SRJC Paper 1

1 The complex numbers z and w satisfy the simultaneous equations

$$
\begin{equation*}
\mathrm{i} z+w=2+\mathrm{i} \text { and } 2 w-(1+\mathrm{i}) z=8+4 \mathrm{i} \tag{5}
\end{equation*}
$$

Find z and w in the form of $a+\mathrm{i} b$, where a and b are real.

2 Solve the inequality $\frac{2 x^{2}+2 x-1}{x^{2}+2 x} \leq 1$.
Hence, solve the inequality $\frac{2 x^{2}+2|x|-1}{x^{2}+2|x|} \leq 1$.

3 For $\alpha, \beta \in \mathbb{R}$ such that $2 \alpha<\beta$, the complex numbers $z_{1}=\mathrm{e}^{\mathrm{i} \alpha}$ and $z_{2}=2 \mathrm{e}^{\mathrm{i} \beta}$ are represented by the points P and Q respectively in the Argand diagram below.

Find the modulus and argument of the complex numbers given by $\frac{i}{2} z_{2}$ and $\frac{z_{1}^{2}}{z_{2}}$.
Copy the given Argand diagram onto your answer script and indicate clearly the following points representing the corresponding complex numbers on your diagram.
(i) $A: \frac{\mathrm{i}}{2} z_{2}$
(ii) $\quad B: \frac{z_{1}^{2}}{z_{2}}$

You are expected to indicate clearly the relevant moduli and arguments for parts (i) and (ii) on your Argand diagram.
If $\beta=\frac{11}{12} \pi$, find the smallest positive integer n such that the point representing the complex number $\left(z_{2}\right)^{n}$ lies on the negative real axis.

4 The curve C has equation $4 y^{2}-8 y-x^{2}-4 x-4=0$.
(i) Using an algebraic method, find the set of values that y cannot take.
(ii) Showing any necessary working, sketch C and indicate the equations of the asymptotes.

$$
\begin{equation*}
\mathrm{f}: x \mapsto \frac{\pi}{2} \tan \left(\frac{x}{2}\right), \quad x \in \mathbb{R},-2 \pi \leq x \leq 2 \pi \tag{2}
\end{equation*}
$$

(i) Explain why f^{-1} does not exist.
(ii) The domain of f is restricted to $(-\pi, a)$ such that a is the largest value for which the inverse function f^{-1} exists. State the exact value of a and define f^{-1} in a similar form.

In the rest of the question, the domain of f is $(-\pi, a)$, where a takes the value found in part (ii).
(iii) Sketch, in a single diagram, the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, labelling each graph clearly.Write down the equation of the line in which the graph of $y=\mathrm{f}(x)$ must be reflected in order to obtain the graph of $y=\mathrm{f}^{-1}(x)$ and draw this line on your diagram.
(iv) Verify that $x=\frac{\pi}{2}$ is a root of the equation $x=\mathrm{f}(x)$. Hence, explain why $x=\frac{\pi}{2}$ is also a solution to the equation $\mathrm{f}(x)=\mathrm{f}^{-1}(x)$.
$6 \quad$ Referred to the origin O, the two points A and B have position vectors given by a and \mathbf{b}, where a and \mathbf{b} are non-zero vectors. The line l has equation $\mathbf{r}=2 \mathbf{a}+\lambda(\mathbf{a}+2 \mathbf{b})$, where $\lambda \in \mathbb{R}$. The point E is a general point on l and the point D has position vector $2 \mathbf{a}-\mathbf{b}$.

Given that vector \mathbf{a} is a unit vector, vector \mathbf{b} has a magnitude of $\sqrt{2}$ units and that $\mathbf{a} \cdot \mathbf{b}=1$,
(i) find the angle between vectors \mathbf{a} and \mathbf{b}, and,
(ii) by considering $\overrightarrow{D E} \cdot \overrightarrow{D E}$, find an expression for the square of the distance $D E$, leaving your answer in terms of λ.

Hence or otherwise, find the exact shortest distance of D to l, and write down the position vector of the foot of the perpendicular from D to l, in the form $p \mathbf{a}+q \mathbf{b}$.
(a) By considering the Maclaurin expansion for $\cos x$, show that the expansion of $\sec x$ up to and including the term in x^{4} is given by $1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}$. Hence show that the expansion for $\ln (\sec x)$ up to and including the term in x^{4} is given by $\left[\frac{1}{2} x^{2}+A x^{4}\right]$ where A is an unknown constant to be determined.
(b) The variables x and y satisfy the conditions (A) and (B) as follows:

$$
\begin{align*}
& \left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=1+y--(\mathbf{A}) \tag{4}\\
& y=0 \text { when } x=0--(\mathbf{B})
\end{align*}
$$

(i) Obtain the Maclaurin expansion of y, up to and including the term in x^{3}.
(ii) Verify that both conditions (A) and (B) hold for the curve $\ln (1+y)=\tan ^{-1} x$.[2]
(iii) Hence, without using a graphing calculator, find an approximation for

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}}\left(\mathrm{e}^{\tan ^{-1} x}-1\right) \mathrm{d} x \tag{2}
\end{equation*}
$$

8 (a) The fifth, ninth and eleventh terms of a geometric progression are also the seventh, twenty-fifth and forty-ninth terms of an arithmetic progression with a non-zero common difference respectively.
Show that $3 R^{6}-7 R^{4}+4=0$, where R is the common ratio of the geometric progression and determine if the geometric progression is convergent.
(b) A semicircle with radius 12 cm is cut into 8 sectors whose areas follow a geometric progression. The first sector, which is the largest, has an area of $A \mathrm{~cm}^{2}$. The second sector has an area of $A r \mathrm{~cm}^{2}$, the third sector has an area of $A r^{2} \mathrm{~cm}^{2}$, and so on, where r is a positive constant. Given also that the total area of the odd-numbered sectors is $10 \pi \mathrm{~cm}^{2}$ more than that of the even-numbered sectors, find the values of A and r.
(c) The production levels of a particular coal mine in any year is 4% less than in the previous year. Show that the total production of the coal mine can never exceed 25 times the production in the first year.
(a) Using the substitution $u=2 x+3$, find $\int \frac{x}{(2 x+3)^{3}} \mathrm{~d} x$ in the for $-\frac{P x+Q}{R(2 x+3)^{2}}+c$
where P, Q and R are positive integers to be determined.
Hence find $\int \frac{x \ln (4 x+3)}{(2 x+3)^{3}} \mathrm{~d} x$.
(b) Find $\int \sin 4 x \cos 6 x d x$.

Hence or otherwise, find $\int \mathrm{e}^{x} \sin 4 \mathrm{e}^{x} \cos 6 \mathrm{e}^{x} \mathrm{~d} x$.
10 A particle is moving along a curve, C, such that its position at time t seconds after it is set into motion is given by the parametric equations

$$
x=t+\mathrm{e}^{-2 t}, y=t-\mathrm{e}^{-2 t} .
$$

(i) State the coordinates of the initial position of the particle.
(ii) Explain what would happen to the path of the particle after a long time.

At the time of 2 seconds after the particle was set into motion, an external force struck the particle resulting in the particle moving in a straight line along the normal to the path at the point of collision.
(iii) Find an equation for the normal to the curve C at the point $t=2$, leaving your answer correct to 3 decimal places.

After T seconds, where $T>2$, the particle reaches point A, which lies on the x-axis, and stops moving.
(iv) Find the coordinates of the point A. Hence, give a sketch of the path traced by the particle, indicating the coordinates of any axial intercepts.
(v) Find the total area bounded by the path of the particle in the first T seconds and the positive x-axis.

A heavy wooden chest has a cross-sectional area made up of a rectangle and a semi-circle as shown in the diagram above. The wooden chest is constructed such that the perimeter of the crosssectional area is 100 cm . It is given that the wooden chest is $2(a+b) \mathrm{cm}$ long and the lengths of $A B$ and $B C$ are $2 a \mathrm{~cm}$ and $2 b \mathrm{~cm}$ respectively, where $a<70$.
(i) Express b in terms of a.
(ii) Show that the cross-sectional area of the wooden chest is given by $S=100 a-\frac{a^{2}}{2}(\pi+4)$ and find the volume of the chest in terms of a and π.
(iii) As a varies, find the value of a such that the volume of this wooden chest is greatest and find this volume correct to 2 decimal places.

ANNEX B

SRJC H2 Math JC2 Preliminary Examination Paper 1

QN	Topic Set	Answers
1	Complex numbers	$z=-1+\mathrm{i}$ and $w=3+2 \mathrm{i}$
2	Equations and Inequalities	$-2<x \leq-1$ or $0<x \leq 1,-1 \leq x \leq 1, x \neq 0$
3	Complex numbers	$\left\lvert\, \begin{aligned} & \left\|\frac{\mathrm{i}}{2} z_{2}\right\|=1, \arg \left(\frac{\mathrm{i}}{2} z_{2}\right)=\beta-\frac{3 \pi}{2} \\ & \left\|\frac{z_{1}^{2}}{z_{2}}\right\|=\frac{1}{2}, \arg \left(\frac{z_{1}^{2}}{z_{2}}\right)=2 \alpha-\beta \end{aligned}\right.$ (i) \& (ii) Smallest n required $=12$
4	Graphs and Transformation	(i) $0<y<2$ (ii)

5	Functions	(ii) $a=\pi, \mathrm{f}^{-1}: x \mapsto 2 \tan ^{-1}\left(\frac{2 x}{\pi}\right), \quad x \in R$. (iii) The line required is $y=x$. (iv) Since the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ intersect along the line $y=x$, and since $x=\frac{\pi}{2}$ is a root of the equation $x=\mathrm{f}(x)$, thus, the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ must also intersect at the point $x=\frac{\pi}{2}$.
6	Vectors	(i) $\theta=45^{\circ}$ (ii) $13 \lambda^{2}+10 \lambda+2$ Exact shortest distance from D to l is $\frac{1}{\sqrt{13}}$ units $\overrightarrow{O F}=\frac{21}{13} \mathbf{a}-\frac{10}{13} \mathbf{b}$
7	Maclaurin series	(a) $\frac{1}{2} x^{2}+\frac{1}{12} x^{4}, A=\frac{1}{12}$ (b) (i) $y=x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\ldots$ (iii) $\frac{55}{384}$
8	AP and GP	(a) $r= \pm \sqrt{2}$ so $\|r\|>1$ Hence, the geometric progression is not convergent.

		(b) $r=0.75610, A=61.8$
9	Integration techniques	$\begin{aligned} & \text { (a) } P=4, Q=3 \text { and } R=8 \\ & \int \frac{x \ln (4 x+3)}{(2 x+3)^{3}} \mathrm{~d} x=-\frac{(4 x+3) \ln (4 x+3)+2(2 x+3)}{8(2 x+3)^{2}}+C \end{aligned}$ $\begin{aligned} & \text { (b) }-\frac{1}{20} \cos 10 x+\frac{1}{4} \cos 2 x+C, \\ & -\frac{1}{20} \cos 10 e^{x}+\frac{1}{4} \cos 2 e^{x}+C \end{aligned}$
10	Differentiation \& Applications	(i) $(1,-1)$ (ii) The path of the particle approaches the line $\boldsymbol{y}=\boldsymbol{x}$ (iii) $y=-0.929 x+3.857$ (iv) $A(4.15,0)$ (v) 3.56 units 2
11	Differentiation \& Applications	(i) $b=\frac{100-a(\pi+2)}{4}$ (ii) $5000 a-75 \pi a-\frac{a^{3}}{4}\left(\pi^{2}+2 \pi-8\right)$ (iii) $a=12.7$, greatest volume $=29671.95 \mathrm{~cm}^{3}$

H2 Mathematics 2017 Prelim Exam Paper 1 Question
Answer all questions [100 marks].

1	$\mathrm{i} z+w=2+\mathrm{i}-----(1)$ $2 w-1-\mathrm{i} z=\frac{20}{2-\mathrm{i}}---(2)$ Let $w=2+\mathrm{i}-\mathrm{i} z---(3)$ Substitute eq (3) into eq (2) $\begin{aligned} & 2(2+\mathrm{i}-\mathrm{i} z)-z-\mathrm{i} z=8+4 \mathrm{i} \\ & 4+2 \mathrm{i}-3 \mathrm{i} z-z=8+4 \mathrm{i}----(5) \end{aligned}$ Let $z=a+b \mathrm{i}$ Substitute $z=a+b \mathrm{i}$ into eq(5) $\begin{aligned} & 4+2 \mathrm{i}-3 \mathrm{i}(a+b i)-(a+b \mathrm{i})=8+4 \mathrm{i} \\ & 4+2 \mathrm{i}-3 a \mathrm{i}+3 b-a-b \mathrm{i}=8+4 \mathrm{i} \end{aligned}$ Comparing real and imaginary parts: $4+3 b-a=8(\text { real parts })---(6)$ $2-3 a-b=4$ (imaginary parts) --- (7) $\mathrm{Eq}(6) \times 3-\mathrm{eq}(7)$ $10+10 b=20$ $10 b=10$ $b=1$ Since $b=1,4+3(1)-a=8 \Rightarrow a=-1$ $\therefore z=-1+\mathrm{i}$ Substituting $z=-1+\mathrm{i}$ into eq(3) to solve for w $w=2+\mathrm{i}+\mathrm{i}+1=3+2 \mathrm{i}$ Answer: $\quad z=-1+\mathrm{i}$ and $w=3+2 \mathrm{i}$
2	$\begin{aligned} & \frac{2 x^{2}+2 x-1}{x^{2}+2 x} \leq 1 \\ & \frac{2 x^{2}+2 x-1}{x^{2}+2 x}-1 \leq 0 \\ & \frac{2 x^{2}+2 x-1-x^{2}-2 x}{x^{2}+2 x} \leq 0 \\ & \Rightarrow \frac{x^{2}-1}{x(x+2)} \leq 0 \\ & \Rightarrow \frac{(x+1)(x-1)}{x(x+2)} \leq 0 \\ & +0-1 \\ & +2 \end{aligned}$ Thus, $-2<x \leq-1$ or $0<x \leq 1$

	$\begin{aligned} & \text { Replacing } x \text { with }\|x\| \text {, } \\ & -2<\|x\| \leq-1 \text { or } 0<\|x\| \leq 1 \\ & -2<\|x\| \leq-1 \Rightarrow \text { no solution } \\ & \text { For } 0<\|x\| \leq 1, \\ & 0<\|x\| \text { and }\|x\| \leq 1 \\ & x \in \square, x \neq 0 \text { and }-1 \leq x \leq 1 \\ & \text { Thus, range of values: }-1 \leq x \leq 1, x \neq 0 \end{aligned}$
3	$\frac{\mathrm{i}}{2} z_{2}=\left(\frac{1}{2} \mathrm{e}^{\mathrm{i} \frac{\pi}{2}}\right)\left(2 \mathrm{e}^{\mathrm{i} \beta}\right)=\mathrm{e}^{\mathrm{i}\left(\beta+\frac{\pi}{2}\right)}$ Modulus $=1$ Argument $=\beta+\frac{\pi}{2}-2 \pi=\beta-\frac{3 \pi}{2}$ (i) Point A correctly plotted $\begin{aligned} & \frac{z_{1}^{2}}{z_{2}}=\frac{\mathrm{e}^{\mathrm{i} \alpha} \mathrm{e}^{\mathrm{i} \alpha}}{2 \mathrm{e}^{\mathrm{i} \beta}}=\frac{1}{2} \mathrm{e}^{\mathrm{i}(2 \alpha-\beta)} \\ & \text { Modulus }=\frac{1}{2} \\ & \text { Argument }=2 \alpha-\beta \end{aligned}$ (ii) Point B correctly plotted (b) $\quad\left(z_{2}\right)^{n}=2^{n} \mathrm{e}^{\frac{111 \pi}{12} n}$ Since the point lies on the negative real axis, $\arg \left(z_{2}\right)^{n}=(2 k+1) \pi$ for $k \in \mathbb{Z}$. $\therefore \frac{11}{12} n \pi=(2 k+1) \pi$

	$\Rightarrow n=\frac{12}{11}(2 k+1)$ \Rightarrow Smallest n required $=12$
4	(i) $-x^{2}-4 x+\left(4 y^{2}-8 y-4\right)=0$ For values that y cannot take, there are no real solutions for x and discriminant <0. Therefore, $(-4)^{2}-4(-1)\left(4 y^{2}-8 y-4\right)<0$ $\begin{gathered} 16+16 y^{2}-32 y-16<0 \\ y^{2}-2 y<0 \\ y(y-2)<0 \\ \therefore 0<y<2 \end{gathered}$ Set of values that y cannot take is $\{y \in \square: 0<y<2\}$. (ii) $\begin{aligned} & 4 y^{2}-8 y-x^{2}-4 x-4=0 \\ & 4\left[(y-1)^{2}-1\right]-\left[(x+2)^{2}-4\right]-4=0 \\ & 4(y-1)^{2}-4-(x+2)^{2}=0 \\ & \frac{(y-1)^{2}}{1}-\frac{(x+2)^{2}}{2^{2}}=1 \end{aligned}$

The horizontal line $y=1$ cuts the graph of $y=\mathrm{f}(x)$ at $\mathbf{2}$ points. Thus, $\mathrm{f}(x)$ is not a one-one function and the inverse of $\mathrm{f}(x)$ does not exist for the domain $[-2 \pi, 2 \pi]$.
OR
Any horizontal line $y=k(k \in \square)$ cuts the graph at more than one point. Thus, $\mathrm{f}(x)$ is not a one-one function and the inverse of $\mathrm{f}(x)$ does not exist for the domain $[-2 \pi, 2 \pi]$.
(ii)

$a=\pi$
To make x the subject of y
$y=\frac{\pi}{2} \tan \left(\frac{x}{2}\right)$
$\frac{2 y}{\pi}=\tan \left(\frac{x}{2}\right)$
$\tan ^{-1}\left(\frac{2 y}{\pi}\right)=\frac{x}{2}$
$\Rightarrow x=2 \tan ^{-1}\left(\frac{2 y}{\pi}\right)$
$\mathrm{f}^{-1}: x \mapsto 2 \tan ^{-1}\left(\frac{2 x}{\pi}\right), \quad x \in R$.
(iii)

The line required is $y=x$.
(iv)
$\mathrm{f}\left(\frac{\pi}{2}\right)=\frac{\pi}{2} \tan \left(\frac{\pi}{4}\right)=\frac{\pi}{2}$
Thus, $x=\frac{\pi}{2}$ is a root of the equation $x=\mathrm{f}(x)$.
Since the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ intersect along the line $y=x$, and since $x=\frac{\pi}{2}$ is a root of the equation $x=\mathrm{f}(x)$, thus, the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ must also intersect at the point $x=\frac{\pi}{2}$.
(i) $\mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta \Rightarrow|1||\sqrt{2}| \cos \theta$
$\mathbf{a . b}=1 \quad \therefore \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=45^{\circ}$ (by inspection)
(ii) $\overline{D E}=\overline{O E}-\overline{O D}=2 \mathbf{a}+\lambda(\mathbf{a}+2 \mathbf{b})-(2 \mathbf{a}-\mathbf{b})=\mathbf{b}+\lambda(\mathbf{a}+2 \mathbf{b}), \lambda \in R$

To find the square of the distance $D E$

$$
\begin{aligned}
D E^{2} & =[\mathbf{b}+\lambda(\mathbf{a}+2 \mathbf{b})] \cdot[\mathbf{b}+\lambda(\mathbf{a}+2 \mathbf{b})] \\
& \left.\left.=\mathbf{b} \cdot \mathbf{b}+\lambda^{2}(\mathbf{a}+2 \mathbf{b}) \cdot \mathbf{(a + 2 b}\right)+2 \lambda \mathbf{b} \cdot \mathbf{a}+2 \mathbf{b}\right) \\
& =\mathbf{b} \mathbf{b}+\lambda^{2}(\mathbf{a} \cdot \mathbf{a}+4 \mathbf{a} \cdot \mathbf{b}+4 \mathbf{b} \cdot \mathbf{b})+2 \lambda(\mathbf{b} \cdot \mathbf{a}+2 \mathbf{b} \cdot \mathbf{b}) \\
& =2+\lambda^{2}(1+4(1)+4(2))+2 \lambda(1+2(2)) \text { as } \mathbf{a} \cdot \mathbf{a}=1, \mathbf{b} \cdot \mathbf{b}=2 \text { and } \mathbf{a} \cdot \mathbf{b}=1 \\
& =2+13 \lambda^{2}+10 \lambda \\
& =13 \lambda^{2}+10 \lambda+2
\end{aligned}
$$

(iii) Method One:

$$
\begin{aligned}
D E^{2} & =13\left[\lambda^{2}+\frac{10}{13} \lambda\right]+2 \\
& =13\left(\lambda+\frac{10}{26}\right)^{2}+2-\frac{25}{13}=13\left(\lambda+\frac{5}{13}\right)^{2}+\frac{1}{13} \\
D E & =\sqrt{13\left(\lambda+\frac{5}{13}\right)^{2}+\frac{1}{13}}
\end{aligned}
$$

The perpendicular distance from E to l occurs when D is closest to l, that is when $D E$ is minimum or $\lambda=-\frac{5}{13}$.
Exact shortest distance from D to l is $\frac{1}{\sqrt{13}}$ units.

	Method Two: $D E$ is minimum when $D E^{2}$ is minimum: $\frac{\mathrm{d}}{\mathrm{dx}}\left(D E^{2}\right)=26 \lambda+10$ To find stationary point: When $\frac{\mathrm{d}}{\mathrm{dx}}\left(D E^{2}\right)=0,26 \lambda+10=0$ $\therefore \lambda=-\frac{5}{13} .$ Since $D E^{2}$ is quadratic and coefficient of $\lambda^{2}>0$, $D E^{2}$ is minimum at $\lambda=-\frac{5}{13}$ \therefore perpendicular distance from D to l occur when $\lambda=-\frac{5}{13}$. $D E^{2}=13 \lambda^{2}+10 \lambda+2=13\left(-\frac{5}{13}\right)^{2}+10\left(-\frac{5}{13}\right)+2=\frac{1}{13}$ Exact shortest distance from D to l is $\frac{1}{\sqrt{13}}$ units. (iv) Let F be the foot of the perpendicular from D to l. $\overrightarrow{O F}=2 \mathbf{a}-\frac{5}{13}(\mathbf{a}+2 \mathbf{b})=\frac{21}{13} \mathbf{a}-\frac{10}{13} \mathbf{b}$
7	(a) $\begin{aligned} \sec x & =\frac{1}{\cos x} \\ & =\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\ldots\right)^{-1} \\ & =1+(-1)\left[-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right]+\frac{(-1)(-2)}{2!}\left[-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right]^{2}+\ldots \\ & =1+\frac{1}{2} x^{2}-\frac{1}{24} x^{4}+\frac{1}{4} x^{4}+\ldots \\ & =1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}\left(\text { up to } x^{4}\right) \text { (shown) } \\ \ln (\sec x) & \approx \ln \left[1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}\right] \\ & =\left[\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\ldots\right]-\frac{1}{2}\left[\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+\ldots\right]^{2} \end{aligned}$

$$
\begin{aligned}
& =\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{1}{2}\left(\frac{1}{4} x^{4}\right)+\ldots \\
& =\frac{1}{2} x^{2}+\frac{1}{12} x^{4}
\end{aligned}
$$

Thus $A=\frac{1}{12}$
(b)(i) $\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=1+y$

$$
\begin{aligned}
& \left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x} \\
& \left(1+x^{2}\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=(1-2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}
\end{aligned}
$$

$$
\text { At } x=0, y=0
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=1, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-1
$$

Thus, $y=x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots$
i.e. $y=x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\ldots$
(ii) $\quad \ln (1+y)=\tan ^{-1} x \Rightarrow \frac{1}{1+y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{1+x^{2}}$

$$
\therefore\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=1+y \text { so condition }(\mathbf{A}) \text { is satisfied. }
$$

$$
\text { At } x=0,
$$

$$
\ln (1+y)=\tan ^{-1} 0=0 \Rightarrow 1+y=\mathrm{e}^{0}
$$

$$
\therefore y=0
$$

(iii) $\int_{0}^{\frac{1}{2}}\left(\mathrm{e}^{\tan ^{-1} x}-1\right) \mathrm{d} x \approx \int_{0}^{\frac{1}{2}}\left(x+\frac{x^{2}}{2}-\frac{x^{3}}{6}\right) \mathrm{d} x=\frac{55}{384}$
$\mathbf{8}$ (a)Let a denote the first term of the geometric progression.
Likewise, let b and d denote the first term and common difference of the arithmetic progression.

$$
\begin{array}{ll}
\therefore \quad & a r^{4}=b+6 d \\
& a r^{8}=b+24 d \\
& a r^{10}=b+48 d \tag{3}
\end{array}
$$

$\mathrm{Eq}(2)-\mathrm{Eq}(1): a r^{8}-a r^{4}=18 d$
$\mathrm{Eq}(3)-\mathrm{Eq}(2): a r^{10}-a r^{8}=24 d$
$\mathrm{Eq}(5) / \mathrm{Eq}(4): \frac{a r^{8}\left(r^{2}-1\right)}{a r^{4}\left(r^{4}-1\right)}=\frac{24 d}{18 d}$

$$
\frac{r^{4}}{r^{2}+1}=\frac{4}{3}
$$

$$
\left.3 r^{4}=4 r^{2}+4 \quad \text { (Shown }\right)
$$

	From GC, $r= \pm \sqrt{2}$ so $\|r\|>1$ Hence, the geometric progression is not convergent. (b) Let a be the 1st term and r be the common ratio of the G.P. $\begin{align*} & S_{8}=\frac{A\left(1-r^{8}\right)}{1-r}=72 \pi \\ & S_{\text {odd }}-S_{\text {even }}=10 \pi \\ & \Rightarrow \frac{A\left(1-\left(r^{2}\right)^{4}\right)}{1-r^{2}}-\frac{A r\left(1-\left(r^{2}\right)^{4}\right)}{1-r^{2}}=10 \pi \\ & \frac{A\left(1-r^{8}\right)}{(1-r)(1+r)}[1-r]=10 \pi \text {----- } \tag{2} \end{align*}$ $\begin{aligned} & (1) \div(2): \\ & \frac{1-r}{1+r}=\frac{10}{72} \\ & 72-72 r=10+10 r \\ & 82 r=62 \\ & r=0.75610 \end{aligned}$ Substituting into equation (1), $A=61.8$ (to 3 s.f.) Let the production level in the first year be a. Total production of the coal mine $=\frac{a}{1-0.96}=25 a$ Thus, the total production of the coal mine can never exceed 25 times the production in the first year.
9	(a) $\begin{aligned} & \text { Given } u=2 x+3 \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 \\ & \begin{aligned} \int \frac{x}{(2 x+3)^{3}} \mathrm{~d} x & =\int \frac{\frac{1}{2}(u-3)}{u^{3}} \cdot \frac{1}{2} \mathrm{~d} u \\ & =\frac{1}{4} \int\left[u^{-2}-3 u^{-3}\right] \mathrm{d} u \\ & =\frac{1}{4}\left[-u^{-1}+\frac{3}{2} u^{-2}\right]+C \\ & =-\frac{1}{4(2 x+3)}+\frac{3}{8(2 x+3)^{2}}+C \\ & =\frac{-2(2 x+3)+3}{8(2 x+3)^{2}}+C \end{aligned} \end{aligned}$

	$\begin{aligned} & =-\frac{4 x+3}{8(2 x+3)^{2}}+C \\ & P=4, Q=3 \text { and } R=8 \\ & \int \frac{\ln (4 x+3)^{x}}{(2 x+3)^{3}} \mathrm{~d} x \\ & =\int \frac{x}{(2 x+3)^{3}} \cdot \ln (4 x+3) \mathrm{d} x \quad \text { Let } \frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{x}{(2 x+3)^{3}}, u=\ln (4 x+3) \\ & =-\frac{(4 x+3) \ln (4 x+3)}{8(2 x+3)^{2}}-\int-\frac{(4 x+3)}{8(2 x+3)^{2}} \cdot \frac{4}{(4 x+3)} \mathrm{d} x+C \\ & =-\frac{(4 x+3) \ln (4 x+3)}{8(2 x+3)^{2}}+\frac{1}{2} \int(2 x+3)^{-2} \mathrm{~d} x+C \\ & =-\frac{(4 x+3) \ln (4 x+3)}{8(2 x+3)^{2}}+\frac{1}{2}(2 x+3)^{-1}\left(-\frac{1}{2}\right)+C \\ & =-\frac{(4 x+3) \ln (4 x+3)}{8(2 x+3)^{2}}-\frac{1}{4(2 x+3)}+C \\ & =-\frac{(4 x+3) \ln (4 x+3)+2(2 x+3)}{8(2 x+3)^{2}}+C \end{aligned}$ (b) $\begin{aligned} & \int \sin 4 x \cos 6 x \mathrm{~d} x \\ & =\frac{1}{2} \int \sin 10 x+\sin (-2 x) \mathrm{d} x \\ & =\frac{1}{2} \int \sin 10 x-\sin 2 x \mathrm{~d} x \\ & =\frac{1}{2}\left[-\frac{1}{10} \cos 10 x+\frac{1}{2} \cos 2 x\right]+C \\ & =-\frac{1}{20} \cos 10 x+\frac{1}{4} \cos 2 x+C \\ & \int e^{x} \sin 4 e^{x} \cos 6 e^{x} \mathrm{~d} x \\ & =-\frac{1}{20} \cos 10 e^{x}+\frac{1}{4} \cos 2 e^{x}+C \end{aligned}$
10	(i) At the original position, $t=0$ $x=0+\mathrm{e}^{0}=1 \text { and } y=0-\mathrm{e}^{0}=-1$ Thus the coordinates are $(1,-1)$. (ii) As t tends to infinity, $\mathrm{e}^{-2 t} \rightarrow 0$ so $x \rightarrow t$ and $y \rightarrow t$ Thus, the path of the particle approaches the line $\boldsymbol{y}=\boldsymbol{x}$

$$
\Rightarrow b=\frac{100-a(\pi+2)}{4}
$$

(ii) $\quad S=(2 a)(2 b)+\frac{1}{2}\left(\pi a^{2}\right)$

$$
\begin{aligned}
& =4 a\left[\frac{100-a(\pi+2)}{4}\right]+\frac{\pi}{2} a^{2} \\
& =100 a-a^{2}(\pi+2)+\frac{\pi}{2} a^{2} \\
& =100 a-\frac{a^{2}}{2}(2 \pi+4-\pi) \\
& =100 a-\frac{a^{2}}{2}(\pi+4) \quad \text { (shown) }
\end{aligned}
$$

Note that, $a+b=a+\frac{100-a(\pi+2)}{4}$

$$
\begin{aligned}
& =\frac{4 a+100-a(\pi+2)}{4} \\
& =\frac{1}{4}[100+a(2-\pi)]
\end{aligned}
$$

$$
\begin{aligned}
V & =\left[100 a-\frac{a^{2}}{2}(\pi+4)\right] 2(a+b) \\
& =\left[100 a-\frac{a^{2}}{2}(\pi+4)\right] \cdot \frac{2}{4}[100+a(2-\pi)] \\
& =\frac{a}{2}\left[100-\frac{a}{2}(\pi+4)\right] \cdot[100+a(2-\pi)] \\
& =5000 a-75 \pi a-\frac{a^{3}}{4}\left(\pi^{2}+2 \pi-8\right)
\end{aligned}
$$

(iii) $\frac{\mathrm{d} V}{\mathrm{~d} a}=5000-150 \pi a-\frac{3}{4} a^{2}\left(\pi^{2}+2 \pi-8\right)$

When $\frac{\mathrm{d} V}{\mathrm{~d} a}=0$, using the GC, $a=12.70471$ or $a=64.36321$

For $a=12.70471$			
A	a^{-}	a	a^{+}
Sign	-	0	+
$\frac{\mathrm{d} V}{\mathrm{~d} a}$		-	\searrow

For $a=64.36321$			
a	a^{-}	a	a^{+}
sign	-	0	+
$\frac{\mathrm{d} V}{\mathrm{~d} a}$	\searrow		

Thus when $a=12.70471=12.7$ (3 s.f.), volume is greatest.
Using the GC, greatest volume is $29671.95154=29671.95 \mathrm{~cm}^{3}$.

- End Of Paper -

SRJC Paper 2

1
(i) Prove that $\frac{\sin (A-B)}{\cos A \cos B}=\tan A-\tan B$.
(ii) Hence, by considering a suitable expression of A and B, find

$$
\begin{equation*}
\sum_{r=1}^{N} \frac{\sin x}{\cos [(r+1) x] \cos (r x)} \tag{3}
\end{equation*}
$$

(iii) Using your answer to part (ii), find $\sum_{r=1}^{N}\left(\frac{\sqrt{3}}{2 \cos \frac{r \pi}{3} \cos \frac{(r+1) \pi}{3}}\right)$, leaving your answer in terms of N.
(i) Find $\int_{2}^{n} \frac{9 x}{\left(x^{2}-1\right)^{3}} \mathrm{~d} x$, where $n \geq 2$ and hence evaluate $\int_{2}^{\infty} \frac{9 x}{\left(x^{2}-1\right)^{3}} \mathrm{~d} x$.
(ii) Sketch the curve $y=\frac{9 x}{\left(x^{2}-1\right)^{3}}$ for $x \geq 0$.
(iii) The region R is bounded by the curve, the line $y=\frac{2}{3}$ and the line $x=5$.

Write down the equation of the curve when it is translated by $\frac{2}{3}$ units in the negative y direction.

Hence or otherwise, find the volume of the solid formed when R is rotated completely about the line $y=\frac{2}{3}$, leaving your answer correct to 3 decimal places.

3
(a) (i) Show that $\frac{\mathrm{d}}{\mathrm{d} \theta}\left(\sin \theta-\frac{1}{3} \sin ^{3} \theta\right)=\cos ^{3} \theta$.
(ii) Find the solution to the differential equation $\operatorname{cosec} x \frac{d^{2} y}{d x^{2}}=-\cos ^{2} x$ in the form

$$
\begin{equation*}
y=\mathrm{f}(x) \text {, given that } y=0 \text { and } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}+\frac{2}{\pi} \text { when } x=0 . \tag{4}
\end{equation*}
$$

(b) Show, by means of the substitution $v=x^{2} y$, that the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y+4 x^{2} y=0
$$

can be reduced to the form

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=-4 v x
$$

Hence find y in terms of x, given that $y=\frac{1}{3} \quad$ when $x=-3$.

4 In the study of light, we may model a ray of light as a straight line.
A ray of light, l_{1}, is known to be parallel to the vector $2 \mathbf{i}+\mathbf{k}$ and passes through the point P with coordinates $(1,1,0)$. The ray of light hits a mirror, and is reflected by the mirror which may be modelled by a plane Π_{1} containing the points A, B and C with coordinates $(-1,1,0),(0,0,2)$ $\operatorname{and}(0,3,-3)$ respectively. This scenario is depicted in the diagram below:

(i) Show that an equation for plane Π_{1} is given by $-x+5 y+3 z=6$.
(ii) Find the coordinates of the point where the ray of light meets the mirror.
(iii) Determine the position vector of the foot of the perpendicular from the point P to the mirror and hence, find an equation of the line that may be used to model the reflected ray of light.

A second ray of light which is parallel to the mirror may be modelled by the line l_{2}, with Cartesian equation $\frac{x-1}{2}=\frac{z-2}{\alpha}, y=\beta$. Given that the distance between l_{2} and the mirror is $\frac{14}{\sqrt{35}}$ units, find the values of the positive constants α and β.

5 A random variable X has the probability distribution given in the following table.

x	2	3	4	5
$\mathrm{P}(X=x)$	0.2	a	b	0.45

Given that $E(|X-4|)=\frac{11}{10}$, find the values of a and b.
Two independent observations of X are taken. Find the probability that one of them is 2 and the other is at most 4 .

6 In a large consignment of mangoes, 4.5% of the mangoes are damaged.
(i) A total of 21 mangoes are selected at random. Calculate the probability that not more than 3 mangoes are damaged.
(ii) The mangoes are randomly selected and packed into boxes of 21. For shipping purposes, the boxes are packed into cartons, with each carton containing 12 boxes. A box containing more than 3 damaged mangoes is considered low standard. Calculate the probability that, in a randomly selected carton, there are at least 2 boxes which are of low standard.
(iii) Find the probability that a randomly chosen box that is of low standard contains no more than five damaged mangoes.

7 (a) Seven boys and five girls formed a group in a school orientation. During one of the game segments, they are required to arrange themselves in a row. Find the exact probability that (i) the girls are separated from one another,
(ii) there will be exactly one boy between any two girls.

In another game segment, they are required to sit at a round table with twelve identical chairs. Find the exact probability that one particular boy is seated between two particular girls.
(b) The events A and B are such that $\mathrm{P}(A)=\frac{7}{10}, \mathrm{P}(B)=\frac{2}{5}$ and $\mathrm{P}(A \mid B)=\frac{13}{20}$.
(i) Find $\mathrm{P}(A \cup B)$,
(ii) State, with a reason, whether the events A and B are independent.
(c) A man plays a game in which he draws balls, with replacement, from a bag containing 3 yellow balls, 2 red balls and 4 black balls. If he draws a black ball, he loses the game and if he draws a red ball he wins the game. If he draws a yellow ball, the ball is replaced and he draws again. He continues drawing until he either wins or loses the game. Find the probability that he wins the game.

8 A company manufactures bottles of iced coffee. Machines A and B are used to fill the bottles with iced coffee.
(i) Machine A is set to fill the bottles with 500 ml of iced coffee. A random sample of 50 filled bottles was taken and the volume of iced coffee ($x \mathrm{ml}$) in each bottle was measured. The following data was obtained

$$
\sum x=24965 \sum(x-\bar{x})^{2}=365
$$

Calculate unbiased estimates of the population mean and variance. Test at the 2% level of significance, whether the mean volume of iced coffee per bottle is 500 ml .
(ii) The company claims that Machine B filled the bottles with $\mu_{0} \mathrm{ml}$ of iced coffee. A random sample of 70 filled bottles was taken and the mean is 489.1 ml with standard deviation 4 ml . Find the range of values of μ_{0} for which there is sufficient evidence for the company to have overstated the mean volume at the 2% level of significance.

9 An online survey revealed that 34.1% of junior college students spent between 3 to 3.8 hours on their mobile phones daily. Assuming that the amount of time a randomly chosen junior college student spends on mobile phones daily follows a normal distribution with mean 3.4 hours and standard deviation σ hours, show that $\sigma=0.906$, correct to 3 decimal places.
Find the probability that
(i) four randomly chosen students each spend between 3 to 3.8 hours daily on their mobile phones.
(ii) the total time spent on their mobile phones daily by the three randomly chosen junior college students is less than twice that of another randomly chosen junior college student.
(iii) State an assumption required for your calculations in (i) and (ii) to be valid.
N samples, each consisting of 50 randomly selected junior college students, are selected. It is expected that 15 of these samples will have a mean daily time spent on mobile phones greater than 3.5 hours.
(iv) Estimate the value of N.

10 In a medical study, researchers investigated the effect of varying amounts of calcium intake on the bone density of Singaporean women of age 50 years. A random sample of eighty 50 -year-old Singaporean women was taken.
(i) Explain, in the context of this question, the meaning of the phrase 'random sample'.

The daily calcium intake ($x \mathrm{mg}$) of the women was varied and the average percentage increase in bone density ($y \%$) was measured. The data is as shown in the table below.

x (in mg)	700	800	900	1000	1050	1100
$y(\%)$	0.13	0.78	1.38	1.88	2.07	2.10

(ii) Calculate the product moment correlation coefficient and suggest why its value does not necessarily mean that the best model for the relationship between x and y is $y=a+b x$.
(iii) Draw a scatter diagram representing the data above.

The researchers suggest that the change in bone density can instead be modelled by the equation
$\ln (P-y)=a+b x$.
The product moment correlation coefficient between x and $\ln (P-y)$ is denoted by r. The following table gives values of r for some possible values of P.

P	3	5	10
r		-0.993803	-0.991142

(iv) Calculate the value of r for $P=3$, giving your answer correct to 6 decimal places. Use the table and your answer to suggest with reason, which of 3,5 or 10 is the most appropriate value of P.
The Healthy Society wants to recommend a daily calcium intake that would ensure an average of
1.8% increase in bone density.
(v) Using the value of P found in part (iv), calculate the values of a and b and use your answer to estimate the daily calcium intake that the Health Society should recommend. Comment on the reliability of the estimate obtained.
(vi) Give an interpretation, in the context of the question, of the meaning of the value of P.

ANNEX B

SRJC H2 Math JC2 Preliminary Examination Paper 2

QN	Topic Set	Answers
1	Sigma Notation and Method of Difference	(ii) $\tan (N+1) x-\tan x$ (iii) $\tan \left[\frac{(N+1) \pi}{3}\right]-\sqrt{3}$
2	Application of Integration	(i) $\frac{1}{4}-\frac{9}{4\left(n^{2}-1\right)^{2}}, \frac{1}{4}$ (ii)

8	Hypothesis Testing	(i) $\bar{x}=499.3, s^{2} \approx 7.45, p$-value $=0.06974$ (ii) $\mu_{0} \geq 490$
9	Normal Distribution	(i) 0.0135 (ii) 0.0781 (iii) Assumption: The amount of time spent by a randomly chosen student on mobile phones is independent of the amount of time spent by another randomly chosen student. (iv) $N=69$
10	Correlation \& Linear Regression	(i) The phrase 'random sample' means that every $50-$ year-old Singaporean woman has an equal probability of being included in the sample. (ii) $r=0.988$ (iii) (iv) $r=-0.995337$ (v) $a=3.24, b=-0.00310$ The recommended daily calcium intake is 988 mg . Since the r value is -0.995 is close to -1 , there is a strong negative linear correlation between $\ln (P-y)$ and x. Also since the value of $y=1.8$ is within the data range, thus, the estimate obtained is reliable. (vi) The value of P is the maximum percentage increase in bone density achievable as the daily calcium intake increases.

H2 Mathematics 2017 Prelim Exam Paper 2 Question
Answer all questions [100 marks].

1	(i) $\frac{\sin (A-B)}{\cos A \cos B}=\frac{\sin A \cos B-\cos A \sin B}{\cos A \cos B}=\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}=\tan A-\tan B$ (ii) $\begin{aligned} & \sum_{r=1}^{N} \frac{\sin x}{\cos (r+1) x \cos r x}=\frac{\sin (2 x-x)}{\cos 2 x \cos x}+\frac{\sin (3 x-2 x)}{\cos 3 x \cos 2 x}+\frac{\sin (4 x-3 x)}{\cos 4 x \cos 3 x}+\ldots+\frac{\sin ((N+1) x-N x)}{\cos (N+1) x \cos N x} \\ &=(\tan 2 x-\tan x) \\ &+(\tan 3 x-\tan 2 x) \\ &+(\tan 4 x-\tan 3 x) \\ & \vdots \\ &+(\tan (N-1) x-\tan (N-2) x \\ &+(\tan N x-\tan (N-1) x \\ &+(\tan (N+1) x-\tan N x \\ &= \tan (N+1) x-\tan x \end{aligned}$ (iii) $\text { When } x=\frac{\pi}{3}, \sum_{r=1}^{N} \frac{\sin x}{\cos (r+1) x \cos r x}=\sum_{r=1}^{N}\left(\frac{\sqrt{3}}{2 \cos \frac{r \pi}{3} \cos \frac{(r+1) \pi}{3}}\right)$ Thus, required sum $=\tan \left[(N+1)\left(\frac{\pi}{3}\right)\right]-\tan \left(\frac{\pi}{3}\right)=\tan \left[\frac{(N+1) \pi}{3}\right]-\sqrt{3}$
2	(i) $\begin{aligned} \int_{2}^{n} \frac{9 x}{\left(x^{2}-1\right)^{3}} \mathrm{~d} x & =\frac{9}{2} \int_{2}^{n} \frac{2 x}{\left(x^{2}-1\right)^{3}} \mathrm{~d} x \\ & =\frac{9}{2}\left[-\frac{1}{2}\left(x^{2}-1\right)^{-2}\right]_{2}^{n} \\ & =\frac{9}{2}\left[-\frac{1}{2\left(n^{2}-1\right)^{2}}+\frac{1}{18}\right] \\ & =\frac{1}{4}-\frac{9}{4\left(n^{2}-1\right)^{2}} \end{aligned}$

	$\begin{aligned} \lim _{n \rightarrow \infty}\left[\int_{2}^{n} \frac{9 x}{\left(x^{2}-1\right)^{3}} \mathrm{~d} x\right] & =\lim _{n \rightarrow \infty}\left[\frac{1}{4}-\frac{9}{4\left(n^{2}-1\right)^{2}}\right] \\ & =\frac{1}{4} \end{aligned}$ (ii) (iii) The equation of the transformed curve is $y=\frac{9 x}{\left(x^{2}-1\right)^{3}}-\frac{2}{3}$. $\text { Volume of revolution }=\pi \int_{2}^{5}\left(\frac{9 x}{\left(\left(x^{2}-1\right)^{3}\right.}-\frac{2}{3}\right)^{2} \mathrm{~d} x=3.385 \text { units }^{3} \text { (to } 3 \text { d.p.) }$
3	$\text { (a) (i) } \begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(\sin \theta-\frac{1}{3} \sin ^{3} \theta\right) \\ &=\cos \theta-\sin ^{2} \theta \cos \theta \\ &=\cos \theta\left(1-\sin ^{2} \theta\right) \\ &=\cos \theta\left(\cos ^{2} \theta\right)=\cos ^{3} \theta \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\sin x \cos ^{2} x \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=(-\sin x)(\cos x)^{2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(\cos x)^{3}}{3}+C \\ &=\frac{1}{3}\left(\cos x \cdot \cos ^{2} x\right)+C \\ &=\frac{1}{3}\left(\cos x \cdot\left(1-\sin ^{2} x\right)\right)+C \\ &=\frac{1}{3}\left(\cos x-\cos x \cdot \sin ^{2} x\right)+C \end{aligned}$

$y=\frac{1}{3}\left(\sin x-\frac{\sin ^{3} x}{3}\right)+C x+D$
When $x=0$ and $y=0, D=0$
When $x=0$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{3}+\frac{2}{\pi}, C=\frac{2}{\pi}$
$y=\frac{1}{3}\left(\sin x-\frac{\sin ^{3} x}{3}\right)+\frac{2}{\pi} x$
(b) $\quad v=x^{2} y$
$\frac{\mathrm{d} v}{\mathrm{~d} x}=2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ \qquad
$x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y+4 x^{2} y=0$
(3) $\times x$,

$$
\begin{align*}
& x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x y+4 x^{2} y(x)=0 \tag{4}\\
& \frac{\mathrm{~d} v}{\mathrm{~d} x}+4 x\left(x^{2} y\right)=0 \\
& \frac{\mathrm{~d} v}{\mathrm{~d} x}+4 v x=0 \\
& \frac{\mathrm{~d} v}{\mathrm{~d} x}=-4 v x \quad \text { (Shown) }
\end{align*}
$$

$\frac{\mathrm{d} v}{\mathrm{~d} x}=-4 v x$
$\int \frac{1}{v} \mathrm{~d} v=-4 \int x \mathrm{~d} x$
$\ln |v|=-2 x^{2}+c$
$v= \pm e^{-2 x^{2}+c}$
$v=A e^{-2 x^{2}}$, where $A= \pm e^{c}$
$x^{2} y=A e^{-2 x^{2}}$
Given that $y=\frac{1}{3}$ when $x=-3$,
$(-3)^{2}\left(\frac{1}{3}\right)=A \mathrm{e}^{-18}$
$A=3 e^{18}$

	$y=\frac{3 \mathrm{e}^{18-2 x^{2}}}{x^{2}}$
4	(i) $\quad l_{1}: \mathbf{r}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right), \lambda \in \square$
	$\overrightarrow{A B}=\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)-\left(\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right)=\left(\begin{array}{c} 1 \\ -1 \\ 2 \end{array}\right) ; \overrightarrow{A C}=\left(\begin{array}{c} 0 \\ 3 \\ -3 \end{array}\right)-\left(\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right)=\left(\begin{array}{c} 1 \\ 2 \\ -3 \end{array}\right) ; \overrightarrow{B C}=\left(\begin{array}{c} 0 \\ 3 \\ -3 \end{array}\right)-\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)=\left(\begin{array}{c} 0 \\ 3 \\ -5 \end{array}\right)$
	A normal to the plane is: $\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right) \times\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=\left(\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right)$
	$\mathbf{r} \cdot\left(\begin{array}{c} -1 \\ 5 \\ 3 \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ 5 \\ 3 \end{array}\right)=6$ Thus an equation for Π_{1} is $-x+5 y+3 z=6$. (shown)
	(ii) Let N be the point of intersection between the line and the plane. $\overrightarrow{O N}=\left(\begin{array}{c} 1+2 \lambda \\ 1 \\ \lambda \end{array}\right) \text { for some } \lambda \in \square$
	Since N lies on the plane, $\left(\begin{array}{c} 1+2 \lambda \\ 1 \\ \lambda \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ 5 \\ 3 \end{array}\right)=6 \Rightarrow \lambda=2$ Thus, coordinates of N are $(5,1,2)$.
	(iii) Let the foot of the perpendicular from P to the plane be denoted by F. $l_{P F}: \mathbf{r}=\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)+\mu\left(\begin{array}{c} -1 \\ 5 \\ 3 \end{array}\right), \mu \in \square$
	Since F lies on $l_{P F}, \overrightarrow{O F}=\left(\begin{array}{c}1-\mu \\ 1+5 \mu \\ 3 \mu\end{array}\right)$ for some $\mu \in$
	Since F lies on the plane, $\left(\begin{array}{c}1-\mu \\ 1+5 \mu \\ 3 \mu\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right)=6$
	Solving, $\mu=\frac{2}{35}$

	$\overrightarrow{O F}=\left(\begin{array}{c} 33 / 35 \\ 9 / 7 \\ 6 / 35 \end{array}\right)$ Let the reflection of point P in the mirror be P^{\prime}. By the midpoint theorem, $\overrightarrow{O P^{\prime}}=2 \overrightarrow{O F}-\overrightarrow{O P}=\left(\begin{array}{c}31 / 35 \\ 11 / 7 \\ 12 / 35\end{array}\right)$ A direction vector for the reflected line is $\left(\begin{array}{l}5 \\ 1 \\ 2\end{array}\right)-\left(\begin{array}{c}31 / 35 \\ 11 / 7 \\ 12 / 35\end{array}\right)=\left(\begin{array}{c}144 / 35 \\ -4 / 7 \\ 58 / 35\end{array}\right)=\frac{2}{35}\left(\begin{array}{c}72 \\ -10 \\ 29\end{array}\right)$ Thus, an equation of the reflected line is: $l_{1}^{\prime}: \mathbf{r}=\left(\begin{array}{l} 5 \\ 1 \\ 2 \end{array}\right)+\gamma\left(\begin{array}{c} 72 \\ -10 \\ 29 \end{array}\right), \gamma \in \square$ Since l_{2} is parallel to $\Pi_{1},\left(\begin{array}{c}2 \\ 0 \\ \alpha\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right)=0 \Rightarrow \alpha=\frac{2}{3}$ $\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)-\left(\begin{array}{l} 1 \\ \beta \\ 2 \end{array}\right)=\left(\begin{array}{c} -1 \\ -\beta \\ 0 \end{array}\right)$ Since the distance is $\frac{14}{\sqrt{35}},\left\|\frac{\left(\begin{array}{c}-1 \\ -\beta \\ 0\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right)}{\sqrt{35}}\right\|=\frac{14}{\sqrt{35}}$ $\|1-5 \beta\|=14$ Solving, $\beta=-\frac{13}{5}$ (rejected) or $\beta=3$
5	$\begin{align*} & \sum_{\text {all } x} \mathrm{P}(X=x)=1=0.2+a+b+0.45 \Rightarrow a+b=0.35 \ldots \tag{1}\\ & \begin{aligned} E(\|X-4\|)=1 \frac{1}{10} & \Rightarrow \sum_{\text {all } x}\|x-4\| \mathrm{P}(X=x)=\frac{11}{10} \\ & \Rightarrow 2(0.2)+a+0+0.45=\frac{11}{10} \\ & \Rightarrow a=0.25 \text { and } b=0.1 \end{aligned} \end{align*}$

	$\begin{aligned} \mathrm{P}(\text { required }) & =\mathrm{P}\left(X_{1}=2, X_{2}=2\right)+2\left[\mathrm{P}\left(X_{1}=2, X_{2}=3\right)+\mathrm{P}\left(X_{1}=2, X_{2}=4\right)\right] \\ & =0.2 \times 0.2+2[0.2 \times 0.25+0.2 \times 0.1] \\ & =0.18 \end{aligned}$
6	(i) Let X be the random variable "number of damaged mangoes out of 21 mangoes". $\begin{gathered} X \sim B(21,0.045) \\ \mathrm{P}(X \leq 3)=0.98673=0.987(3 \text { s.f. }) \end{gathered}$ (ii) Let Y be the random variable "number of boxes of mangoes out of 12 boxes which are of low standard". $Y \sim B(12,1-0.98673) \Rightarrow Y \sim B(12,0.013268)$ $\begin{aligned} \mathrm{P}(Y \geq 2) & =1-\mathrm{P}(Y \leq 1) \\ & =1-0.98936=0.01064=0.0106 \text { (3 s.f.) } \end{aligned}$ (iii) $\begin{aligned} \mathrm{P}(\text { required }) & =\mathrm{P}(X \leq 5 \mid \text { box is of low standard }) \\ & =\mathrm{P}(X \leq 5 \mid X>3) \\ & =\frac{\mathrm{P}(X \leq 5 \cap X>3)}{\mathrm{P}(X>3)} \\ & =\frac{\mathrm{P}(X=4)+\mathrm{P}(X=5)}{1-\mathrm{P}(Y \leq 3)} \\ & =\frac{0.011219+0.0017975}{1-0.98673} \\ & =0.981 \end{aligned}$
7	(a)(i) $\begin{aligned} \text { Required probability } & =\frac{7!\times{ }^{8} C_{5} \times 5!}{12!} \\ & =\frac{7}{99} \end{aligned}$ (a)(ii) $\begin{aligned} \text { Required probability } & =\frac{7!\times 4 \times 5!}{12!} \\ & =\frac{1}{198} \\ \text { Required probability } & =\frac{(10-1)!\times 2!}{(12-1)!} \\ & =\frac{1}{55} \end{aligned}$

	(b)(i) (b)(ii) Since $\mathrm{P}(A \mid B) \neq \mathrm{P}(A)$, therefore events A and B are not independent. Alternatively, Since $\mathrm{P}(A \cap B)=\frac{13}{50}$ and $\mathrm{P}(A) \times \mathrm{P}(B)=\frac{7}{10} \times \frac{2}{5}=\frac{7}{25} \neq \mathrm{P}(A \cap B)$, therefore events A and B are not independent. (c) Probability of winning the game $\begin{aligned} & =\frac{2}{9}+\frac{2}{9}\left(\frac{3}{9}\right)+\frac{2}{9}\left(\frac{3}{9}\right)^{2}+\ldots \\ & =\frac{2 / 9}{1-\frac{3}{9}} \\ & =\frac{1}{3} \end{aligned}$
8	(i) Let X be the random variable denoting volume of the randomly chosen iced coffee bottle in ml from Machine A. $\bar{x}=\frac{24965}{50}=499.3$ Unbiased estimate of population variance $s^{2}=\frac{1}{n-1} \sum(x-\bar{x})^{2}=\frac{50}{49}\left(\frac{365}{50}\right)=\frac{365}{49}=7.4489 \approx 7.45$ $\begin{aligned} & \mathrm{H}_{0}: \mu=500 \\ & \mathrm{H}_{1}: \mu \neq 500 \end{aligned}$ Two tailed Z test at 2% level of significance Under H_{0}, since the sample size of 50 is large, by Central Limit Theorem

	$\bar{X} \sim \mathrm{~N}\left(500, \frac{7.4489}{50}\right)$ approx. From GC, p-value $=0.06974>0.02$ Conclusion: Since the p-value is more than the level of significance, we do not reject H_{0} and conclude that there is insufficient evidence at 2% that the mean volume is not 500 ml . (ii) Let Y be the random variable denoting the volume of a randomly chosen iced coffee bottle in ml from Machine B. Unbiased estimate for population variance $=\frac{70}{69}\left(4^{2}\right)=16.232$ $\begin{aligned} & H_{0}: \mu=\mu_{0} \\ & H_{1}: \mu<\mu_{0} \end{aligned}$ One tailed Z test at 2% level of significance Under H_{0}, since the sample size of 70 is large, by Central Limit Theorem $\bar{Y} \sim \mathrm{~N}\left(\mu_{0}, \frac{16.232}{70}\right)$ approx. Value of test statistic, $z_{\text {test }}=\frac{489.1-\mu_{0}}{\sqrt{\frac{16.232}{70}}}$ For H_{0} to be rejected, p-value ≤ 0.02 $\begin{aligned} & \frac{489.1-\bar{\mu}_{0}}{\sqrt{\frac{16.232}{70}}} \leq-2.053748911 \\ & \mu_{0} \geq 490 \text { (to } 3 \text { s.f.) } \end{aligned}$
9	Let X denote the random variable representing the amount of time a randomly chosen junior college student spends on mobile phones each day. $\begin{aligned} & \therefore X \sim \mathrm{~N}\left(3.4, \sigma^{2}\right) \\ & \mathrm{P}(3<X<3.8)=0.341 \end{aligned}$ $\mathrm{P}\left(\frac{3-3.4}{\sigma}<Z<\frac{3.8-3.4}{\sigma}\right)=0.341$ $\mathrm{P}\left(\frac{-0.4}{\sigma}<Z<\frac{0.4}{\sigma}\right)=0.341$ $\Rightarrow \mathrm{P}\left(Z<\frac{-0.4}{\sigma}\right)=\frac{1-0.341}{2}=0.3295$ From GC, $\frac{-0.4}{\sigma}=-0.4412942379$ $\Rightarrow \sigma=0.90642=0.906(3 \mathrm{dp})$ (i) $\begin{aligned} \text { Probability required } & =(0.341)^{4} \\ & =0.0135(3 \mathrm{sf}) \end{aligned}$

	(ii) $\begin{aligned} & \text { Probability required }=\mathrm{P}\left(X_{1}+X_{2}+X_{3}<2 X_{4}\right) \\ &=\mathrm{P}\left(X_{1}+X_{2}+X_{3}-2 X_{4}<0\right) \\ & X_{1}+X_{2}+X_{3}-2 X_{4} \sim \mathrm{~N}\left(3.4 \times 3-2 \times 3.4,0.90642^{2} \times 3+2^{2} \times 0.90642^{2}\right) \\ & \text { i.e. } X_{1}+X_{2}+X_{3}-2 X_{4} \sim \mathrm{~N}(3.4,5.75118) \\ & \therefore \text { From GC, }\left(X_{1}+X_{2}+X_{3}-2 X_{4}<0\right)=0.0781(3 \mathrm{sf}) \end{aligned}$ (iii) Assumption: The amount of time spent by a randomly chosen student on mobile phones is independent of the amount of time spent by another randomly chosen student. (iv) $\bar{X} \sim \mathrm{~N}\left(3.4, \frac{0.90642^{2}}{50}\right)$ From GC, $\mathrm{P}(\bar{X}>3.5)=0.217663$ Since expected number of samples with mean time exceeding 3.5 hours $=15$, then $0.217663 \times N=15$ $\Rightarrow N=68.9 \approx 69$
10	(i) The phrase 'random sample' means that every 50-year-old Singaporean woman has an equal probability of being included in the sample. (ii) $\quad r=0.988$ (to 3 s.f.) Although the r-value $=0.988$ is close to 1 , the value is not 1 so there may be another model with $\|r\|$ closer to 1 . Hence a linear model may not be the best model for the relationship between x and y. (iv) Using the GC, when $P=3, r=-0.995337$ (to 6 d.p.) When $P=3,\|r\|$ is closest to 1 and thus, $P=3$ is the most appropriate value. (v) When $P=3$, using the GC, $a=3.2446=3.24$ (to 3 s.f.)

