H2 2017 Preliminary Exam Paper 1 Question Answer all questions [100 marks].

	The second se	
1	Without using a calculator, solve the inequality	
	$\frac{3x^2 + 7x + 1}{2x - 1} < 2x - 1.$	[4]
	x+3	
2	The function p is defined by $p: x \mapsto \frac{1-x^2}{1+x^2}, x \in \mapsto$.	
	(i) Find algebraically the range of p, showing your working clearly.	[3]
	(ii) Show that $p(x) = p(-x)$ for all $x \in \mapsto$	[1]
	It is given that $q(x) = p\left(\frac{1}{2}x - 4\right), x \in \mapsto$.	
	(iii) State a sequence of transformations that will transform the graph of p graph of q. Hence state the line of symmetry for the graph of q.[3]	on to the
3	The function f is defined by	
	$f: x \mapsto (x-k)^2$, $x < k$ where $k > 5$.	
	(i) Find $f^{-1}(x)$ and state the domain of f^{-1} .	[3]
	The diagram above shows the curve with equation $y = g(x)$, where $-2 \le x \le 2$.	The curve
	crosses the x-axis at $x = -2$, $x = -1$, $x = 1$ and $x = 2$, and has turning	points at
	(-1.5,-1), $(0,4)$ and $(1.5,-1)$.	
	(ii) Explain why the composite function fg exists. (iii) Find in terms of k	[2]
	(a) the value of fg (-1) (b) the range of fg.	[1] [2]
4	It is given that $z = -1 - i\sqrt{3}$.	
	(i) Given that $\frac{(iz)^n}{z^2}$ is purely imaginary, find the smallest positive integer <i>n</i> .	[4]
	The complex number w is such that $ wz = 4$ and $\arg\left(\frac{w^*}{z^2}\right) = -\frac{5\pi}{6}$.	
	(ii) Find the value of $ w $ and the exact value of $\arg(w)$ in terms of π .	[3]

(ii) Given that a = 423, find the greatest possible integral value of n and the corresponding length of the shortest plank. [4] 7 (i) Express $\frac{1}{r^2-1}$ in partial fractions, and deduce that $\frac{1}{r(r^2-1)} = \frac{1}{2} \left[\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right].$ [2] (ii) Hence, find the sum, S_n , of the first *n* terms of the series $\frac{1}{2\times3} + \frac{1}{3\times8} + \frac{1}{4\times15} + \dots$ [4] (iii) Explain why the series converges, and write down the value of the sum to infinity. [2] (iv) Find the smallest value of *n* for which S_n is smaller than the sum to infinity by less than 0.0025. [3] 8 A drug is administered by an intravenous drip. The drug concentration, x, in the blood is measured as a fraction of its maximum level. The drug concentration after t hours is modelled by the differential equation $\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(1+x-2x^2\right),\,$ where $0 \le x < 1$, and k is a positive constant. Initially, x = 0. (i) Find an expression for x in terms of k and t. [5] After one hour, the drug concentration reaches 75% of its maximum level. (ii) Show that the exact value of k is $\frac{1}{3}\ln 10$, and find the time taken for the drug concentration to reach 90% of its maximum level. [3] A second model is proposed with the following differential equation $\frac{\mathrm{d}x}{\mathrm{d}t} = \sin^2\left(\frac{1}{2}t\right),$ where x is the drug concentration, measured as a fraction of its maximum level, in the blood after t hours. Initially, x = 0. (iii) Find an expression for x in terms of t. [3] (iv) Explain, with the aid of a sketch, why this proposed second model is inappropriate. [2]

The piece of plexiglass is represented by a plane p_1 with equation x + 2y - 3z = 0.

[2]

[2]

Referred to the origin, a laser beam *ABC* is fired from the point *A* with coordinates (1, 2, 4), and is reflected at the point *B* on p_1 to form a reflected ray *BC* as shown in the diagram above. It is given that *M* is the midpoint of *AA*', where the point *A*' has coordinates (2, 4, 1).

(i) Show that AA' is perpendicular to p_1 . [2]

(ii) By finding the coordinates of M, show that M lies in p_1 .

The vector equation of the line *AB* is $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \lambda \in \mapsto$.

(iii) Find the coordinates of *B*.

The acute angle between the incident ray AB and the reflected ray BC is θ (see diagram).

(iv) Given that A'BC is a straight line, find the value of θ . Hence, or otherwise, write down the acute angle between the line AB and p_1 . [3]

To reduce the effect of laser illumination on the pilot sitting in the cockpit at point A', a scientist proposes to include a protective film, represented by a plane p_2 , such that the perpendicular distance from p_1 to p_2 is 0.5.

(v) State the possible cartesian equations of p_2 . [2]

To further investigate the effects of a laser beam on plexiglass, separate laser beams are fired such that the incident ray AD is now a variable line which is also fired from the same point A and is reflected at the variable point D on p_1 to form a reflected ray DE.

(vi) Given that AD is perpendicular to the previous ray AB, find the minimum possible distance between B and D. [2]

(vii) Find the acute inclination of the reflected ray DE to the *z*-axis when DE is inclined at 60° to the *x*-axis and 45° to the *y*-axis. [3]

– End Of Paper –

ANNEX B

TPJC H2 Math JC2 Preliminary Examination Paper 1

QN	Topic Set	Answers
1	Equations and Inequalities	<i>x</i> < -3
2	Graphs and Transformation	(i) $-1 < y \le 1$ (iii) Translation by 4 units in the positive <i>x</i> -direction, followed by -Stretch of factor 2 parallel to the <i>x</i> -axis. <u>Alternative Answers:</u> Stretch of factor 2 parallel to the <i>x</i> -axis, followed by Translation by 8 units in the positive <i>x</i> -direction
3	Functions	$ \begin{array}{l} \text{f}^{-1}(x) = -\sqrt{x} + k \\ \text{(i)} \\ D_{f^{-1}} = (0, \infty) \\ \text{(ii)} \\ R_g = [-1, 4] \\ D_f = (-\infty, k) \\ \text{Since } k > 5, \\ R_g \subseteq D_f. \\ \text{Thus fg exists.} \\ \text{(iii)}(a) \\ fg(-1) = f(0) = k^2 \\ R_{fg} = \left[(4-k)^2, \\ (-1-k)^2 \right] \\ \text{(b)} \\ = \left[(4-k)^2, \\ (1+k)^2 \right] \end{array} $
4	Complex numbers	(i) \therefore smallest positive integer $n = 5$. (ii) $ w = 2$, $\arg(w) = \frac{13\pi}{6}$ (iii) <u>Hence Method:</u> $\arg(z - w) = -\left[\pi - \frac{\pi}{6} - \frac{\pi}{12}\right]$ $= -\left[\frac{5\pi}{6} - \left(\frac{1}{2}\left\{\pi - \frac{5\pi}{6}\right\}\right)\right]$ $= -\frac{3\pi}{4}$ (exact) <u>Otherwise Method:</u> $z - w = \left(-1 - \sqrt{3}\right) + \left(-1 - \sqrt{3}\right)i$ $\arg(z - w) = -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$

5	Differentiation &	$V = \frac{128\pi}{128\pi}$
	Applications	9
		$\frac{\mathrm{d}V}{\mathrm{d}t} = 0.12\pi \mathrm{cm}^3 \mathrm{s}^{-1}$
6	AP and GP	(a)(i) d = 15
		(ii) $S_{20} = 4150 \text{ cm}$
		(b)(i) $k = 9$
		(ii) $n = 6$, Length = 235 cm
7	Sigma Notation and Method of Difference	$(ii)\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$
		(iii) As $n \to \infty$, $\frac{1}{2(n+1)(n+2)} \to 0$.
		$\frac{1}{4} - \frac{1}{2(n+1)(n+2)} \rightarrow \frac{1}{4}$
		Sum to infinity $=\frac{1}{4}$
		(iv)13
8	Differential Equations	$e^{3kt} - 1$
		(i) $x = \frac{1}{e^{3kt} + 2}$
		(ii)1.45 hours
		(iii) $r = \frac{1}{t} = \frac{1}{sin} t$
		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
		(iv)
		o i
		The graph shows that as time increases, the drug
		concentration still continue to increase / the curve shows
		a strictly increasing function beyond the maximum level
		of drug concentration.
9	Application of	(i) 64π
	Integration	(1v) The reflected light from the bulb produces a
		norizontal beam of light/ produces a beam of line
		paraner 10 ג-מגוג.

		(v) $y^2 = 4(x-1)$
10	Vectors	$(ii)\left(\frac{3}{2}, 3, \frac{5}{2}\right)$
		(iii) (0, 3, 2)
		$(iv) \theta = 80.4^{\circ}, 49.8^{\circ}$
		(v) $x + 2y - 3z = -\frac{\sqrt{14}}{2}$ or $x + 2y - 3z = \frac{\sqrt{14}}{2}$
		(vi) $BD = \frac{\sqrt{6}}{\cos 49.8^{\circ}} = 3.79$ units
		(vii) 60°

1	$\frac{3x^2 + 7x + 1}{2} < 2x - 1$
	x+3
	$\frac{3x^2 + 7x + 1}{x + 3} - (2x - 1) < 0$
	$\frac{3x^2 + 7x + 1 - (2x - 1)(x + 3)}{3x^2 + 7x + 1 - (2x - 1)(x + 3)} < 0$
	x+3
	$\frac{x^2 + 2x + 4}{x + 3} < 0$
	$(x+1)^2 + 3$
	$\frac{(x+y)+y}{x+3} < 0$
	Since $(x+1)^2 + 3 > 0$ for all real x, the inequality reduces to:
	x + 3 < 0
	$\Rightarrow x < -3$
2	Let $y = \frac{1 - x^2}{1 + x^2}, x \in \Box$:
	$y(1+x^2) = 1-x^2$
	$(y+1)x^2 + (y-1) = 0$
	Discriminant ≥ 0 : $0^2 - 4(y+1)(y-1) \ge 0$
	$-4(y^2-1) \ge 0$
	$y^2 - 1 \le 0$
	$v^2 < 1$
	$-1 \le y \le 1$
	Since $y = -1$ is an asymptote, $-1 < y \le 1$
	Alternative Method:
	Let $y = \frac{1 - x^2}{1 + x^2}, x \in \Box$:
	$v(1+x^2) = 1-x^2$
	$(y+1)x^2 + (y-1) = 0$
	$x^2 = \frac{1-y}{y+1}, y \neq -1$
	1
	Since $x^2 \ge 0 \ \forall x \in \Box$, $\frac{1-y}{y+1} \ge 0$
	+ _ +
	-1 1 x
	$\therefore -1 < y \le 1$

2 (ii)	$p(-x) = \frac{1 - (-x)^2}{x}$
	$1+(-x)^2$
	$=\frac{1-x^2}{1+x^2}$
	$= p(x) \text{for all } x \in \Box (\text{shown})$
2(iii)	Graph of $q(x) = p\left(\frac{1}{2}x - 4\right)$, $x \in \Box$ is obtained from the graph of $p(x)$ by:
	- Translation by 4 units in the positive <i>x</i> -direction, followed by
	Stretch of factor 2 parallel to the <i>x</i> -axis.
3 (i)	Let $y = (x-k)^2$
	$x - k = \pm \sqrt{y}$
	$x = -\sqrt{y} + k \qquad (\because x < k)$
	$f^{-1}(x) = -\sqrt{x} + k$
	$D_{f^{-l}} = (0, \ \infty)$
3(ii)	$R_{g} = [-1, 4]$
	$\mathbf{D}_{\mathbf{f}} = \left(-\infty, k\right)$
a (!!)	Since $k > 5$, $R_g \subseteq D_f$. Thus fg exists.
3(m)	$fg(-1) = f(0) = k^2$
	Using $R_g = [-1, 4]$, and the fact that f is a strictly decreasing function in the given domain,
	$\mathbf{R}_{\rm fg} = \left\lfloor (4-k)^2, \ (-1-k)^2 \right\rfloor$
	$= \left[\left(4-k\right)^2, \ \left(1+k\right)^2 \right]$
4(i)	$ z = \sqrt{1^2 + \sqrt{3}^2} = 2$ arg $z = -\left[\pi - \tan^{-1}\left(\frac{\sqrt{3}}{1}\right)\right] = -\frac{2\pi}{3}$
	$z = 2e^{i\left(-\frac{2\pi}{3}\right)}$
	$\frac{(\mathrm{i}z)^n}{2} = \frac{\mathrm{e}^{\mathrm{i}\left(\frac{2\pi}{2}\right)} 2^n \mathrm{e}^{\mathrm{i}\left(\frac{2\pi\pi}{3}\right)}}{(4\pi)}$
	$2^2 e^{i\left(\frac{\pi}{3}\right)}$
	$=2^{n-2}e^{i\left(\frac{n\pi}{2}-\frac{2n\pi}{3}+\frac{4\pi}{3}\right)}$
	$=2^{n-2}\mathrm{e}^{\mathrm{i}\left(\frac{(8-n)\pi}{6}\right)}$
	$\frac{(iz)^n}{z^2}$ is purely imaginary: $\cos\left(\frac{(8-n)\pi}{6}\right) = 0$
	$\frac{(8-n)\pi}{6} = (2k+1)\frac{\pi}{2}, \ k \in \Box$
	$n=5-6k, k\in \Box$
	<u>Note:</u> You may also have alternative form: (8 - w) = -
	$\frac{(6-n)\pi}{6} = (2k-1)\frac{\pi}{2}, \ k \in \Box$
	$n=11-6k, k\in \Box$

L

	Otherwise Metho	<u>d:</u>	,	,	
	$z - w = \left(-1 - \sqrt{3}\right) - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} - \frac{1}{$	$+\left(-1-\sqrt{3}\right)i$ a	$\arg(z-w) = -\left(z\right)$	$\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$	
5	Using similar trian	gles: $\frac{r}{4} = \frac{6-h}{6}$			
	$r = \frac{2}{3}(6-h)$				
	$V = \pi r^2 h$				
	$=\pi\left(\frac{2}{3}(6-h)\right)^2$	h			
	$=\frac{4\pi}{9}(36-12h+$	h^2) h			
	$=\frac{4\pi}{9}(36h-12h^2)$	$(shown)^2 + h^3$ (shown)			
	For maximum V,	$\frac{\mathrm{d}V}{\mathrm{d}h} = 0:$			
	$\frac{4\pi}{9}(36-24h+3h^2)$)=0			
	Using GC: $h = 2$ of Method 1 (1st der	or $h = 6$ (Rejected vivative sign test)	as $h = 6$ is heig	tht of cone)	
		ivative sign test)			1
	h dV	2-	2	2+	
	Sign of $\frac{dv}{dh}$	+	0	-	
	slope				
	Thus, maximum v	olume $V = \frac{128\pi}{9}$ v	when $h = 2$ cm.		
	Method 2 (2nd de	erivative test)			
	$\frac{\mathrm{d}^2 V}{\mathrm{d}h^2} = \frac{4\pi}{9} \left(-24 + 6\right)$	(h)			
	When $h = 2$: $\frac{d^2 V}{dh^2}$	$\frac{7}{2} = -\frac{16\pi}{3} < 0$			
	Thus, maximum v	olume $V = \frac{128\pi}{9}$.			
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$	-			
	$=\frac{4\pi}{36-240}$	$(1.5) + 3(1.5)^2$ (0.0	4)		
	9^{1} = 0.12 π cm ³ s	s ⁻¹	(Accept: 0.37	$77 \text{ cm}^3 \text{s}^{-1}$	
6(a)(i)	$u_{20} = a + (n-1)d$,	(1000pt. 0.57	, en s)	
	350 = 65 + 19d				
	<i>d</i> =15				
6(a)(ii)	$S_{20} = \frac{20}{2}(65 + 350)$)			
	= 4150 cm	(Accept: 41.5	5 m)		

6(b)(i)	$S_{\infty} = \frac{a}{1 - \frac{8}{0}}$
	=9a
	\therefore integer $k = 9$.
6 (i)	Method 1:
	Number of ways $= \binom{14}{3} \times 3! = 2184$
	Mathad 2
	Number of ways $= 14 \times 13 \times 12 = 2184$
6(b)(ii)	$S \le 2000$
	$\frac{423\left[1 - \left(\frac{8}{9}\right)^{n}\right]}{1 - \frac{8}{2}} \le 2000$
	¹ /9
	$1 - \left(\frac{8}{9}\right)^n \le \frac{2000}{3807}$
	$\left(\frac{8}{9}\right)^n \ge \frac{1807}{3807}$
	$n \le \frac{\ln\left(\frac{1807}{3807}\right)}{\ln\left(\frac{8}{9}\right)}$
	<i>n</i> ≤6.3267
	: Largest integer $n = 6$.
	$(20)^{6-1}$
	Length of shortest plank is $u_6 = 423(-9)$
	= 235 cm (3 s.f.)
7(i)	$\frac{1}{1} = \frac{1}{1} - \frac{1}{1}$
	$r^2 - 1 2(r-1) 2(r+1)$
	$\frac{1}{1} = \frac{1}{1} \left[\frac{1}{1} - \frac{1}{1} \right]$
	$r(r^2-1) r \lfloor 2(r-1) 2(r+1) \rfloor$
	$= \frac{1}{2} \left[\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right]$
7 (ii)	$S_n = \frac{1}{2 \times 3} + \frac{1}{3 \times 8} + \frac{1}{4 \times 15} + \dots + (n \text{th term})$

$$7 \text{ (ii)} \qquad = \sum_{r=2}^{\infty} \frac{1}{2r(r^2-1)} = \frac{1}{r(r-1)} \frac{1}{r(r+1)} = \frac{1}{2} \sum_{r=2}^{\infty} \frac{1}{2r(r-1)} - \frac{1}{r(r+1)} = \frac{1}{2} \left[\frac{1}{2x_1} - \frac{1}{2x_3} + \frac{1}{3x_2} - \frac{1}{3x_4} + \frac{1}{4x_3} - \frac{1}{4x_5} - \frac{1}{2x_5} - \frac{1}{2x_5}$$

8(i) Method 1: Using Partial Fractions

$$\frac{1}{1+x-2x^{2}} \frac{dx}{dt} = k$$

$$\int \frac{1}{1+x-2x^{2}} \frac{1}{dx} = \int k \, dt$$

$$\frac{2}{3} \int \frac{1}{2x+1} \, dx - \frac{1}{3} \int \frac{1}{x-1} \, dx = \int k \, dt$$

$$\frac{1}{1+x-2x^{2}} = \frac{1}{(1-x)(1+2x)}$$

$$= \frac{2/3}{2x+1} - \frac{1/3}{x-1}$$

$$\frac{1}{3} \ln |2x+1| - \frac{1}{3} \ln |x-1| = kt + C$$

$$\frac{1}{3} \ln |\frac{2x+1}{x-1}| = kt + C$$

$$\frac{2}{1+1} = Ae^{xy}, A = \pm e^{xC}$$

$$x = \frac{Ae^{xy} + 1}{Ae^{xy} - 2}$$
When $t = 0, x = 0$: $0 = \frac{A+1}{A-2} \Rightarrow A = -1$

$$\therefore x = \frac{e^{3u} - 1}{e^{3u} + 2}$$
Method 2: Completing the square

$$\frac{1}{1+x-2x^{2}} \frac{dx}{dt} = k$$

$$\int \frac{1}{(-2(x-1/4)^{2})^{2}} \frac{dx}{dt} = \int k \, dt$$

$$\int \frac{1}{(2(3/4))} \ln \left| \frac{3/4 + x - 1/4}{3/4 - (x-1/4)} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{1/2 + x}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{3/4 + x - 1/4}{3/4} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{1/2 + x}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{3/4 + x - 1/4}{3/4 - (x-1/4)} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{1/2 + x}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{1/2 + x}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{1/2 + x}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{1/2 + x}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \left| \frac{2x+1}{1 - x} \right| = kt + C$$

$$\frac{1}{3} \ln \frac{2x+1}{1 - x} \right| = kt + C$$

	When $t = 0$, $x = 0$: $0 = \frac{2A - 1}{2(A + 1)} \Rightarrow A = \frac{1}{2}$
	$\therefore x = \frac{e^{3kt} - 1}{e^{3kt} + 2}$
8 (ii)	When $t = 1$, $x = \frac{3}{4}$: $\therefore \frac{3}{4} = \frac{e^{3k} - 1}{e^{3k} + 2} \Longrightarrow e^{3k} = 10$
	$\Rightarrow k = \frac{1}{3} \ln 10 \text{ (shown)}$
	$\therefore x = \frac{10^t - 1}{10^t + 2}$
	When $x = \frac{9}{10}$: $\therefore \frac{9}{10} = \frac{10^t - 1}{10^t + 2} \Rightarrow 10^t = 28$
	$\Rightarrow t = \frac{\ln 28}{10}$
	$\ln 10$ = 1.45 hours (3 s.f.)
	Also Accept: 86.8 mins (3 s.f.)
8 (iii)	$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin^2\left(\frac{1}{2}t\right)$
	$=\frac{1}{2}-\frac{1}{2}\cos t$
	$x = \int \frac{1}{2} - \frac{1}{2} \cos t \mathrm{d}t$
	$=\frac{1}{2}t - \frac{1}{2}\sin t + C$
	When $t = 0$, $x = 0$: $C = 0$
	$\therefore x = \frac{1}{2}t - \frac{1}{2}\sin t$
8(iv)	x
	•
	O t t
	The graph shows that as time increases, the drug concentration still continue to increase /
	the curve shows a strictly increasing function beyond the maximum level of drug concentration.
9(i)	$y^2 = (4t)^2 = 16t^2$
	$=8(2t^{2})$
	=8x (shown)

	Volume = $\pi \int_{-4}^{4} 8x dx$
	\int_{0}^{0}
	$=\pi \lfloor 4x^2 \rfloor_0^2$
0 (;;)	$= 64\pi$
9(11)	$\frac{dx}{dt} = 4t, \frac{dy}{dt} = 4$
	dy 1
	$\frac{d}{dx} = \frac{1}{t}$
	Gradient of tangent $TS = \tan \theta$
	$\therefore \tan \theta = \frac{1}{t}$
	$\cot\theta = t$ (shown
9 (iii)	Gradient of line $QP = \frac{4t-0}{2t^2-2}$
	2t 2
	$=\frac{2t}{t^2-1}$
	$\frac{2}{\tan \theta}$
	$=\frac{1}{1/2} \frac{1}{1/2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$
	$/ \tan^2 \theta$
	$=\frac{2 \tan \theta}{1-\tan^2 \theta}$
	$= \tan 2\theta$
	$\tan\phi = \tan 2\theta \Longrightarrow \phi = 2\theta (\text{shown})$
	$\angle QPR = 180^{\circ} - \phi$ (interior angles)
	$=180^{\circ}-2\theta$ (by earlier results)
	$(TPO + (180^{\circ} - 2\theta) + \theta - 180^{\circ})$
	$\therefore /TPO = \theta \qquad \text{(shown)}$
9 (iv)	The reflected light from the bulb produces a horizontal beam of light/ produces a beam of
	line parallel to x-axis
9 (v)	Midpoint $M = \left(\frac{2+2t^2}{2}, \frac{4t+0}{2}\right)$
	$=(1+t^2, 2t)$
	$\int x = 1 + t^2$
	$\begin{cases} y = 2t \implies t = \frac{y}{2} \end{cases}$
	Locus of midpoint <i>M</i> is:
	$x = 1 + \frac{y^2}{4}$
	$y^2 = 4(x-1)$

10(i)	$\overrightarrow{AA'} = \begin{pmatrix} 2-1\\4-2\\1-4 \end{pmatrix} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix}$	
	Since $\overrightarrow{AA'} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = n_1,$	
	$\overrightarrow{AA'}$ is parallel to the normal of p_1 ,	
	and thus $\overrightarrow{AA'}$ is perpendicular to p_1 .	
	Altownotive Method.	
	$\frac{\text{Alternative Method:}}{(1,2)}$	
	Since $\overline{A'A} = \begin{pmatrix} 1-2\\ 2-4\\ 4-1 \end{pmatrix} = -\begin{pmatrix} 1\\ 2\\ -3 \end{pmatrix} = -n_1,$	
	$\overrightarrow{A'A}$ is parallel to the normal of p_1 ,	
	and thus $\overrightarrow{A'A}$ is perpendicular to p_1	
10 (ii)	Since <i>M</i> is the midpoint of <i>A</i> and <i>A</i> ':	
	$\overrightarrow{OM} = \frac{1}{2} \begin{bmatrix} 2\\4\\1 \end{bmatrix} + \begin{pmatrix} 1\\2\\4 \end{bmatrix} = \begin{pmatrix} 3/2\\3\\5/2 \end{bmatrix}$	
	Coordinates of <i>M</i> are $\left(\frac{3}{2}, 3, \frac{5}{2}\right)$.	o <u>te:</u> Jestion asks for
	Since $\frac{3}{2} + 2(3) - 3\left(\frac{5}{2}\right) = -6 + 6 = 0$,	ordinates form.
	<i>M</i> lies in p_1 . (shown)	
10 (iii)	$\overrightarrow{OB} = \begin{pmatrix} 1+\lambda \\ 2-\lambda \\ 4+2\lambda \end{pmatrix} \text{ for some } \lambda \in \Box .$	
	Since <i>B</i> lies on p_1 , $(1+\lambda)+2(2-\lambda)-3(4+2)$	$(2\lambda) = 0$
	$-7 - 7\lambda = 0$	
	$\overline{OB} = \begin{pmatrix} 0\\ 3\\ 2 \end{pmatrix}$ Coordinates of <i>B</i> are (0, 3, 2).	
L		Likewise for part (vi).

10 (iv)	$\theta = \cos^{-1} \left \frac{\overrightarrow{BA} \overrightarrow{A'B}}{ \overrightarrow{BA} \overrightarrow{A'B} } \right $ $= \cos^{-1} \left \frac{\begin{pmatrix} 1 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ 2 \\ -1 \\ -1 $
	Hence, acute angle between the line AB and p_1
	$=\frac{180^{\circ} - 80.4^{\circ}}{2}$ = 49.8° (1 d.p.)
10 (v)	Possible cartesian equations of p_2 :
	$x+2y-3z = -\frac{\sqrt{14}}{2}$ or $x+2y-3z = \frac{\sqrt{14}}{2}$
10 (vi)	As incident ray AD varies, D is nearest to origin when OD is the shortest. Note that p_1
	contains the origin. $ \langle 1 \rangle $
	$AB = \begin{vmatrix} -1 \\ 1 \\ -2 \end{vmatrix} = \sqrt{6}$
	$\cos 49.8^\circ = \frac{\sqrt{6}}{BD}$
	$\Rightarrow BD = \frac{\sqrt{6}}{\cos 49.8^{\circ}} = 3.79 \text{ units} (3 \text{ s.f.})$
10 (vii)	Let γ be the required angle of inclination:
	$\cos^2 60^\circ + \cos^2 45^\circ + \cos^2 \gamma = 1$
	$\frac{1}{4} + \frac{1}{2} + \cos^2 \gamma = 1$
	$\cos \gamma = \pm \frac{1}{2}$
	$\therefore \gamma = 60^{\circ}$ (since γ is acute)

End of Paper

H2 2017 Preliminary Exam Paper 2 Question Section A: Pure Matheatics [40 marks].

1	The cubic equation $az^3 - 31z^2 + 212z + b = 0$, where <i>a</i> and <i>b</i> are real numbers, has a co	mplex
	root $z=1-3i$.	
	(i) Explain why the equation must have a real root.	[2]
	(ii) Find the values of a and b and the real root, showing your working clearly.	[3]
2	Relative to the origin O , the points A , B and C have position vectors \mathbf{a} , $\mathbf{a} + \mathbf{c}$	and c
	respectively. The point X is on AC produced such that $AC:CX$ is 2:3 and the point	nt Y is
	such that AXYB is a parallelogram.	
	(i) The lines AY and BX intersect at the point N. Show that $\overrightarrow{ON} = \frac{1}{4} (\mathbf{7c} - \mathbf{a})$.	[3]
	(ii)Given that the area of triangle <i>OAB</i> is 4 square units, find the area of triangle <i>OAN</i> .	[4]
	$ \overline{AN} \overline{AN} $	
	(iii)Give a geometrical interpretation of $ OA \times \frac{ OA }{ AN }$. Use the results from part (ii) to sho	w that
	$\left \overrightarrow{OA} \times \overrightarrow{AN} \right = \underline{56}$	[3]
	$\left \frac{\partial N}{\partial N} \right = \left 7\mathbf{c} - 5\mathbf{a} \right $	[5]
3	(a) Find the series expansion of $e^{2x} \ln(1+3x)$, where $-\frac{1}{2} < x \le \frac{1}{2}$, in ascending powers	s of <i>x</i> ,
	up to and including the term in x^2 . [3]	
	(b) In the triangle <i>PQR</i> as shown in the diagram below, <i>PR</i> = 1, angle <i>QPR</i> = $\frac{3\pi}{4}$ radian	ns and
	angle $PRQ = 2\theta$ radians.	
	1	
	(i) Show that $QR = \frac{1}{\cos 2\theta - \sin 2\theta}$. [4]
	(ii) Given that θ is sufficiently small angle, show that $OR \approx 1 + a\theta + b\theta^2$, for cor	istants
	a and b to be determined.	[4]
4	(a) Find $\int e^x \sin x dx$.	[3]
	в	

6	A geol area co	ogist splits rontain fossils	ocks to look	for fossils. C	On average 7%	% of the rock	s selected fro	m a particular
	The geol	logist selects	a random sa	mple of 20 r	ocks from thi	s area.		
	(i)	Find the pro-	obability tha	t at least thre	e of the rocks	s contain foss	ils.	[2]
	A rand	om comple o	f n rocks is s	alacted from	this area			
		The geolog	n nocks is s	have a proh	ability of 0.8	or graatar o	f finding foo	sile in at least
	three o	f these rocks	Find the lea	ast possible v	value of <i>n</i> .	of greater of	i munig ios	[3]
	In early winged this are sample	y 2017, geol l serpent. On ea is <i>p</i> . It is of 10 rocks	ogists found average, the known that t is 3.	the fossils of proportion of he modal nu	of <i>zilantophis</i> of rocks that c umber of foss	<i>schuberti</i> , a contain fossils ils of <i>zilanto</i>	new discove s of <i>zilantoph</i> phis schubert	red species of <i>is schuberti</i> in <i>ti</i> in a random
	(iii)	Use this inf	formation to	find exactly	the range of v	values that p	can take.	[4]
7	A pilo altitude	t records the es of h metro	e take-off dis es. The data	stance, S mare shown in	etres, for his the table belo	private airci ow.	raft on runwa	ays at various
	h	0	300	600	900	1200	1500	1800
	S	635	690	750	840	950	1080	1250
	(i) 2 cm to <i>x</i> -axis.	Plot a scatt prepresent a	er diagram o take-off dist	n graph pape cance of 100	er for these va metres on the	llues, labellin e y-axis and a	ng the axes, us an appropriat	sing a scale of e scale for the [2]
	It is the	ought that the	e take-off dis	tance S can	be modelled	by one of the	e formulae	
			S = c	ah+b or	S = ch	$^{2}+d$,		
	where	<i>a</i> , <i>b</i> , <i>c</i> and <i>d</i>	are constants	5.				
	(ii) betwee	Find, corre	ct to 4 decim	al places, the	e value of the	product mor	nent correlati	on coefficient
		(a)	h and S ,					
		(b)	h^2 and S.					[2]
	(iii) the bet	Use your a ter model.	nswers to pa	rts (i) and (i	i) to explain	which of $S =$	=ah+b or S	$S = ch^2 + d$ is [2]
	(iv) (iii).	Find the eq	uation of the	least-square	regression lin	ne for the mo	del you have	chosen in part [1]
	(v) 2200	Use the eq metres. Com	uation of you ment on the	r regression reliability of	line to estimat	ate the take-one when $h = 2$	off distance for 2200.	or altitude of [2]
8	A man conside of raw	ufacturing p ered to be a b material.	lant processe oulk order wl	es raw mater nen a worker	rial for a support of the support of	plier. An ord to process mo	er placed with ore than 300 k	th the plant is (kilograms)
	Albert Y kg c distribu	uses a machi of raw mater utions N(29	ine to process rial on a wo $(6, 8^2)$ and	s X kg of raw rking day. X $(290, 12^2)$	w material and X and Y are i) respectively	Bob uses a s independent	eparate mach random varia	tine to process ables with the
		(i) Find rande	the probabil omly selected	ity that Albe 1 working da	ert processes ly.	more than 30	00 kg of raw	material on a [2]

3

	((ii)	Find the probability that exactly four working da material.	, over a period on a period of	of 15 independ lbert processes	ent working days, more than 300 k	there are ag of raw [2]
	(i	iii)	Find the probability that working days exceeds to working day.	the total amount the amount the total amount	nt of raw mater t of raw mater	ial Bob processes ial Albert processe	over two es on one [4]
	The pla the orde	nt rec er.	eives a bulk order and All	bert wants to hav	ve a probability	y of at least 0.95 o	f meeting
	(i	iv)	This can be done by characteristic constant of the least value of μ	anging the value ne machine, but t <i>l</i> .	e of μ , the methe standard de	ean amount of raw	material nchanged. [3]
9	The tow mass of a recycl rubbish The ma dustbin	vn co rubb ling in in do ss of s is se	uncil is investigating the ish in domestic dustbins want nitiative and wishes to det omestic dustbins. rubbish in a domestic dust elected and the results are s	mass of rubbish as 20.0 kg per ho ermine whether bin is denoted by summarised as fo	in domestic d puschold per we there has been y X kg. A rand ollows.	ustbins. In 2016, t eek. The town cour a reduction in the dom sample of 50	he mean acil starts mass of domestic
			n = 50	$\sum x = 924.5$	$\sum x^{2}$	$^{2} = 18249.2$	
						1021712	
		(i)	Explain what is meant in	this context by	the term 'a ran	dom sample'.	[2]
	((ii)	Explain why the town co anything about the distri	uncil is able to ca bution of the ma	arry out a hypo ss of rubbish ii	thesis test without 1 domestic dustbin	knowing s. [2]
	(i	iii)	Find the unbiased estimatest at the 1% level of sig	ates of the population of the population of the second sec	ation mean and e town council	l variance and carr	y out the [6]
	(i	iv)	Use your results in part (the test would be that the	(iii) to find the ra null hypothesis	ange of values is rejected at th	of <i>n</i> for which the ne 1% level of sign	result of ificance. [3]
10	The nu	imbe	r of employees of a sta	tutory board, c	classified by	department and	years of
	workin	g exp	perience, is shown below	ν.			
				5 years or	5 to 10	10 years or	Total
				less	years	more	
		Hui Dep	nan Resource partment	20	50	30	100
		Leg	al Department	15	60	45	120
		Fina	ance Department	25	30	45	100
		Tot	al	60	140	120	320
	The M particip each de	lanag pate i eparti	ing Director of the sta n an overseas conferenc ment to participate in the	atutory board e. The Managin e conference.	wishes to se ng Director se	lect three emplo	oyees to vee from

(i)	Find the probability that two of the selected employees have working experience '10 years or more' and the remaining one has	years of years of
	working experience '5 years or less'.	[3]
(ii)	Given that exactly one of the selected employees has years of experience '5 years or less', find the probability that one of the employees is from the Legal Department and has years of experience '5 to 10 years'.	working selected working [3]

- End Of Paper -

ANNEX B

TPJC H2 Math JC2 Preliminary Examination Paper 2

QN	Topic Set	Answers
1	Complex numbers	(i)Since the <u>coefficients</u> of $az^3 - 31z^2 + 212z + b = 0$ are
		all real, complex roots occur in conjugate pair.
		Since a <u>cubic equation has three roots</u> , the third root
		must be a real root.
		(ii) $a = 25$ $b = 190$ $= \frac{19}{2}$
		(ii) $u = 25, v = 190, -\frac{1}{25}$
2	Vectors	(ii) 7
		(iii) length of perpendicular from O to AN.
	Marala unitaria antisa	
3	Maclaurin series	(a) $3x + \frac{3}{2}x^2 + 6x^3 + \dots$
		$\frac{2}{(b)(ii)}$ a - 2 b - 6
		(0)(1) u - 2, v - 0
4	Application of	(1)
	Integration	(a) $\frac{-}{2}(e^x \sin x - e^x \cos x) + D$
		(b)(iii) $\sqrt{3} - 1 - \frac{\pi}{2}$
		$(0)(11)\sqrt{3} - 1 - \frac{1}{6}$
5	DRV	$(i)\frac{1}{2}$
		(1) 36
		$(ii)\frac{161}{1}$
		36
		(iii) 0.112
6	Binomial Expansion	(1)0.161
		3 4
		(iii) $\therefore \frac{1}{11}$
7	Correlation & Linear	S
	Regression	

		1400 1200 1000 800 600 400 200 0
		(11)(a)0.9809 (b)0.9960
		(iii) The scatter diagram shows that <u>S increases at an</u> increasing rate as h increases,
		and for $S = ch^2 + d$, $\underline{r} \approx 0.9960$ which is closer to 1, so the model $S = ch^2 + d$ is a better model.
		(iv) $S = 0.000182h^2 + 672$ (v)1550
		Estimate for when $h = 2200$ metres is <u>not</u> reliable since $h = 2200$ metres is outside the range of the given data and <u>extrapolation</u> is not a good practice.
8	Normal Distribution	(i)0.309 (ii)0.214 (iii)0.303 (iv) 314
9	Hypothesis Testing	(i) Every dustbin has <u>an equal probability of being</u> <u>selected</u> and the selections of each dustbin are <u>made</u> <u>independently</u> .
		(ii) Since $n = 50$ is <u>large</u> , by <u>Central Limit Theorem</u> , the <u>mean</u> mass of rubbish in dustbins will be approximately normally distributed. (iii) 18.49, 23.6
		Since <i>p</i> -value = $0.013937 > 0.01$, we do <u>not</u> reject H ₀ and conclude that there is <u>insufficient</u> evidence at 1% level of significance to claim that there has been a reduction in the mass of rubbish in dustbins.
		(iv) $n \ge 56, n \in +$

10 P&C, Probability	(i) $\frac{63}{800}$ (ii) $\frac{28}{61}$
	(iii) 504 (iv) 3360

H2 Mathematics 2017 Preliminary Exam Paper 2 Solutions

1(i)	Since the <u>coefficients</u> of $az^3 - 31z^2 +$	212z + b = 0 are <u>all real</u> , <u>complex roots occur in</u>
	<u>conjugate pair</u> .	the third reat must be a real reat
	Since a cubic equation has three roots	, the third root must be a real root.
1(ii)	Since $1-3i$ is a root of $az^3 - 31z^2 + 212$	z + b = 0,
	$a(1-3i)^{3}-31(1-3i)^{2}+212(1-3i)+b=$	= 0
	a(-26+18i)-31(-8-6i)+212(1-3i)	+b = 0
	(-26a+460+b)+(18a-450)i=0	
	Comparing real and imaginary parts:	
	-26a + 460 + b = 0(1)	
	18a - 450 = 0(2)	
	From (2), $a = 25$, $b = 190$	
	(z-(1-3i))(z-(1+3i))	
	$= z^2 - 2z + 10$	
	$25z^3 - 31z^2 + 212z + 190 = (z^2 - 2z + 10)$)(cz+d)
	Comparing coefficient of z^3 : $c=25$	5
	Comparing constant: $190 = 10$ d = 19	dd
	The real root is $-\frac{19}{25}$.	
2(i)	$\overrightarrow{OA} = \mathbf{a}, \ \overrightarrow{OB} = \mathbf{a} + \mathbf{c}, \ \overrightarrow{OC} = \mathbf{c}$	Alternatively:
	$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$	By Ratio Theorem:
	$= \overrightarrow{OA} + \frac{5}{2}\overrightarrow{AC}$	$\overrightarrow{OC} = \frac{2\overrightarrow{OX} + 3\overrightarrow{OA}}{5}$
	$=\mathbf{a}+\frac{5}{2}(\mathbf{c}-\mathbf{a})$	$\overrightarrow{OX} = \frac{5\overrightarrow{OC} - 3\overrightarrow{OA}}{2}$
	$=\frac{1}{2}(5\mathbf{c}-3\mathbf{a})$	$\overrightarrow{OX} = \frac{1}{2} (5\mathbf{c} - 3\mathbf{a})$
	By midpoint theorem:	2
	$\overrightarrow{ON} = \frac{\overrightarrow{OB} + \overrightarrow{OX}}{2}$	
	$\overrightarrow{ON} = \frac{1}{2} \left[\mathbf{a} + \mathbf{c} + \frac{1}{2} (5\mathbf{c} - 3\mathbf{a}) \right]$	
	$=\frac{1}{4}(7\mathbf{c}-\mathbf{a})$	
2(ii)	Area of triangle $OAB = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{OB} \right $	

	$4 = \frac{1}{2} \mathbf{a} \times (\mathbf{a} + \mathbf{c}) $
	$=\frac{1}{2} \mathbf{a}\times\mathbf{c} \qquad(\because\mathbf{a}\times\mathbf{a}=0)$
	$\Rightarrow \mathbf{a} \times \mathbf{c} = 8$
	Area of triangle $OAN = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{ON} \right $
	$=\frac{1}{2}\left \mathbf{a}\times\frac{1}{4}(7\mathbf{c}-\mathbf{a})\right $
	$=\frac{7}{8} \mathbf{a}\times\mathbf{c} \qquad(\because\mathbf{a}\times\mathbf{a}=0)$
	$=\frac{7}{8}(8)$
	= 7 square units
2(iii)	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right $ is the length of perpendicular from <i>O</i> to <i>AN</i> .
	Alternative answer:
	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right $ is the shortest distance from <i>O</i> to <i>AN</i> .
	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right $ is the area of a parallelogram formed with vector \overrightarrow{OA} and unit vector \overrightarrow{AN} as
	its adjacent sides. (Not recommended here)
	Area of triangle $OAN = 7$
	$\frac{1}{2} \left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right \left \overrightarrow{AN} \right = 7$
	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN'} \right } \right = \frac{14}{\left \overrightarrow{AN'} \right }$
	AN AN
	$=\frac{14}{\left \overline{ON}-\overline{OA}\right }$
	$=\frac{14}{14}$
	$\left \frac{1}{4}(7\mathbf{c}-\mathbf{a})-\mathbf{a}\right $
	$=\frac{50}{ 7\mathbf{c}-5\mathbf{a} } \text{(shown)}$
3 (a)	$e^{2x}\ln(1+3x)$
	$= \left(1 + 2x + \frac{(2x)^2}{2!} + \dots\right) \left(3x - \frac{(3x)^2}{2} + \frac{(3x)^3}{3} - \dots\right) \text{ where } -1 < 3x \le 1$
	$= (1+2x+2x^2+)(3x-\frac{9}{2}x^2+9x^3)$

	$=3x - \frac{9}{2}x^{2} + 9x^{3} + 6x^{2} - 9x^{3} + 6x^{3} + \dots$
	$= 3x + \frac{3}{2}x^{2} + 6x^{3} + \dots$ where $-\frac{1}{3} < x \le \frac{1}{3}$
3(b)(i)	OR PR
	$\frac{z}{\sin\frac{3\pi}{4}} = \frac{1}{\sin\left(\pi - \frac{3\pi}{4} - 2\theta\right)}$
	QR PR
	$\frac{1}{\sin\frac{3\pi}{4}} = \frac{1}{\sin\left(\frac{\pi}{4} - 2\theta\right)}$
	$QR = \frac{\sin \frac{3\pi}{4}}{4}$
	$\sin\frac{\pi}{4}\cos 2\theta - \cos\frac{\pi}{4}\sin 2\theta$
	$\frac{1}{\sqrt{2}}$
	$QR = \frac{\sqrt{2}}{\frac{1}{\sqrt{2}}\cos 2\theta - \frac{1}{\sqrt{2}}\sin 2\theta}}$
	$QR = \frac{1}{\cos 2\theta - \sin 2\theta}$ (shown)
3(b)(ii)	When θ is small,
	$QR \approx \frac{1}{\sqrt{1-1}}$
	$\left(1 - \frac{\left(2\theta\right)^2}{2!}\right) - 2\theta$
	1
	$1-2\theta-2\theta^2$
	$= \left(1 - \left(2\theta + 2\theta^2\right)\right)^{-1}$
	$=1+\left(2\theta+2\theta^{2}\right)+\left(2\theta+2\theta^{2}\right)^{2}+$
	$= 1 + 2\theta + 2\theta^2 + 4\theta^2 + \dots$
	$=1+2\theta+6\theta^2+\dots$
	a = 2, b = 6
4 (a)	
	$= e^x \sin x - \int e^x \cos x dx$
	$= e^{x} \sin x - \left[e^{x} \cos x + \int e^{x} \sin x dx \right]$
	$=e^x \sin x - e^x \cos x - \int e^x \sin x dx$
	Hence,
	$\int e^x \sin x dx = e^x \sin x - e^x \cos x - \int e^x \sin x dx + C$
	$2\int e^x \sin x dx = e^x \sin x - e^x \cos x + C$
	$\int e^x \sin x dx = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + D$

$$\begin{aligned} \mathbf{4(b)(i)} & \text{ Area of first rectangle, } x = \frac{k}{n}; \\ A_{1} &= \frac{\frac{k'_{n}}{\sqrt{3-2(k'_{n})-(k'_{n})^{2}}} \cdot \frac{k}{n} = \frac{k^{2}/n^{2}}{\sqrt{\frac{3n^{2}-2nk-k^{2}}{n^{2}}}} = \frac{k^{2}}{n\sqrt{3n^{2}-2nk-k^{2}}} \\ \mathbf{4(b)(ii)} & \text{ Area of second rectangle,} \\ x &= \frac{2k}{n}; A_{2} = \frac{\frac{2k'_{n}}{\sqrt{3-2(2k'_{n})-(2k'_{n})^{2}}} \cdot \frac{k}{n} = \frac{2k^{2}}{n\sqrt{3n^{2}-2n(2k)-(2k)^{2}}} \\ \text{ Area of third rectangle,} \\ x &= \frac{3k}{n}; A_{3} = \frac{\frac{3k'_{n}}{\sqrt{3-2(2k'_{n})-(2k'_{n})^{2}}} \cdot \frac{k}{n} = \frac{3k^{2}}{n\sqrt{3n^{2}-2n(3k)-(3k)^{2}}} \\ \text{ By observation, combined area of n rectangles:} \\ A &= \sum_{n=1}^{n} \frac{nk^{2}}{n\sqrt{3n^{2}-2nk-r^{2}k^{2}}}, \\ \text{ where } a = 2 \text{ and } b = 1 \\ \text{ 4(b)(iii)} & \sum_{n=1}^{\infty} \frac{rk^{2}}{n\sqrt{(3n^{2}-ank-r^{2}k^{2})}} \\ &= \text{ Area under curve from } x = 0 \text{ to } x = \sqrt{3}-1 \\ &= \int_{0}^{\sqrt{3-1}} \frac{-\frac{1}{\sqrt{2}(-2-2x)-1}}{\sqrt{3-2x-x^{2}}} dx \\ &= -\frac{1}{2} \int_{0}^{\sqrt{3-1}} \frac{-\frac{2-2x}{\sqrt{3-2x-x^{2}}}}{\sqrt{3-2x-x^{2}}} dx - \int_{0}^{\sqrt{3-1}} \frac{1}{\sqrt{4-(x+1)^{2}}} dx \\ &= -\frac{1}{2} \left[\frac{\sqrt{3-2x-x^{2}}}{\sqrt{3}-2x-x^{2}} dx - \int_{0}^{\sqrt{3-1}} \frac{1}{\sqrt{4-(x+1)^{2}}} dx \\ &= -\left[\sqrt{3-2x-x^{2}} \right]_{0}^{\sqrt{3-1}} - \left[\sin^{-1} \left(\frac{x+1}{2} \right) \right]_{0}^{\sqrt{3-1}} \\ &= -\left[1-\sqrt{3} \right] - \left[\sin^{-1} \left(\frac{\sqrt{3}}{2} \right) - \sin^{-1} \frac{1}{2} \right] \\ &= \sqrt{3} - 1 - \frac{\pi}{6} \quad (\text{ exact)} \end{aligned}$$

5(i)	$\sum_{i=1}^{6} \mathbf{P}(\mathbf{X} - \mathbf{x}) = 1$
	$\sum_{r=1}^{r} P(x=r) = 1$
	$k^{r=1}$ k+3k+5k+7k+9k+11k=1
	. 1
	$k = \frac{1}{36}$
5(ii)	E(X) = 1(k) + 2(3k) + 3(5k) + 4(7k) + 5(9k) + 6(11k)
	=161k
	_ 161
	$-\frac{-36}{36}$
5(iii)	Required Probability
	$= P(\{6,6,4\}) + P(\{6,5,5\})$
	$=\left(\frac{11}{2}\right)^{2}\left(\frac{7}{2}\right)\frac{3!}{2!}+\left(\frac{11}{2}\right)\left(\frac{9}{2}\right)^{2}\frac{3!}{2!}$
	(36)(36)2!(36)(36)2!
	$=0.112$ (3 s.f.) Accept: $\frac{1738}{1000000000000000000000000000000000000$
	15552 7776
6(i)	Let X be the number of rocks containing fossils out of 20 rocks
U(I)	$X \square B(20, 0.07)$
	$P(X \ge 3) = 1 - P(X \le 2)$
	= 0.161 (3 s.f.)
6(ii)	Let Y be the number of rocks containing fossils out of 20 rocks. $V \square B(n = 0.07)$
	$P(Y \ge 3) \ge 0.8$
	Method 1a: Using GC Table
	$n \qquad P(Y \ge 3)$
	59 0.79085 < 0.8
	60 0.80023 > 0.8
	61 0.80925 > 0.8
	Hence, least $n = 00$.
	Method 1b: Using GC Table
	$P(Y \le 2) \le 0.2$
	$n \qquad P(Y \le 2)$
	59 0.20915 > 0.2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Hence, least $n = 60$.
	<u>Method 2: Using the binomial distribution function</u> $P(V \le 2) \le 0.2$
	$P(Y \le 2) \le 0.2$
	$P(Y = 0) + P(Y = 1) + P(Y = 2) \le 0.2$
	$0.93^{n} + n(0.07)(0.93)^{n-1} + \frac{n(n-1)}{2}(0.07^{2})(0.93)^{n-2} \le 0.2$
	Lusing GC to sketch the graph:
	Hence, least $n = 60$.
6(iii)	Let W be the number of fossils of <i>zilantophis schuberti</i> in a random sample of 10 rocks. $W \square B(10, p)$

	$P(W = 3) > P(W = 2)$ $\frac{10!}{3!7!} p^{3}(1-p)^{7} > \frac{10!}{2!8!} p^{2}(1-p)^{8}$ $120 p^{3}(1-p)^{7} > 45 p^{2}(1-p)^{8}$ $8p > 3(1-p) \text{(Since } 0 \frac{8}{3} p > 1-p p > \frac{3}{11} P(W = 3) > P(W = 4) \frac{10!}{3!7!} p^{3}(1-p)^{7} > \frac{10!}{4!6!} p^{4}(1-p)^{6} 120 p^{3}(1-p)^{7} > 210 p^{4}(1-p)^{6}$
	$4(1-p) > 7p \qquad (Since \ 0 1-p > \frac{7}{4}p 4$
	$p < \frac{1}{11}$ $\therefore \frac{3}{11}$
	11 11
7(i)	S
	$ \begin{array}{c} 1400 \\ 1200 \\ 1000 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \end{array} $
	0 500 1000 1500 2000 h
7(ii)	(a) $r = 0.980867 \approx 0.9809$ (4 d.p.) (b) $r = 0.996039 \approx 0.9960$ (4 d.p.)
7(iii)	The scatter diagram shows that <u>S</u> increases at an increasing rate as <u>h</u> increases, and for $S = ch^2 + d$, <u>$r \approx 0.9960$ which is closer to 1</u> , so the model $S = ch^2 + d$ is a better model.
7 (iv)	The equation of regression line is $S = 0.0001822853073h^2 + 671.7261905$ i.e. $S = 0.000182h^2 + 672$ (3 s.f.)
7 (v)	$S = 0.00018229(2200)^{2} + 671.73$ = 1554.0136 = 1550 metres (3 s.f.)

Estimate for when $h = 2200$ metres is <u>not</u> reliable since $h = 2200$ metres is outside the range of the given data and <u>extrapolation</u> is not a good practice.
$X \square N(296, 8^{2}) \qquad Y \square N(290, 12^{2})$ Required probability = [P(X > 300)] = 0.30854 (5 s.f.) (0.3085375322) = 0.309 (3 s.f.)
Let <i>W</i> be the number of days in which Albert processes more than 300 kg of raw material on that day out of 15 days. $W \sim B(15, 0.30854)$ P(W = 4) = 0.214 (3 s.f.)
Let $S = Y_1 + Y_2 - 2X$ $E(S) = E(Y_1) + E(Y_2) - 2E(X) = 2 \times 290 - 2 \times 296 = -12$ $Var(S) = 2Var(Y) + 2^2 Var(X) = 2 \times 12^2 + 2^2 \times 8^2 = 544$ Hence, $S \square N(-12, 544)$
P(S > 0) = 0.303 (3 s.f.) (0.3034526994)
$X \square N(\mu, 8^2)$ $P(X > 300) = P\left(Z > \frac{300 - \mu}{2}\right) \ge 0.95$
$P\left(Z \le \frac{300 - \mu}{8}\right) \le 0.05$ $\frac{300 - \mu}{8} \le -1.6449$ $\mu \ge 313.1592$
Least value of $\mu = 314 \text{ kg} (3 \text{ s.f.})$
Every dustbin has an equal probability of being selected and the selections of each dustbin are made independently .
Since $n = 50$ is <u>large</u> , by <u>Central Limit Theorem</u> , the <u>mean</u> mass of rubbish in dustbins will be approximately normally distributed.
Unbiased estimate of population mean, $\overline{x} = \frac{924.5}{50} = 18.49$
Unbiased estimate of population variance, $s^2 = \frac{1}{49} \left[\frac{18249.2 - \frac{12100}{50}}{50} \right] = 23.575$ (5 s.f.) = 23.6 (3 s.f.)
Let μ be the population mean mass of rubbish, in kg, in a domestic dustbin. To test: H ₀ : $\mu = 20$ against H ₁ : $\mu < 20$ at 1% level of significance Since $n = 50$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(20, \frac{23.575}{50}\right)$ approximately under H ₀ . Test Statistic: $Z = \frac{\overline{X} - 20}{ 22.575 } \sim N(0,1)$ approximately under H ₀ .

	Using GC, $[\bar{x} = 18.49, s^2 = 23.575, n = 50]$
	$z_{r} = -2.199$, <i>p</i> -value = 0.013937 (5 s.f.)
	Since <i>p</i> -value = $0.013937 > 0.01$ we do not reject H ₀ and conclude that there is
	insufficient evidence at 1% level of significance to claim that there has been a reduction in
	the mass of rubbish in dustbins.
9 (iv)	For H ₀ to be rejected, $z_{test} = \frac{18.49 - 20}{\sqrt{23.575}} \times \sqrt{n} < -2.3263$
	<i>n</i> > 55.954
	Range of values of <i>n</i> is $n \ge 56$, $n \in \Box^+$
	[Also Accept: $n > 55$, $n \in \Box$ (or equivalent form)]
10(i)	Required probability
	$=\frac{30}{30}\times\frac{45}{30}\times\frac{25}{30}\times\frac{15}{30}\times\frac{45}{30}\times4$
	100 120 100 100 120 100 100 120 100
	$=\frac{63}{200}$
10(")	800
10(11)	Required probability (0.2)(0.5)(0.75) + (0.8)(0.5)(0.25)
	$=\frac{(0.2)(0.5)(0.75)+(0.8)(0.5)(0.25)}{(0.2)(0.75)+(0.8)(0.125)(0.75)+(0.8)(0.875)(0.25)}$
	28
	$=\frac{20}{61}$
10 (iii)	Number of different possible codes
	$= {}^{9}C_{2} \times 2! \times {}^{7}C_{1}$
	= 504
10 (iv)	Method 1: Complementary Method
	Number of possible arrangements
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$
	= 3360
	Method 2: List by Cases
	Case 1: All the even digits are separated
	${}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480$
	Case 2: Exactly two even digits are next to each other (and the third even digit is separated)
	${}^{4}C_{3} \times ({}^{3}C_{2} \times 2!) \times {}^{5}C_{2} \times 3! \times {}^{2}C_{1} = 2880$
	Number of possible arrangements
	= 480 + 2880
	= 3360