Class	Index Number	Candidate Name
		·

ANG MO KIO SECONDARY SCHOOL **MID-YEAR EXAMINATION 2018** SECONDARY THREE EXPRESS

MATHEMATICS Paper 1

4048/01

Tuesday

08 May 2018

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

For Examiner's Use 80

This document consists of 18 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector Area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

				Answer	************	***************************************	1-59-511508810856774	°C	[1]
									
		·							
	(b)	me mean	temperature for	me inree days.					
	ران المار	the man-	tamporatura for		**********			°C	[1]
	(# <i>)</i>	are arrive	onoo m competat	aro octavom mo	met and	u uujo,			
	tempe (a)		been increasing	•	•	-	n in terms of	k, for	
3	The to	emperature	e, in °C, at noon,	on three succes	sive day	vs was −4, 9 a	and k. Given	that the	· · · · ·
				Answer	*********	minutes	se	conds	[2]
				·					
	_	_	the same constar your answer in m			e needed to pr	ant 300 book	is contain	ung
2	-	-	int 500 books in			" -	_		
				Answer	<i>(b)</i>		(*::**************		[1]
	(b)	Give your	r answer to part ((a) correct to 2 s	ignifica	nt figures.			
				Answer	(a)	***************************************	******************************	•••••	[1]
1	(a)	Calculate	$\frac{\sqrt{10.99-2}}{4.1^2+\frac{3}{5}}. \text{ Wi}$	rite down all the	digits s	hown on your	calculator d	isplay.	
1	(0)	Calculate	$\sqrt{10.99-2}$ W ₁	rite down all the	dinite e	hourn on vour	calculator d	ienlasz	

4	Given that	$\frac{5^p}{5^q} =$	$\frac{1}{5}$, express	p	in terms of	q
---	------------	---------------------	-------------------------	---	-------------	---

Answer	 [2]
Answer	[2]

- 5 The length of a road is 2.8 km. The length of this road on a map is 7 cm.
 - (a) The length of a river is represented by 20 cm on the map. Calculate the actual length of the river.

(b) The river flows into a lake of area 6.4 km². Calculate the area, in cm², of the lake represented on the map.

Answer (b)
$$cm^2$$
 [2]

AMKSS 3E MYE

4048/01/2018

6	Oi 414	$m = 2^3 \times 3^2 \times 5^4$		24
U	Given that	$m=2^{\circ}\times 3^{\circ}\times 3$	and $n=2^{-}\times$	3 ×3.

(a) write down, in index notation, the highest common factor of m and n,

(b) find the smallest positive integer, k, such that kmn is a perfect square.

Answer (b)
$$k =$$
 [1]

7 Factorise completely

(a)
$$x^3 - 16xy^2$$
,

(b)
$$x^2 - 5x + 6$$
.

AMKSS 3E MYE

4048/01/2018

8 (a) Represent $-1 < x \le 2$ on the number line below.

Answer (a)

[1]

(b) Solve the inequalities $-9 \le 4x - 7 < 9$.

Answer	<i>(b)</i>		[2]
--------	------------	--	-----

- Given that the line 2x + hy = k cuts the x-axis at x = 3 and cuts the y-axis at y = 6, find
 - (a) the values of the constant h and k,

Answer (a)
$$h =$$
 [2]

(b) the gradient of the line.

Answer	<i>(b)</i>	***************************************	[1]

AMKSS 3E MYE

4048/01/2018

10	(a)	Simpi	lify $8a^0 \div (2a)^2$,		7			
		(ii)	$\left(\frac{8}{x^6}\right)^{-\frac{1}{3}},$		Answer	(a)(i)		[2]
		(iii)	$y^2 \times \sqrt{y^3}$.		Answer	(a)(ii)		[2]
	(b)	The :	sine of an angle	; is 0.9. Give			es of the angle.	[2]

Answer (b) or [2]

AMKSS 3E MYE

4048/01/2018

11	The storage capacity of a portable hard disk is 1 terabyte.									
	(1 te	terabyte = 10^{12} bytes)								
	(a)	If the average file size of a picture is 25 megabytes, how many picture files can be stored								
		in the portable hard disk?								
		$(1 \text{ megabyte} = 10^6 \text{ bytes})$								
		Answer (a) files	[2]							
	(b)	The rate of transfer of data from the portable hard disk to a computer is 4.5 megabyte	:S							
	• •	per second. Find, in gigabytes, the amount of data transferred in 20 minutes.								
		(1 gigabyte = 10 ⁹ bytes)								
		Answer (b) gigabytes	[2]							
A	MKSS	S 3E MYE 4048/01/2018 [Turn C)ver							

PartnerInLearning

Kerts Electronic Store purchases television sets from a wholesaler at \$2560 each.

12

(a)	Find	the selling price of the tel	evision set.			
			Answer	(a)	\$	[1]
(b)	Kerts	s Electronic Store member	s are given	x % discou	int. Kenny who is a member of	f
		tore, buys the television se	et at \$3699.	20.		
	(i)	Find the value of x .				
			Answer	<i>(b)</i>	<i>x</i> =	[2]
	(ii)	Calculate the percentage	nrofit mad	e by Kerts F	Electronic Store from Kenny's	
	(11)	purchase.	prom maa	• • • • • • • • • • • • • • • • • • • •		
			Answer	(c)	%	[2]
MKSS 3E	E MYE		4048/0	1/2018	Turn	Over

13 (a) Simplify $9x^2 + 5 - (3x - 2)$

Answer (a) [2]

(b) Express $\frac{3}{x+3} + \frac{4}{x-2}$ as a single fraction.

Answer (b) [2]

(c) Given $S = \frac{pq - 2r^2}{q}$, express q in terms of S, p and r.

Answer (c) [3]

AMKSS 3E MYE

4048/01/2018

14

In the diagram, AB = 16 cm, CD = 18 cm, $\angle ABC = 90^{\circ}$, $\tan \angle BAC = \frac{3}{4}$ and BCDE is a straight line. Find

BC, (a)

Answer (a)
$$BC =$$
 cm [1]

(b) AD,

Answer (b)
$$AD =$$
 cm [1]

(c) $\cos \angle ADE$.

Answer (c)
$$\cos \angle ADE =$$
 [1]

AMKSS 3E MYE

4048/01/2018

[Turn Over

BP~13

15	Solve	the	simultaneous	equations
13	20110		Simultancous	CHURUIOIN

$$2x = 12 + 3y$$
,
 $10x - 3y = 108$.

Answer
$$x = y = [3]$$

AMKSS 3E MYE

4048/01/2018

	AMKSS	3E MYE		4048 /0	1/2018		[Turn (Over	
				Answer	(Ъ)	€	,	[2]	
	(b)	Don conver	ted S\$500 into	euros. Calc	ulate ho	w many e	euros he received.		
				Answer	(a)	S\$		[1]	
	(a)	Claire changed received.	£200 into Sing	apore dolla	rs. Calcu	ilate how	many dollars she		
	 was €1 = £0.86. (a) Claire changed £200 into Singapore dollars. Calculate how many dollars she 								
16	On a particular day, the exchange rate between pounds (\pounds) and Singapore dollars $(S\$)$ was $\pounds 1 = S\$1.87$. On the same day, the exchange rate between euros (\pounds) and pounds								
16	On a	particular day, the	he exchange rat	e between r	ounds (£) and Sin	ngapore dollars (S\$)		

PartnerInLearning

17	(a)	A restaurant owner pays a waiter an amount of A per week. The amount is made up of a basic wage of \$60 plus 11 cents for each of the n customers he serves.				
		Find a formula connecting A and n .				
		Answer (a)	[1]			
	(b)	After a while, the owner of the restaurant decides to decrease the waiter's basic				
		wage to \$45 but to increase the pay to 17 cents for each of the n customers he				
		serves. Write down another formula connecting A and n .				
		Answer (b)	[1]			
	(c)	Find the number of customers he would have to serve in a week for him to				
	` ,	receive the same amount of money as before the changes in wage payment.				
		Answer (c) customers	[2]			

AMKSS 3E MYE

4048/01/2018

[2]

18 (a) (i) Sketch the graph of y = (x-1)(x+5).

(ii) Write down the equation of the line of symmetry of y = (x-1)(x+5).

Answer (a)(ii) [1]

(b) (i) Express $x^2 + 6x + 7$ in the form $(x+a)^2 + b$.

Answer (b)(i) [2]

(ii) Hence solve $x^2 + 6x + 7 = 0$, giving your answers correct to two decimal places.

Answer (b)(ii) x = or [3]

AMKSS 3E MYE

4048/01/2018

	ension, T newton, of the string. When the tension is 81 N the string produces a note				
with a frequency of 405 Hz. (a) Find an equation connecting f and T .					
(a) Find an equation connecting f and T .					
	Answer (a)				
L.)	The string produces a note with a frequency of 540 Hz.				
b)	Find the tension in the string.				
	The the tension in the string.				
	Answer (b) N				
	The state of the state of the state of the meter and decording 2 and				
c)	For two identical strings, the ratio of the frequencies of the notes produced is 3:1. Find the ratio of the tensions in the strings.				
	ring the radio of the tensions in the samigs.				
	Answer (c)				

AMKSS 3E MYE

4048/01/2018

r	
[2	<u>}]</u>
[1	17
[1]	.]
[1]	!]
t a	_ [1

AMKSS 3E MYE

4048/01/2018

[1]

The diagram shows the positions of 3 towns P, Q and R. PQR is an isosceles triangle. The bearing of Q from P is 123° and angle $PRQ = 46^{\circ}$.

Find the bearing of

(a) R from P,

		Answer	(a)	 0	[2]
(b)	P from Q ,				

Answer (b)

(c) P from R.

Answer (c) [1]

END OF PAPER

AMKSS 3E MYE

4048/01/2018

PartnerInLearning 20

Class	Index Number	Name

ANG MO KIO SECONDARY SCHOOL **MID-YEAR EXAMINATION 2018** SECONDARY THREE EXPRESS

MATHEMATICS

Paper 2

4048/02

Friday

04 May 2018

2 hours 30 minutes

Additional Materials:

Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

This document consists of 10 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

AMKSS 3E MYE

4048/02/2018

PartnerInLearning 22

Answer all the questions.

1 (a) Expand and simplify
$$2x+3-4x(x-1)$$
. [2]

(b) Simplify
$$\frac{x-4}{3x^2-11x-4} \div \frac{1}{9x^2-1}$$
. [3]

(c) Factorise
$$9a^2c - b^2c + 9a^2d - b^2d$$
 completely. [3]

(d) Solve the equation
$$\frac{5}{x+7} = 1 - \frac{4}{11-x}$$
. [3]

(e) Given that
$$2y - 2x = x + y$$
, evaluate $\sqrt[3]{\frac{15y^2}{2xy - x^2}}$ [3]

2 Simplify the following expressions, leaving your answers in positive index (a) where necessary.

(i)
$$\frac{3x^4}{10xy^3} \div \frac{x}{5y}$$
, [2]

(ii)
$$4a^3b^{-2} \times (4a^{-2}b)^2$$
. [2]

(b) Solve the equation
$$16^{n+1} = 16(2^{n-1})$$
. [3]

Simplify the following, giving your answer in radical form. (c)

$$\frac{p^2 \times \sqrt[3]{p^2}}{\sqrt{p}}$$
 [2]

- 3 Car P travels x km for every litre of petrol used. Car Q travels 3 km more than car P for every litre of petrol used. It is given that Car P uses 8 litres of petrol more than Car Q for a 330 km journey.
 - (a) Write down an expression, in terms of x, for the number of litres used to travel 330 km for
 - (i) $\operatorname{Car} P$, [1]
 - (ii) $\operatorname{Car} Q$. [1]
 - (b) Form an equation in x and show that it reduces to $4x^2 + 12x 495 = 0$. [3]
 - (c) Solve the equation $4x^2 + 12x 495 = 0$, giving your answers correct to one decimal place. [3]
 - (d) Find the number of litres of petrol used by $\operatorname{Car} Q$ for the journey. [2]
- 4 (a) Given that x and y are integers such that $-6 \le x < 2$ and $-5 < y \le -2$, find
 - (i) the smallest value of $x^2 + y^2$, [1]
 - (ii) the largest value of $\frac{y}{x}$, [1]
 - (iii) the largest value of x + xy. [1]
 - (b) Solve the inequality $\frac{x-2}{3} < \frac{2x+1}{5} \le 3-x$. [3]
 - (c) A sports club charges a monthly membership of \$25 and an admission of \$3 per entry. If Keith entered the club n times in March,
 - (i) write an expression in terms of n, to represent the total amount of money Keith paid in March, [1]
 - (ii) form an inequality to find the maximum number of times Keith entered the club in March if he spent less than \$54. [3]

- Alicia, Benjamin and Cathy received an inheritance of \$150 000 from their late uncle. 5 They are to share the inheritance in the proportion 1:3:2 respectively.
 - Cathy deposited her portion of the inheritance in ABC bank. The bank pays a (a) simple interest of 3% per annum. Calculate the total amount she received after 3 years.

[3]

Alicia deposited her portion of the inheritance in XYZ bank. The bank pays a **(b)** compound interest half yearly at a rate of 3% per annum. Calculate the total amount she received after 3 years.

[2]

Benjamin decided to buy a car with his portion of the inheritance. The car (c) cost \$100 000. He borrowed the remaining amount from a bank for 3 years at simple interest of y % per annum. If his monthly instalment is \$800, calculate y.

[4]

6 The diagram below shows a rectangle ABCD with diagonal AC. X lies on BC and Y lies on CD.

Given that AB = 3.7 cm, AD = 2.1 cm, $\angle BAX = 18^{\circ}$ and $\angle AYD = 62^{\circ}$.

Calculate

- (a) AX, [2]
- (b) $\angle ACD$, [2]
- (c) AY, [2]
- (d) area of trapezium AXCD. [3]

In the diagram below, P, Q, R and S are four corners of a horizontal plot of land. PQ = 52 m, QS = 75 m, RS = 40 m and $\angle QRS = 54^{\circ}$. P is due south of Q and the bearing of S from Q is 108° .

- (a) Find
 - (i) the distance PS, [3]
 - (ii) the area of $\triangle PQS$, [2]
 - (iii) the perpendicular distance from Q to PS. [2]
- (b) Find
 - (i) $\angle SQR$, [2]
 - (ii) the bearing of Q from R. [2]
- (c) A rock wall is erected at Q and the angle of elevation of the top of the wall from P is 11°. Calculate the height of the rock wall. [2]

8 The diagram shows triangle ABC with coordinates A(-6, 0), B(8, 0) and C(3, 9). The line AC cuts the y-axis at the point D.

(a) Find

(i) the length of AC, [2]

(ii) the equation of AC, [2]

(iii) the coordinates of D, [1]

(iv) the area of quadrilateral OBCD. [2]

(b) Find the equation of the line that is parallel to BC and passes through the point D.[2]

9 The diagram below shows a series formed by the number of dots that form a triangle.

Figure 1

Figure 2

Figure 3

The total number of dots and the number of small right-angled triangles for each figure is shown in the table below.

Figure	Total number of dots	Number of small right-angled triangles
1	4	2
2	9	8
3	16	18
4	а	ь
5	c	d
:	:	:
n	у	Z

Write down the values of a, b, c and d. [4] (a) [1] Find the total number of dots needed to form figure 9. **(b)** (c) Write down an expression, in terms of n, for (i) y, the number of dots, [1] z, the number of right-angled triangles. [1] Explain why the series cannot contain 300 right-angled triangles. [2] (d)

10 Diagram I shows a cement tank made of a hollow cone joined to an open cylinder. The diameter of the tank is 3.8 m. As a safety precaution, the tank can only be filled up to a maximum of 80% of its total volume. The mass of 1 m³ of cement varies between 1000 kg and 1200 kg.

Diagram II shows a model of the cement tank with a radius of 1.2 cm. The vertical heights of the cylindrical and the conical parts of the model is 6 cm and 2.4 cm respectively.

- Show that the actual height of the cylindrical part of the tank is 9.5 m. [1](a) (i)
 - [1] (ii) Find the actual height of the conical part of the tank.
- Calculate the maximum safe volume of the cement tank. [4] **(b)**
- Determine if the tank can be filled with 100000 kg of cement. Explain your (c) [2] answer with calculations.

END OF PAPER

AMKSS 3E MID YEAR EXAM

MATHEMATICS PAPER 1

NO	SOLUTIONS	MARKS
1(a)	0.07553801785	B1
1(b)	0.076	B1
2	500×30 pages 60 minutes	
	15000 pages 60 minutes	
	1 page $$ $\frac{60}{15000}$ minutes	
	$300 \times 18 \text{ pages} \frac{60}{15000} \times 300 \times 18$	
	5400 pages 21.6 minutes	M1
	= 21 min 36 sec	A1
3(a)	k+4	B1
3(b)	$\frac{-4+9+k}{3} = \frac{5+k}{3}$	B1
	3 3	
4	$\frac{5^p}{5^q} = \frac{1}{5}$	
	$\frac{5^q}{5^q} - \frac{5}{5}$ $5^{p-q} = 5^{-1}$	M1
	$\begin{vmatrix} 5^{p-q} = 5 \\ p = q - 1 \end{vmatrix}$	A1
5(a)	7 cm 2.8 km 1 cm 0.4 km	
	20 cm 8 km	B1
5(b)	0.4 km 1 cm	
	1 km 2.5 cm 1 km ² 6.25 cm ²	M1
	6.4 km ² 40 cm ²	A1
6(a)	$2^2 \times 3^2 \times 5^4$	B1
6(b)	$mn = 2^5 \times 3^6 \times 5^9$	
	Smallest integer = $k = 2 \times 5 = 10$	B1
7(a)	$x^3 - 16xy^2$	M
	$=x(x^2-16y^2)$	M1
	= x(x+4y)(x-4y)	A 1

$x^2 - 5x + 6$ = $(x-3)(x-2)$	B2
O—————————————————————————————————————	D1
$ -9 \le 4x - 7 < 9 \\ -2 \le 4x < 16 $	M1
$-\frac{1}{2} \le x < 4$	A1
2x + hy = k $2(3) + h(0) = k$ $k = 6$	B1
2(0) + h(6) = 6 h = 1	B1
2x+y=6 $y=-2x+6$ Gradient = -2	B1
$8a^0 \div (2a)^2$	
$=\frac{8}{4a^2}$	M1
$=\frac{2}{a^2}$	A1
$ \begin{vmatrix} \left(\frac{8}{x^6}\right)^{\frac{1}{3}} \\ = \left(\frac{x^6}{x^6}\right)^{\frac{1}{3}} \end{vmatrix} $	M1
$=\frac{x^2}{2}$	A1
$y^2 \times \sqrt{y^3}$	
$= y^2 \times y^{\overline{2}}$ $= y^{\overline{2}} \text{or} \sqrt{y^7}$	M1 A1
$\sin x = 0.9$ $x = 64.2^{\circ}$ or 115.8°	B1, B1
$10^{12} \div (25 \times 10^6)$	M1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

14(c)	30 15	
1-1(0)	$-\frac{30}{34} = -\frac{15}{17}$	B1
	J. 1	
15	2x = 12 + 3y(1)	
	10x - 3y = 108 (2)	
	From (1),	
	x = 6 + 1.5y(3)	
	Sub (3) into (2):	Any correct method –
	10(6+1.5y)-3y=108	M1
	60 + 15y - 3y = 108	
	12y = 48	
	y = 4	A1
:	Sub $y = 4$ into (3),	
	x = 6 + 1.5(4)	
	x=12	A1
16(-)	£1 = \$1.87	
16(a)	£1 = \$1.87 £200 = \$374	B1
1.(0.)	1	
16(b)	$\$1 = \pounds \frac{1}{1.87}$	
	500	
	$$500 = £\frac{500}{1.87} = £267.3796791$	M1
:		
	€1 = £0.86	
T LINE	$£1 = €\frac{1}{0.86}$	
	$£267.3796791 = €\frac{1}{0.86} \times 267.3796$	
	=€310.91	A1
17(a)	4 60 11 4 60 1011-	
	$A = 60 + \frac{11}{100}n$ or $A = 60 + 0.11n$	B1
17(b)	17	
1,(0)	$A = 45 + \frac{17}{100}n$ or $A = 45 + 0.17n$	B1

17(c)	60 + 0.11n = 45 + 0.17n	M1
	0.06n = 15	
	n=250	Al
18(a)(i)		B1 Correct shape
18(a)(i)	y -5 O 1 x	and x - intercepts B1 Correct turning points and y- intercept
	(-2,-9)	
18(a)(ii)	x = -2	B1
18(b)(i)	$x^2 + 6x + 7$ = $(x+3)^2 - 2$	B2
18(b)(ii)	$(x+3)^2 - 2 = 0$	
	$(x+3)^2=2$	M1
	$x+3=\sqrt{2}$ or $x+3=-\sqrt{2}$	IVII
	$x+3 = \sqrt{2}$ or $x+3 = -\sqrt{2}$ x = -1.59 $x = -4.41$	A1,A1
19(a)	$f = k\sqrt{T}$	
()	$405 = k\sqrt{81}$	
	k = 45	M1
	$f = 45\sqrt{T}$	A1
19(b)	$540 = 45\sqrt{T}$	B1
10()	T=144	
19(c)	9:1	B1
20(a)	a = 11, $b = 15$, $c = 23$	Any 2 – B1 All 3 – B2
20(b)	4n+3	B1
20(c)	103	B1
21(a)	180°-46°-46°=88°	M1
21(b)	123°+88° = 211°	A1
21(b)	360°-(180°-123°)	B1
21(a)	$= 303^{\circ}$ $\angle RPN = 360^{\circ} - 123^{\circ} - 88^{\circ} = 149^{\circ}$	
21(c)	2RFN = 300 - 123 - 66 = 149 $180^{\circ} - 149^{\circ} = 031^{\circ}$	B1

MYE 2018 3E EMath Paper 2 Marking Scheme

Qn	Solution	Mark
1a	2x+3-4x(x-1)	:
	$=2x+3-4x^2+4x$	M1
	$=-4x^2+6x+3$	A1
1b	$\frac{x-4}{3x^2-11x-4} \div \frac{1}{9x^2-1}$	
	$= \frac{x-4}{(3x+1)(x-4)} \times \frac{(3x+1)(3x-1)}{1}$	M1, M1
	$\begin{vmatrix} (3x+1)(x-4) & 1 \\ = 3x-1 \end{vmatrix}$	A1
1c	$9a^{2}c-b^{2}c+9a^{2}d-b^{2}d$	
	$= c(9a^2 - b^2) + d(9a^2 - b^2)$	M1
	$= (c+d)(9a^2-b^2)$	1.51
	' '' '' '	M1
	=(c+d)(3a+b)(3a-b)	A1
1d	$\frac{5}{x+7} = 1 - \frac{4}{11-x}$	
	$\begin{vmatrix} x+7 & 11-x \\ 5 & 4 \end{vmatrix}$	
	$\frac{5}{x+7} + \frac{4}{11-x} = 1$	
	$\frac{5(11-x)+4(x+7)}{(x+7)(11-x)}=1$	M1
		IVII
	$55 - 5x + 4x + 28 = 11x - x^2 + 77 - 7x$	
	$-x + 83 = -x^2 + 4x + 77$	M1
	$x^2 - 5x + 6 = 0$	
	(x-2)(x-3)=0	A1
1e	x = 2 or x = 3 $2y - 2x = x + y$	AI
		M1
	y = 3x	
	Subst $y = 3x$ into $\sqrt[3]{\frac{15y^2}{2xy - x^2}}$:	
	$15(3x)^2$	
	$\sqrt[3]{\frac{15(3x)^2}{2x(3x)-x^2}}$	M1
	$= \sqrt[3]{\frac{135x^2}{5x^2}} = \sqrt[3]{27} = 3$	A 1
		Al
2a(i)	$\frac{3x^4}{10xy^3} \div \frac{x}{5y}$	
	10xy 3y	
	$=\frac{3x^4}{10xy^3}\times\frac{5y}{x}$	M1
	$=\frac{3x^2}{2y^2}$	
	$=\frac{2y^2}{2}$	A1

2a(ii)	$4a^3b^{-2}\times\left(4a^{-2}b\right)^2$	
	$=4a^3b^{-2}\times 16a^{-4}b^2$	MI
	$=64a^{-1}b^0$	
	$=\frac{64}{}$	A1
	a	
2b	$16^{n+1} = 16(2^{n-1})$	
	$16^n = 2^{n-1}$	M1
	$2^{4n} = 2^{n-1}$	M1
	4n=n-1	
	3n=-1	
	$n = -\frac{1}{3}$ $16^{n+1} = 16(2^{n-1})$	Al
OR	$16^{n+1} = 16(2^{n-1})$	
	$2^{4(n+1)} = 2^4 \left(2^{n-1}\right)$	
	$2^{4n+4} = 2^{4+n-1}$	
	4n+4=n+3	
	3n = -1	
	$n = -\frac{1}{3}$	
2c	2	
20	$\frac{p^2 \times \sqrt[3]{p^2}}{\sqrt{p^2}} = \frac{p^2 \times p^{\overline{3}}}{\sqrt{p^2}}$	M1
	$\frac{p^2 \times \sqrt[3]{p^2}}{\sqrt{p}} = \frac{p^2 \times p^{\frac{2}{3}}}{p^{\frac{1}{2}}}$	(changing to fractional
	$=p^{2+\frac{2}{3}\frac{1}{2}}$	index)
	$= p^{\frac{13}{6}} = \sqrt[6]{p^{13}}$	A1
	$\frac{330}{x}$ litres	
3a(i)	x (220)	B1
	*Accept $\left(\frac{330}{x} + 8\right)$ litres	
	330 litres	
3a(ii)	$\frac{1}{x+3}$ indes	B1
Ja(II)	$\frac{330}{x+3} \text{ litres}$ *Accept $\left(\frac{330}{x+3} - 8\right)$ litres	
1		

3b	330 330	3.61
	$\frac{330}{x} - \frac{330}{x+3} = 8$	M1
The state of the s		
	$\frac{330(x+3)-330x}{x(x+3)} = 8$	
:	330x + 990 - 330x = 8x(x+3)	M1
	$8x^2 + 24x - 990 = 0$	M1
	$\Rightarrow 4x^2 + 12x - 495 = 0$	
3c	$x = \frac{-12 \pm \sqrt{12^2 - 4(4)(-495)}}{2(4)}$	
	` ′	
	$=\frac{-12\pm\sqrt{8064}}{8}$	M1
	8 = 9.72497216 or -12.72497216	
	= 9.7 or -12.7 (1dp)	A1, A1
		AI, AI
3d	$\frac{330}{9.72497216+3}$	M1
	= 25.9 litres	A1 or B2
4-(:)		B1
4a(i)	$0 + \left(-2\right)^2 = 4$	DI
4a(ii)	$\frac{-4}{1} = 4$	D1
	-1	B1
4a(iii)	$-6\left[1+\left(-4\right)\right]=18$	B1
4b	$\frac{x-2}{3} < \frac{2x+1}{5} \le 3-x$	
	, ,	
	$\left \begin{array}{c} \frac{x-2}{3} < \frac{2x+1}{5} \end{array} \right \qquad \frac{2x+1}{5} \le 3-x$	N41 N41
	$5x - 10 < 6x + 3 \qquad 2x + 1 \le 15 - 5x$	M1, M1
	$ \begin{vmatrix} -x < 13 & 7x \le 14 \\ x > -13 & x \le 2 \end{vmatrix} $	
		A1
	Solution is $-13 < x \le 2$	
4c(i)	25+3n	B1
4c(ii)	25 + 3n < 54	M1
	3n < 29	
	$n < 9\frac{2}{3}$	M1
	Maximum no of times = 9	A1

		T
5a	Cathy: $\frac{150000}{6} \times 2 = \50000	M1
		M1
	Interest = $\frac{3}{100} \times 50000 \times 3 = 4500 Total amount = \$54500	A1
		711
5b	Alicia: Total amount = $25000 \left(1 + \frac{1.5}{100}\right)^6$	M1
	= \$27336.08	A1
5c	Benjamin:	
	$\frac{150000}{6} \times 3 = \75000	M1
	Borrowed amount = \$25000	
	Interest maid (800 v 2 v 12) 25000	
	Interest paid = $(800 \times 3 \times 12) - 25000$ = \$3800	M1
	Interest rate, $y = \frac{3800}{3} \div 25000$	M1
	= 5.07	A1
	*Accept $y = 5\frac{1}{15}$	
6a	$\cos 18 = \frac{3.7}{AX}$	M1
	$AX = \frac{3.7}{\cos 18}$	
		A1
	= 3.89041023 = 3.89 cm	Ai
6b	$\tan \angle ACD = \frac{2.1}{3.7}$	M1
	∠ <i>ACD</i> = 29.6°	A1
6c	$\sin 62 = \frac{2.1}{AY}$	M1
	$AY = \frac{2.1}{\sin 62}$	
	$\sin 62$ = 2.378397106 = 2.38 cm	A1
6 d	$\tan 18 = \frac{BX}{3.7}$	
	$BX = 3.7 \tan 18$	M1
	=1.202202876	
	Area of $AXCD = (3.7 \times 2.1) - \frac{1}{2}(3.7)(1.202202876)$	M1
	$= 5.55 \text{ cm}^2$	A1

OD	nv	
OR	$\tan 18 = \frac{BX}{3.7}$	
	$BX = 3.7 \tan 18$	
	=1.202202876	
	Area of $AXCD = \frac{1}{2}(3.7)[2.1+(2.1-1.202202876)]$	* use area of
	$=5.55 \text{ cm}^2$	trapezium
7.(3)		
7a(i)	$PS^2 = 52^2 + 75^2 - 2(52)(75)\cos 72$	M1
	$= 8329 - 7800 \cos 72$	M1
	= 5918.667444	Al
	PS = 76.93287622 = 76.9 m	AI
7a(ii)	Area of $\triangle PQS = \frac{1}{2}(52)(75)\sin 72$	M1
	$=1854.560207=1850 \text{ m}^2$	A1
7a(iii)	$\frac{1}{2}(PS) \times h = 1854.560207$	M1
	$\frac{1}{2}(76.93287622)h = 1854.560207$	
	h = 48.21242355	
	= 48.2 m	A1
7b(i)	$\sin \angle SQR = \sin 54$	
	$\frac{\sin \angle SQR}{40} = \frac{\sin 54}{75}$	
	$\sin \angle SQR = \frac{40\sin 54}{75}$	M1
	$\angle SQR = 25.6^{\circ}$	A1
7b(ii)	180+(108-25.6)	M1
	= 262.4°	A1
7c	$\tan 11 = \frac{h}{52}$	M1
	$h = 52 \tan 11$	
	=10.1 m	A1
8a(i)	$AC = \sqrt{9^2 + 9^2}$	M1
	$=\sqrt{162} = 12.7$ units	A1
8a(ii)	gradient =1	M1
	Subst $(-6,0)$ into $y = x + c \Rightarrow c = 6$	
	Equation of AC:	
	y = x + 6	A1
8a(iii)	D (0, 6)	B1
8a(iv)	$\Delta ABC - \Delta AOD$	
	$=\frac{1}{2}(9)(14)-\frac{1}{2}(6)(6)$	M1
	$= 63 - 18 = 45 \text{ units}^2$	A1

01-	0.0.0	
8b	gradient of $BC = \frac{9-0}{3-8} = -\frac{9}{5}$	M1
	3-8 3	
	Equation of BC:	
	•	
	$y = -\frac{9}{5}x + 6$	A1
9a	a = 25, b = 32, c = 36, d = 50	B1 of each
		correct ans
9b	$10^2 = 100$	B1
9c(i)	$(n+1)^2$	B1
9c(ii)	$2n^2$	B1
9d	$2n^2 = 300$	٦
	$n^2 = 150$	₩1
	$n = \sqrt{150} = 12.247$]
	\Rightarrow 150 is not a perfect square	٦
	OR	∦ M1
	n is not an integer	
10a(i)	6×3.8	
	$\frac{6\times3.8}{2.4} = 9.5 \text{ m (shown)}$	B1
10a(ii)	2.4×3.8 _ 2.8 m	
	$\frac{2.4 \times 3.8}{2.4} = 3.8 \text{ m}$	B1
10b	Volume of tank	
	$=\pi (1.9)^2 (9.5) + \frac{1}{3}\pi (1.9)^2 (3.8)$	M1, M1
	$= 122.1063761 \text{ m}^3$	
	Max safe volume	
	$=\frac{80}{100}\times122.1063761$	M1
	$= 97.6851 = 97.7 \text{ m}^3$	A1
10c	Since maximum weight of cement = 97.7×1200 = 117240 kg	M1
	Since 117240 kg > 100000 kg	7
	⇒ The tank can be filled with 10000 kg of cement.	} A1