1) x = Number of 6-blade packages sold y = Number of 12-blade packages sold z = Number of 24-blade packages sold x + y + z = 12 ----- (1) 6x + 12y + 24z = 162 ----- (2) 2x + 3y + 4z = 35 ----- (3) x = 5 y = 3 z = 42) $y = \frac{2}{1+x^2} - 1$ $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4x}{(1+x^2)^2}$ The coordinates of points A, B and C are A(0, 1), B(1, 0) and C(-1, 0)At *B*, $\frac{dy}{dx} = -1$ Thus equation of tangent at *B* is y = -x + 1. When x = 0, y = -0 + 1 = 1. Thus the tangent at *B* passes through A(0, 1). At C, $\frac{dy}{dx} = 1$ Thus equation of tangent at C is y = x+1. When x = 0, y = 0 + 1 = 1. Thus the tangent at C passes through A(0,1). 3(a)(i) $\frac{\mathrm{d}}{\mathrm{d}x}\ln\left(\frac{5x+2}{4x^2}\right)$ $=\frac{\mathrm{d}}{\mathrm{d}x}\left[\ln\left(5x+2\right)-\ln 4x^{2}\right]$ $\frac{5}{5x+2} - \frac{2}{x}$ (ii) $\frac{\mathrm{d}}{\mathrm{d}x} \left[\mathrm{e}^{\sqrt{x}} \right] = \frac{\mathrm{e}^{\sqrt{x}}}{2\sqrt{x}}$

P(B) =	$=\frac{9+18+36}{1000}=\frac{63}{1000}=0.063$				
1000 1000					
	$P(A') \times P(B) = 0.0414 ≠ P(A' \cap B)$ ∴ A' and B are not independent				
	$\Rightarrow A \text{ and } B \text{ are not independent.}$ 8) Let X g be the mass of a cabbage.				
$X \sqcup N(550, 20^2)$					
(i) (ii)	P(X > 575) = 0.10565 ≈ 0.106 P(X > m) ≤ 0.2 m ≥ 566.832 Smallest mass is 566.8 g.				
(iii)	Let \$ <i>C</i> be the cost of a cabbage. $C = \frac{0.60}{100} X$				
	$E(C) = \frac{0.60}{100} \times 550 = 3.3$				
	Var (C) = $\left(\frac{0.60}{100}\right)^2 \times 20^2 = 0.0144$				
	$C \sqcup N(3.3, 0.0144)$				
	$P(C < 3.20) = 0.20233 \approx 0.202$				
(iv)	Let <i>Y</i> g be the mass of half a cabbage. $Y = \frac{1}{2} X$				
	$Y \square \operatorname{N}\left(\frac{550}{2}, \frac{20^2}{4}\right)$				
	$Y_1 + Y_2 - X \square N\left(\frac{550}{2} + \frac{550}{2} - 550, \frac{20^2}{4} + \frac{20^2}{4} + 20^2\right)$				
	$Y_1 + Y_2 - X \Box \mathbf{N} (0, 600)$				
	$P(0 < Y_1 + Y_2 - X < 50) = 0.47939 \approx 0.479$				
9) Not every student will have equal chance of being selected as those who do not go to the canteen during lunch break will have no chance of being interviewed.					
(i)	The probability of a student supporting candidate A is constant for all the students. A student supporting candidate A is independent of whether other students will support candidate A .				
(ii)	$X \square B\left(30, \frac{4}{9}\right)$				

x $P(X = x)$ 120.13058130.14465140.14051 \therefore The most likely number of students who support		
candidate A is 13.		
(iii) mean = $30 \times \frac{4}{9} = \frac{40}{3}$		
standard deviation = $\sqrt{30 \times \frac{4}{9} \times \left(1 - \frac{4}{9}\right)} = 2.7217$		
$P\left(\frac{40}{3} - 2.7217 < X < \frac{40}{3} + 2.7217\right)$		
$= P(11 \le X \le 16) = P(X \le 16) - P(X \le 10) =$		
0.72867 ≈ 0.729		
Let <i>Y</i> be number of students out of 30 who support candidate <i>B</i> .		
$Y \square \mathbf{B}\left(30, \frac{p}{100}\right)$		
$P(Y \le 1) = P(Y = 0) + P(Y = 1)$		
$= (1 - 0.01p)^{30} + 30 \times 0.01p \times (1 - 0.01p)^{29}$		
$= (1 - 0.01p)^{29} (1 - 0.01p + 0.3p)$		
$= (1 - 0.01p)^{29}(1 + 0.29p)$		
= 0.3		
CALC ZERD Y1=(1-0.01X)^29(1+0.29X)-0.3		
Zero X=7.9379007 Y=0		
$p \approx 7.94$ (correct to 2 d.p.)		
10) Let μ kg be the population mean yield of an apple tree.		
(i) $H_0: \mu = 98.5$		
$H_1: \mu > 98.5$		
Level of significance : 5%		

Test Statistic: When H ₀ is true, $Z = \frac{\overline{X} - 98.5}{\frac{S}{\sqrt{25}}} \square N(0, 1)$			
approximately			
Computation : $\bar{x} = 99.7$, $s^2 = \frac{n}{n-1} \left(\frac{\sum (x-\bar{x})^2}{n} \right) = \frac{178}{24}$			
p - value = 0.01379154 Conclusion : Since p - value = 0.0138 < 0.05, H ₀ is rejected at 5% level of significance. There is sufficient evidence to conclude that the farmer's claim should not be rejected.			
 (ii) It is not necessary as the sample size is 25 which is sufficiently large. Central Limit Theorem can be applied and X̄ is approximately normal. (iii) 5% level of significance means that there is a 0.05 probability that the test will conclude that there is an increase in the mean yield of the apple trees when the 			
mean yield is actually 98.5 kg. (iv) $H_0: \mu = 102$ $H_1: \mu \neq 102$ Level of significance : 5%			
Rejection region: $z \le -1.95996$ or $z \ge 1.95996$ Conclusion : H ₀ is not rejected. $z = \frac{\overline{x} - 102}{\sqrt{\frac{7.49}{20}}} \implies -1.95996 < \frac{\overline{x} - 102}{\sqrt{\frac{7.49}{20}}} < 1.95996$			
$\therefore \{ \overline{x} \in \Box : 101 < \overline{x} < 103 \}$ (v) We need to assume that the population variance			
remained unchanged. (vi) Since H ₀ is not rejected, $p - \text{value} > 0.05 \Rightarrow p - \text{value} > 0.01$. Hence H ₀ will also not be rejected at 1% level of significance.			
11)(i) _y			
NOR 1AL FLOAT AUTO REAL RADIAN MP			
(i) $r = -0.53382$			

(ii)	The estimate is unreliable as from the scatter diagram,	
	the points do not seem to lie close to straight line and	
	r is not close to -1 .	
(iii)	Let the score be <i>p</i> .	
	$\overline{x} = \frac{436}{8}, \overline{y} = \frac{407 + p}{8}$	
	$\frac{407+p}{8} = 88.722 - 0.57976 \left(\frac{436}{8}\right)$	
	$\therefore p = 50$ (nearest integer)	
(iv)	From GC, $x = 121.07 - 1.1653y$	
	When $y = 75$,	
	x = 34 (nearest integer)	
	The estimate is not reliable as $y = 75$ is outside the	
	given data range $45 \le y \le 73$.	