litmus red then bleaches [1] $\mathrm{Cl}_{2}(\mathrm{~g})$ [1] Oxidising agent present [1]
3 To the solution from est 2, add dilute nitric acid and barium nitrate V) solution	$\begin{aligned} & \text { White ppt forms [1] } \\ & \mathrm{BaSO}_{4} \mathrm{ppt} \\ & \mathrm{SO}_{4}^{2-[1]} \end{aligned}$
\ddagger Warm K 12 with a reshly made solution of ron(II) sulfate solution	Pale green solution turns brown/ red brown [1] K 12 is an oxidising agent [1]

$3-9$ sbservations	5 marks	6-9 deductions	4 marks
6-7 observations	4 marks	$4-5$ deductions	3 marks
$4-5$ observations	3 marks	$2-3$ deductions	2 marks
3 observations	2 marks	1 deductions	1 mark
2 observations	1 marks		
1 observation	0 marks		

You are provided with 3 unlabelled bottles and each bottle contains one of the following organic compounds,

Suggest a safety measure that you would consider in carrying out your plan. [1]
Using a hot water bath for heating instead of using a direct naked flame from the Bunsen burner as most organic compounds are highly flammable.
Or Wear gloves because organic acids/sulfuric acid are corrosive.
OR Wear goggles to protect the eyes from contact with chemicals.
Reagents and conditions: $\mathrm{KMnO}_{4}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat (under reflux) OR [1]
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, heat (under reflux)
Water Out

Details of set-up must have:
-
-
Roundenser with water in and out labelled flask
- Water bath
-

[Total: 6]

