2016 JC2 Preliminary Examination

MATHEMATICS HIGHER 1

8864/1

18 AUGUST 2016 THURSDAY 0800h – 1100h

Additional materials:
Answer paper
Graph paper
List of Formulae (MF15)

TIME 3 hours

READ THESE INSTRUCTIONS FIRST

Write your CTG and name on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. You are expected to use a graphic calculator.

Unsupported answers from a graphic calculator are allowed unless specifically states otherwise. Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Section A: Pure Mathematics [35 marks]

- Find the set of values of p for which the line y = px + 4 does not meet the curve $x^2 xy = 2$. [3]
- Using the substitution $u = 2^x$, solve the equation $2^{2x} 2^{1+x} = 8$. [3]
- 3 (i) Differentiate (a) $3 \ln(1 + 3x^2)$, [2]

(b)
$$\frac{1}{\sqrt{1-2x}}$$
. [2]

- (ii) Use a non-calculator method to find the exact value of $\int_{1}^{4} \left(\frac{\sqrt{x-2}}{x} \right) dx$. [4]
- The gradient of a curve y = f(x) at any point (x, y) is given by $e^{1-\alpha x}$, where a is a constant.
 - (i) The curve cuts the x-axis at point P with coordinates $(1 \ln 4, 0)$ and the gradient at P is 4. Show that a = 1 and find the equation of the curve. [4]
 - (ii) Hence, find the equation of the normal at point P, giving your answer in the form y = mx + c, where m and c are constants in exact form. [2]
- A curve C has equation $y = 4 k^2 x^2$ and a line L has equation y = 2 + kx, where k is a positive constant.
 - (i) Find, in terms of k, the x-coordinates of the points where L and C intersect. [2]
 - (ii) Sketch C and L on the same diagram, labelling clearly the coordinates of the points of intersection with the axes and also between C and L. [3]
 - (iii) Find, in terms of k, the area of the region bounded by C, L and the x-axis. [4]
- A closed cylindrical can of radius r cm and height h cm has a volume of 300 cm³. In order to minimise the use of material, a beverage company wants the external surface area of the can, S cm², to be as small as possible.
 - (i) Find an expression for S in terms of r. [2]
 - (ii) Use differentiation to find the minimum value for S as r varies, giving your answer correct to 2 decimal places. [4]

Section B: Statistics [60 marks]

7	A certain factory employs 300 general workers, 100 foremen and 40 management personnel. To gather feedback on a new policy, the factory owner wishes to select a representative sample of 22 employees. From the list of all employees with names in alphabetical order, he selects at random one of the first 20 employees and then chooses every 20 th employee thereafter.								
	(i)	What	is this type of sar	mpling ca	lled?		[1]		
	(ii)	State a	n disadvantage of	f the samp	oling method used in th	is context.	[1]		
	(iii)	Descri	be a more appro	priate san	npling method in this s	cenario.	[2]		
8		-	•	_	osteens are modelled a ndard deviations as sho		dent		
				Mean	Standard deviation				
			Durians	1.7	0.2				
	•		Mangosteens	μ	0.05				
	(i)	If mor		e mangos	teens weigh less than ().3 kg, find the ra	inge of		
	It is g	iven tha	t $\mu = 0.2$.						
	(ii)	Find tl	•		l mass of 2 randomly c xceeds 4.4 kg.	hosen durians an	id 4 [3]		
	(iii)		•		l mass of 4 randomly of a randomly chosen of	-	ens is [4]		
	(iv)	Find the	he probability th	at the tota	d mangosteens at \$3 per I selling price of 3 rand steens is less than \$45.	domly chosen du	rians [4]		
9					g monitored and each d ar day is a rainy day is		s rainy		
	(i)	Calcul	late the probabili	ty that, in	a given week, there ar	·e			
		(a) (b)	exactly 3 rainy more rainy day		[,] days.		[1] [2]		
	The v	veather i	s monitored for	a year (52	weeks).				
	(ii)	Find t		at there ar	re at least 40 weeks wir	th more dry days	than [3]		
	(iii)	Find the probability that the average number of rainy days per week is more							

Using a suitable approximation, find the probability that the number of rainy

days is between 100 and 120 during the period.

[4]

[4]

than 2.

(iv)

A resident claims that the average speed of vehicles along a particular road is greater than the speed limit of 50 km per hour. The traffic police recorded the speed, x km per hour, of 60 randomly selected vehicles and summarised the data collected as follows.

$$\sum (x-50) = 75,$$
 $\sum (x-50)^2 = 2016.$

- (i) Find unbiased estimates of the population mean and the variance. [3]
- (ii) Test at the 5% level of significance whether there is evidence to support the resident's claim. [4]
- (iii) Explain what is meant by the phrase "5% level of significance" in the context of this question. [1]

From past records, it is known that the standard deviation is 14 km per hour. To investigate the resident's claim, the traffic police recorded the speed of 100 randomly selected vehicles and the mean is c km per hour.

- (iv) Find the range of values of c such that there is evidence to support the resident's claim at the 5% level of significance. [3]
- The trainees in a company went through a training programme and they sat for two performance assessments. The scores for 10 trainees in the two performance assessments are shown in the following table.

Trainee	1	2	3	4	5	6	7	8	9	10
Score for assessment 1, x	106	87	103	151	37	114	193	57	186	117
Score for assessment 2, y	152	138	104	190	45	141	184	86	17	142

- (i) Give a sketch of the scatter diagram for the data and calculate the product moment correlation coefficient. [3]
- (ii) Which data point appears to be incorrect? [1]

For the rest of the question, the data point in (ii) is removed from the data set.

- (iii) Calculate the revised product moment correlation coefficient and comment on the effect on the value of the product moment correlation coefficient after removing the data point in (ii). [2]
- (iv) Calculate the equation of the regression line of y on x. [1]
- (v) A new trainee obtained a score of 127 in performance assessment 1. Calculate an estimate of his score in performance assessment 2 and comment on the reliability of the estimate. [2]

A group of students were asked about the subjects they took at the A level examination. The numbers who have taken Physics, Mathematics and Economics are shown in the Venn diagram. The number of students who have taken all three subjects is x. One student is chosen at random.

S is the event that the student has taken Physics.

M is the event that the student has taken Mathematics.

E is the event that the student has taken Economics.

(i) Write down expressions for P(M) and P(E) in terms of x. Given that M and E are independent, show that x = 8. [4]

Using this value of x, find

(ii)
$$P(S' \cap M)$$
, [1]

(iii)
$$P(S \cap E \mid M)$$
. [1]

Two students from the whole group are chosen at random.

(iv) Find the probability that only one of them has taken all 3 subjects. [2]

~~ End of paper ~~

2016 JC2 H1 Prelim Exam

Solutions

Qn	Solution
1	y = px + 4 (1)
	$x^2 - xy = 2 (2)$
	Substitute (1) into (2)
	$x^2 - x(px + 4) = 2$
	$(1-p)x^2 - 4x - 2 = 0$ No real roots $\Rightarrow b^2 - 4$ $ac < 0$
	No real roots $\Rightarrow b^2 - 4 ac < 0$ i.e. $(-4)^2 - 4(1-p)(-2) < 0$
	16.e. $(-4)^2 - 4(1-p^2)(-2) < 0$ 16 + 8 - 8p < 0
	24 < 8p
	p > 3
	Set of values = $\{p \in \square : p > 3\}$
2	$u = 2^x$
	$2^{2x} - 2^{1+x} = 8 \Rightarrow u^2 - 2u - 8 = 0$
	$\Rightarrow (u+2)(u-4)=0$
	$\Rightarrow u = -2 \text{ or } u = 4$
	$\Rightarrow 2^x = -2$ (rejected as $2^x > 0$)
	$\therefore 2^x = 4 = 2^2 \Rightarrow x = 2$
3 (i)	(a) $\frac{d}{dx} (3 \ln(1 + 3x^2)) = 3(\frac{1}{1 + 3x^2})(6x)$
	$=\frac{18x}{1+3x^2}$
	(b) $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{\sqrt{1 - 2x}} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(1 - 2x \right)^{-\frac{1}{2}}$
	$= -\frac{1}{2}(1-2x)^{-\frac{3}{2}}(-2)$
	$=(1-2x)^{-\frac{3}{2}}$
(ii)	$\int_{1}^{4} \left(\frac{\sqrt{x} - 2}{x} \right) dx = \int_{1}^{4} \left(x^{-\frac{1}{2}} - \frac{2}{x} \right) dx$
	$= \left[\frac{x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} - 2\ln x \right]_{1}^{4}$
	$= \left[2\sqrt{4} - 2\ln 4 \right] - \left[2\sqrt{1} - 2\ln 1 \right]$
	$= 2 - 2 \ln 4 \text{(or } = 2 - 4 \ln 2\text{)}$

Qn	Solution
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{1-ax}$
(i)	$\frac{1}{dx} = c$
	At $P, x = 1 - \ln 4, y = 0$, $\frac{dy}{dx} = 4$
	$\therefore 4 = e^{1-a(1-\ln 4)}$
	$\ln 4 = 1 - a (1 - \ln 4)$
	$a(1-\ln 4) = 1 - \ln 4$
	$\therefore a=1$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{1-x} \Longrightarrow y = \int \mathrm{e}^{1-x} \mathrm{d}x = \frac{\mathrm{e}^{1-x}}{-1} + C$
	When $x = 1 - \ln 4$, $y = 0$
	$\Rightarrow 0 = -e^{1-(1-\ln 4)} + C$
	$\Rightarrow C = e^{\ln 4} = 4$
	$\therefore \text{ equation of the curve is } y = 4 - e^{1-x}$
4	Gradient of tangent at $P = m = 4$
(ii)	\therefore gradient of normal at $P = -\frac{1}{4}$
	\therefore equation of the normal at P is
	$y - 0 = -\frac{1}{4}(x - (1 - \ln 4))$
	1
	$\Rightarrow y = -\frac{1}{4}x + \frac{1}{4}(1 - \ln 4)$
5	C: $y = 4 - k^2 x^2$ (1)
(i)	$\begin{array}{ll} C: & y - 4 - kx & \dots & (1) \\ L: & y = 2 + kx & \dots & (2) \end{array}$
	Solving (1) & (2),
	$4 - k^2 x^2 = 2 + kx$
	$k^2x^2 + kx - 2 = 0 \qquad \dots \qquad (3)$
	(kx + 2)(kx - 1) = 0
	$\therefore x = -\frac{2}{k} \text{or} \frac{1}{k}$
(ii)	1 <i>y</i>
	y = 2 + kx
Allege and agree a control of the co	$y = 4 - k^2 x^2$
	$\left(-\frac{2}{k},0\right)$ $\left(\frac{2}{k},0\right)$
	\

Qn	Solution
(iii)	Required area = area of $\Delta + \int_{\frac{1}{k}}^{\frac{2}{k}} (4 - k^2 x^2) dx$
	$= \frac{1}{2} \left(\frac{3}{k} \right) (3) + \left[4x - k^2 \frac{x^3}{3} \right]_{\frac{1}{k}}^{\frac{2}{k}}$
	$= \frac{9}{2k} + \left[\left(\frac{8}{k} - \frac{k^2}{3} \left(\frac{2}{k} \right)^3 \right) - \left(\frac{4}{k} - \frac{k^2}{3} \left(\frac{1}{k} \right)^3 \right) \right]$
	$=\frac{37}{6k}$
6(i)	Volume = $300 = \pi r^2 h$
	$\Rightarrow h = \frac{300}{\pi r^2}$
	Surface area, $S = \text{area of top } \& \text{ bottom} + \text{curved surface}$
	$= \pi r^2(2) + 2\pi rh$
	$= \pi r^2(2) + 2\pi r \left(\frac{300}{\pi r^2}\right)$
	$=2\pi r^2+\frac{600}{r}$
6 (ii)	$\frac{dS}{dr} = 2\pi(2r) + 600(-r^{-2})$
	For minimum, let $\frac{dS}{dr} = 0$
	$\Rightarrow 4\pi r - \frac{600}{r^2} = 0$
	$\Rightarrow r^3 = \frac{600}{150} = \frac{150}{150}$
	$\Rightarrow r = \sqrt[3]{\frac{150}{\pi}} = 3.62783$
	$\frac{\mathrm{d}S}{\mathrm{d}r}$ -ve 0 +ve
	slope
	$\therefore S \text{ is minimum when } r = \sqrt[3]{\frac{150}{\pi}} = 3.62783$
	Minimum $S = 2\pi (3.62783)^2 + \frac{600}{3.62783}$
	= 248.0821 = 248.08 cm ² (to 2 dec places)

Qn	Solution
7(i)	Systematic sampling.
(ii)	- There may not be a proportionate representation of the employees.
	- certain category of the employees may not be represented
	- the sample may consist of only one or two categories of the employees
(iii)	Stratified sampling method is more appropriate. 15 general workers, 5 foremen and 2
	management personnel are randomly selected to form the sample.
8(i)	Let D and M be the mass, in kg, of a durian and a mangosteen respectively.
	Then $D \sim N(1.7, 0.2^2)$, $M \sim N(\mu, 0.05^2)$
•	P(M < 0.3) > 0.95
	$P\left(Z < \frac{0.3 - \mu}{0.05}\right) > 0.95$
	$\left(\begin{array}{c} 1 \left(\begin{array}{c} 2 \left(\begin{array}{c} 0.05 \end{array}\right) > 0.05 \end{array}\right)$
	$0.3-\mu$
	$\Rightarrow \frac{0.3 - \mu}{0.05} > 1.64485$
	$\Rightarrow \mu < 0.3 - 1.64485(0.05) = 0.21776$
	i.e. $\mu < 0.218$ (to 3 s.f)
(ii)	$\mu = 0.2 \text{ i.e. } M \sim N(0.2, 0.05^2)$
	$D_1 + D_2 + M_1 + + M_4 \sim N(1.7 + 1.7 + 0.2 + 0.2 + 0.2 + 0.2)$
	$0.2^2 + 0.2^2 + 0.05^2 + 0.05^2 + 0.05^2 + 0.05^2$
	i.e. $D_1 + D_2 + M_1 + + M_4 \sim N(4.2, 0.09)$
-	$P(D_1+D_2+M_1++M_4 > 4.4) = 0.25249 = 0.252$
(iii)	$M_1++M_4-\frac{1}{2}D\sim N(-0.05, 0.02)$
	$\frac{1}{2}$
	$P(\frac{1}{2}D - 0.2 < M_1 + + M_4 < \frac{1}{2}D + 0.2)$
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$= P(-0.2 < M_1 + + M_4 - \frac{1}{2}D < 0.2)$
	2
	=0.8170279 = 0.817
(iv)	Let A and B be the selling price, in \$, of a durian and a mangosteen respectively.
	Then $A = 8D \sim N(13.6, 2.56)$,
	$B = 3M \sim N(0.6, 0.0225)$
	$A_1+A_2+A_3+B_1++B_{10} \sim N(46.8, 7.905)$
-	$P(A_1 + A_2 + A_3 + B_1 + \dots + B_{10} < 45) = 0.2610184 = 0.261$
9(i)	Let <i>X</i> be the number of rainy days in a week (out of 7).
/(1)	Then $X \sim B(7, 0.3)$
(a)	P(X=3) = 0.2268945 = 0.227
(b)	$P(X > 3) = 1 - P(X \le 3)$
	= 1 - 0.873964 = 0.126036 = 0.126
(ii)	Let Y be the number of weeks with more dry days in a year (52 weeks)
	Then $Y \sim B(52, 0.873964)$
	$P(Y \ge 40) = 1 - P(Y \le 39)$
	= 0.989124771 = 0.989
(iii)	Let \overline{X} be the average number of rainy days per week in a period of 52 weeks.
L	

•	
Qn	Solution
	Then by CLT, $\overline{X} \sim N(2.1, \frac{1.47}{52})$ approximately
	$P(\overline{X} > 2) = 0.7239986698 = 0.724$
(iv)	Let W be the number of rainy days in 52 weeks (364 days) Then $W \sim B(364, 0.3)$
	Since $n=364$ is large and $np = 109.2 > 5$, $nq = 254.8 > 5$
	Then $W \sim N(109.2, 76.44)$ approximately. $P(100 < W < 120) \xrightarrow{c.c} P(100.5 < W < 119.5)$
	= 0.7207705 = 0.721
10 (i)	Unbiased estimate for $\mu = \frac{75}{60} + 50 = 51.25$
	Unbiased estimate for $\sigma^2 = \frac{1}{59} \left(2016 - \frac{75^2}{60} \right) = 32.5805$
	= 32.6
(ii)	$H_0: \mu = 50$ $H_1: \mu > 50$
	Under H ₀ , $Z = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim N(0,1)$ approx. by CLT
	where $\mu = 50$, $\bar{x} = 51.25$, $s = \sqrt{32.5805}$, $n = 60$
	Level of significance: 5%
	From GC, p-value = 0.0449.
	Since p-value $< 5\%$, we reject H ₀ and conclude that at the 5% level, there is significant evidence to support the resident's claim.
(iii)	"5% level of significance" means that there is a probability of 0.05 to support the resident's claim when the population mean speed is actually 50 km/h.
(iv)	H_0 : $\mu = 50$ H_1 : $\mu > 50$
	Under H ₀ , $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$ approx. by CLT
	where $\mu = 50$, $\sigma = 14$, $n = 100$
	Level of significance: 5% Reject $H_0 \Rightarrow z > 1.64485$
	$\frac{c - 50}{\left(\frac{14}{\sqrt{100}}\right)} > 1.64485$
	$c > 50 + 1.64485 \left(\frac{14}{\sqrt{100}}\right)$
	<i>c</i> > 52.30279

Qn	Solution
11	
(i)	1 (151, 190)
	+ +
	+
	+ #
	+
	+ (37, 45)
	+
	\sim \sim \sim
	product moment correlation coefficient = 0.289
(ii)	Trainee 9 with scores 186 and 17 for Performance Assessment 1 and 2 respectively
(iii)	The revised product moment correlation coefficient between x and $y = 0.903$. By removing
	the incorrect data point, the correlation coefficient is very much closer to 1 compared to
	the value obtained in (i).
(iv)	The equations of the regression lines of y on x is $y = 0.899x + 34.9$
(v)	When $x = 127$, $y \approx 149.113 \approx 149$
	The estimate is reliable as it is obtained by interpolation (or $x = 127$ is within the range of
	data given)
	and $r = 0.903$ is close to 1.
12(i)	$P(M) = \frac{42 + x}{92 + x}, P(E) = \frac{36 + x}{92 + x}$ $P(M \cap E) = \frac{14 + x}{92 + x}$
	$92+x \qquad 92+x$
	$P(M \cap E) = \frac{14 + x}{2}$
	Since M and E are independent, $P(M \cap E) = P(M)P(E)$
	$\frac{14+x}{92+x} = \left(\frac{42+x}{92+x}\right) \cdot \left(\frac{36+x}{92+x}\right)$
	$(14+x)(92+x) = (42+x)(36+x)$ $1288+106x+x^2 = 1512+78x+x^2$
	28 x = 224
	$\therefore x = 8$
	$\frac{1}{2}$
	OR using $P(M \mid E) = P(M) \Rightarrow \frac{1}{36+6} = \frac{1}{92+x}$
	OP using $P(F \mid M) = P(F) \Rightarrow 14 + x = 36 + x$
	OR using $P(M E) = P(M) \Rightarrow \frac{14 + x}{36 + 6} = \frac{42 + x}{92 + x}$ OR using $P(E M) = P(E) \Rightarrow \frac{14 + x}{42 + x} = \frac{36 + x}{92 + x}$
(ii)	$P(S' \cap M) = \frac{29}{100} = 0.29$
(iii)	$P(S \cap E \mid M) = \frac{P(S \cap E \cap M)}{P(M)} = \frac{8}{50} = 0.16$
(iv)	P(only one has studied all 3 subjects)
	$=\left(\frac{8}{100}\right)\left(\frac{92}{99}\right) \times 2 = 0.148687 \approx 0.149$
	[\ \ 100 \ /\ \ 99 \ /