

HUA YI SECONDARY SCHOOL

4E5N

Preliminary Examination 2022

4E5N

ADDITIONAL MATHEMATICS

Paper 1

MARKING SCHEME

1.	(a)	p2 -	4(1)(-4p+9)<0
		-	16p-36<0
		-	2)(p+18) < 0
ļ		-	< p < 2
-	(b)		4x-16+9=6x-8
	,/		2x+1=0
			$(2x+1-0)^2=0$
		x=1	*
			e there is only one solution, $y = 6x - 8$ is a rangent.
			-
2.	(a)	(i)	se $b^2 - 4ac$. $f(-3) = 2(-3)^3 + a(-3)^2 + b(-3) - 6 = 0$
-	(4)	(-)	-54+9a-3b-6=0
:			9a - 3b = 60
			3a - b = 20
			76 0 - 20
			$f'(x) = 6x^2 + 2ax + b$
	i		$f'(1) = 6(1)^2 + 2a(1) + b = 1$
			2a+b=-5
			5a = 15
			a=3
		2880	b = -11
		(ii)	$2x^{2} + 3x^{2} - 11x - 6 = (x + 3)(2x^{2} + px - 2)$
			2 2 : 33
			3p-2=-11
			p = -3
			$2x^{2} + 3x^{2} - 11x - 6 = (x+3)(2x^{2} - 3x - 2)$
			$2x^{3} + 3x^{2} - 11x - 6 = (x+3)(2x+1)(x-2)$

	r	r	
		(iii)	$2x^3 + 3x^2 - 11x - 6 = (x+3)(2x+1)(x-2) = 0$
			$x = -3, -\frac{1}{2}, 2$
			2
			$2 \cdot 2 \cdot 11 \cdot \frac{2}{3} \cdot 6 \cdot \frac{3}{3} \cdot 0$
			$2 + 3y - 11y^2 - 6y^3 = 0$
			$\frac{1}{y} = -3, -\frac{1}{2}, 2$
			$y = -\frac{1}{3}, -2, \frac{1}{2}$
	(h)	<u> </u>	$\frac{3}{-16y^3}$
	(5)	l	$27x^6 - 8y^3$)
		`	$3x^2)^3 - (2y)^3$
		`	
3.	(9)		$\frac{3x^2 - 2y)(9x^4 + 6x^2y + 4y^2)}{2}$
J.	(4)	V = i	$\tau r^2 h + \frac{2}{3} \pi r^3$
		ĺ	$=\pi r^2 h + \frac{2}{3}\pi r^3$
	-		$-\frac{2}{3}\pi r^3 = \pi r^2 h$
		$h=\frac{6}{r}$	$\frac{50}{x^2} - \frac{2}{3}r$
	(b)	SA =	$2\pi rh + \pi r^2 + 2\pi r^2$
		C=3	$3(2\pi rh + \pi r^2) + 4(2\pi r^2)$
		$=6\pi$	$r\left(\frac{60}{r^2} - \frac{2}{3}r\right) + 11\pi r^2$
		7	$\frac{0\pi}{r}-4\pi r^2+11\pi r^2$
		$=\frac{360}{7}$	$\frac{0\pi}{r} + 7\pi r^2$
	(c)	$\frac{dC}{dr} =$	$= -\frac{360\pi}{r^2} + 14\pi r = 0$
			$r = 14\pi r$
		$r^3 = -$	360 14
		r = 2	.9516

	(d)	When $r = 2.9516$,
		$C = \frac{360\pi}{2.9516} + 7\pi (2.9516)^2 = 574.76$
		$\frac{d^2C}{dr^2} = \frac{720\pi}{r^3} + 14\pi > 0$
		5.75 is a minimum value which is > 5.60 .
	and the same of th	He should not continue to make this product.
4.	(a)	$2^{4p+1} + 20(4^{p-1}) = 3$
		$2(4^p)^2 + 5(4^p) = 3$
		$2k^2 + 5k - 3 = 0$
		(2k-1)(k+3) = 0
		$k = \frac{1}{2}, -3$
		$4^p = \frac{1}{2} \text{ or } -3 \text{ (rej)}$
		$p = -\frac{1}{2}$
	(b)	$2u^2 + 5u - k = 0$
		If no solution,
		$b^2 - 4ac < 0$
		25 + 8k < 0
		$k < -\frac{25}{8}$
		OR
		$2^{4p+1} + 20(4^{p-1}) = k$
		$2(4^p)^2 + 5(4^p) = k$
		Since $4^p > 0$ for all p , $2(4^p)^2 + 5(4^p)$ is always positive for all p .
		Therefore, no solution for $k < -3\frac{1}{8}$.

5	(a)	$\frac{(\log_y x)^2}{\log_x y} + 64 = 0$
		$\frac{(\log_y x)^2}{\log_x x} = -64$
		$\frac{\log_x x}{\log_x y}$
		$(\log_{y} x)^{3} = -64$
		$\log_y x = -4$
		$x = y^{-4}$
		$y = x^{-\frac{1}{4}}$
	(b)	$2\log_2(x-1) - \log_2 x = 3$
		$\log_2 \frac{(x-1)^2}{x} = 3$
		$\frac{x^2-2x+1}{x}=8$
		$x^2 - 10x + 1 = 0$
		x = 0.101 (rej) or 9.90

6.	(a)	Max = 9.9 m
		Min = 0.3 m
	(b)	$k\pi$ cycles in 2π hours
***************************************		1 cycle in $\frac{2}{k}$ hours
		2 cycles in $\frac{4}{k}$ hours
W		$\frac{4}{k} = 24$
***************************************		$k = \frac{1}{6}$
		Note: Do not accept $24k\pi = 4\pi$ as working.

	(c)	4.8s	$ \sin\frac{\pi t}{6} + 5.1 > 2 $
		4.8s	$ \sin\frac{\pi t}{6} > -3.1 $
		$\sin \frac{\pi}{2}$	$\frac{ct}{6} > -\frac{31}{48}$
			c Angle = 0.702 (Q3,4)
		$\frac{\pi i}{6}$	$=\pi+0.702, 2\pi-0.702$
		t = 7	.34,10.66
		0 < t	< 7.34,10.66 < t < 12
7.	(a)	(i)	$LHS = \frac{\cos x}{\sin x} - 2\sin x \cos x$
			$\int \sin x$
			$=\frac{\cos x - 2\sin^2 x \cos x}{x}$
			$\sin x$
			$=\frac{\cos x(1-2\sin^2 x)}{x}$
			$\sin x$
		(ii)	$= \cot x \cos 2x$ $4(\cot x - \sin 2x) = \cos 2x$
		ш	$4(\cot x \cos 2x) = \cos 2x$
			$\cos 2x(4\cot x - 1) = 0$
			$\cos 2x = 0 \text{or} \cot x = \frac{1}{4}$
			$\alpha = \pi \ (Q1,4)$ or $\tan x = 4$
			$2x = \frac{\pi}{2}, \frac{3\pi}{2}$ or $\alpha = 1.3258$ (Q1,3)
			$x = \frac{\pi}{4}, \frac{3\pi}{4}$ or $x = 1.33, 4.47$ (rej)
			Ans: $x = \frac{\pi}{4}, \frac{3\pi}{4}, 1.33$
	(b)	sin A	$A\cos B + \cos A\sin B = \frac{6}{7}$
		sin A	$A\cos B + \frac{2}{7} = \frac{6}{7}$
		sin A	$A\cos B = \frac{4}{7}$
		sin 2	$\frac{4\cos B}{A\sin B} = \frac{4}{7} \div \frac{2}{7}$
		tan	$\frac{A}{R} = 2$
		tan	B

8.	(a)	2 1	
	(4)	$y = \frac{2}{\sqrt{3x+1}} = 2(3x+1)^{-\frac{1}{2}}$	
		$\frac{dy}{dx} = -3(3x+1)^{-\frac{3}{2}}$	M1
		$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$	
		$-3 = -3(3x+1)^{-\frac{3}{2}}(0.125)$	M1
		$8 = (3x+1)^{-\frac{3}{2}}$	M1
		$3x+1=\frac{1}{4}$	
		$x = -\frac{1}{4}, y = 4$	M1 A1
		$y = 2x \ln x$	<u> </u>
		$\frac{dy}{dx} = 2x\left(\frac{1}{x}\right) + 2\ln x = 2 + 2\ln x$	M1
		For increasing functions, $1 + \ln x > 0$	
		$\ln x > -1$	
		$x > \frac{1}{}$	A1
		ρ	Ai
9.	1	$y = (2x+1)^{-1}$	
		$\frac{dy}{dx} = -2(2x+1)^{-2}$	M1
		$x = 0, \frac{dy}{dx} = -2$	***************************************
		Eqn of tangent: $y = -2x + c$	
		1 = -2(0) + c	M1
		c=1	IVII
		y = -2x + 1	A1
	(b)	Where tangent intersects the x-axis, $y = 0$	
		0 = -2x + 1	
		$x = \frac{1}{2}$	M1
		$Area = \int_0^1 \frac{1}{2x+1} \ dx - \frac{1}{2} \left(\frac{1}{2}\right) 1$	M1
		$= \left[\frac{1}{2}\ln(2x+1)\right]_0^1 - \frac{1}{4}$	M1
		$= \frac{1}{2} \ln 3 - \frac{1}{4}$	A1

10.	(a)	Let $\angle FBC = x$,	
100	(-)	$\angle CAB = x$ (tangent chord theorem)	M1
		$\angle FED = x$ (angles in same segment)	M1
		By the converse of alternate angles, since $\angle CBA = \angle FED$, AB is parallel	
		to DE.	A1
	(b)	ΔBCF and ΔEDF	B1 B1
	(1)	(DE' ' ' ' ' A DCE	M1
	(b)	$\triangle ABF$ is similar to $\triangle BCF$. Therefore	1011
			M1
		$\frac{AF}{BF} = \frac{BF}{CF}$	
		$AF \times CF = BF^2$ (shown)	
11.	(a)	$\operatorname{Grad} PR = \frac{10}{-5} = -2$	M1
		Grad $SQ = \frac{1}{2}$	M1
		Eqn SQ:	
		$y = \frac{1}{2}x + c$	
		$7 = \frac{1}{2}(3) + c$	
		$c = \frac{11}{2}$	
		Eqn $SQ: y = \frac{1}{2}x + \frac{11}{2}$ $Grad PR = \frac{10}{-5} = -2$	A1
-	(b)	$\operatorname{Grad} PR = \frac{10}{-5} = -2$	M1
		Eqn:	
		v = -2x + c	
		7 = -2(3) + c	
		c=13	
			A1
		y = -2x + 13	M1
	(c)	$y = -2x + 13$ $Area PQR = \frac{1}{2} \begin{vmatrix} -3 & 2 & 3 & -3 \\ 9 & -1 & 7 & 9 \end{vmatrix}$	IVII
		$= \frac{1}{2}[(3+14+27)-(18-3-21)]$ $= \frac{1}{2}(44-(-6))$	
		$=\frac{1}{2}(44-(-6))$	A 1
		= 25	A1

12	(a)		B1
	(b)	$\log_9(5-x) = \frac{x}{2}$ $(5-x)^2 = 3^{2x}$ $5-x=3^x$	M1
		Eqn straight line: $y = 5 - x$	A 1
	(c)	1 solution	В1

HUA YI SECONDARY SCHOOL

4E5N

Preliminary Examination 2022

4E5N

ADDITIONAL MATHEMATICS

Paper 2

MARKING SCHEME

1	(a)	12 4 (2.)2 4(2)(2.2.21)
1	(a)	$b^2 - 4ac = (2a)^2 - 4(1)(2a^2 - 3b)$
		$=4a^2 - 8a^2 + 12b$
		$=12b-4a^2$
		$=4(3b-a^2)$
		Since $3b - a^2 > 0$, hence $b^2 - ac > 0$.
		Two real and distinct roots.
	(b)	Subst $y = 5 - 2x$ into
		$y^2 + y - 3x = 9$
		$(5-2x)^2 + 5 - 2x - 3x = 9$
		$25 - 20x + 4x^2 + 5 - 5x = 9$
		$4x^2 - 25x + 21 = 0$
		(4x - 21)(x - 1) = 0
		$x = \frac{21}{4}$ or $x = 1$
<u> </u>	ļ.,	<u> </u>
	(c)	(i) $h = -\frac{1}{5}t^2 + 4t + 2$
		$=-\frac{1}{5}(t^2-20t-10)$
		$=-\frac{1}{5}[(t-10)^2-100-10]$
		$=-\frac{1}{5}[(t-10)^2-110]$
		$=-\frac{1}{5}(t-10)^2+22$
		(ii) Max height = 22 m
2	(10-	$+2\sqrt{3})\pi = \frac{1}{3}\pi r^2(3-\sqrt{3})$
	2	$30+6\sqrt{3}$ $3+\sqrt{3}$
	r =	$= \frac{30 + 6\sqrt{3}}{3 - \sqrt{3}} \times \frac{3 + \sqrt{3}}{3 + \sqrt{3}}$
	90	$\frac{0+30\sqrt{3}+18\sqrt{3}+18}{9-3}$
	_10	$\frac{08+48\sqrt{3}}{6} = 18+8\sqrt{3}$
		6
	$l^2 =$	$18+8\sqrt{3}+(3-\sqrt{3})^2$
		$3+8\sqrt{3}+9-6\sqrt{3}+3$
		$0+2\sqrt{3}$
	- 30	CV2

	()	0
3	(a)	$\left(x^2 - \frac{1}{3x}\right)^9$
		$T_r = \binom{9}{r} \left(x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r$
		Powers of $x = 18 - 2r - r$
		=18-3r
		=3(6-r)
		Multiple of 3
	(b)	$\left(x^2 - \frac{1}{3x}\right)^9 (1 + 6x^3 + 9x^6)$
		Term with x^{-6} , $r = 8 \to \frac{9}{3^8 x^6}$
		Term with x^{-3} , $r = 7 \rightarrow -\frac{36}{3^7 x^3}$
		Term with x^0 , $r = 6 \rightarrow \frac{84}{3^6}$
		Product = $\frac{84}{3^6}(1) - \frac{36}{3^7 x^3}(6x^3) + \frac{9}{3^8 x^6}(9x^6) = \frac{28}{243} - \frac{8}{81} + \frac{1}{81} = \frac{7}{243}$
4	(a)	$MidptAB = \left(\frac{5-11}{2}, \frac{7+15}{2}\right) = (-3,11)$
		$GradAB = \frac{15 - 7}{-11 - 5} = -\frac{1}{2}$
		GradPB = 2
		EqnPB: y = 2x + c
		11 = 2(-3) + c
		c = 17
		Eqn: y = 2x + 17
	(b)	y = 2x + 17 (1)
		y = -2x - 3 (2)
		2x+17=-2x-3
		x = -5
		y = 7
		C(-5,7)
		$Radius = \sqrt{(5+5)^2 + (0)} = 10$
		EqnCircle: $(x+5)^2 + (y-7)^2 = 100$

	(c)	AD is diameter
		C(-5,7) is midpoint of AD
		$\left(\frac{5+x}{2},\frac{7+y}{2}\right) = (-5,7)$
		x = -15
		y = 7
		D(-15,7)
	(d)	-15 < k < 5
	(e)	$(x-5)^2 + (y-7)^2 = 100$
5	(a)	$y = \frac{1 - \sin x}{x}$
		$\frac{y-\sqrt{\cos x}}{\cos x}$
		$\frac{dy}{dx} = \frac{\cos x(-\cos x) - (1 - \sin x)(-\sin x)}{\cos x}$
		$dx \cos^2 x$
		$= \frac{-\cos^2 x + \sin x - \sin^2 x}{\cos^2 x + \sin^2 x}$
		$=\frac{\cos^2 x}{\cos^2 x}$
		$=\frac{\sin x - 1}{\cos^2 x}$
	(a)	$= \tan x \sec x - \sec^2 x$
	(b)	$\int \tan x \sec x - \sec^2 x dx = \frac{1 - \sin x}{\cos x} + c$
		$\int \tan x \sec x dx - \int \sec^2 x dx = \frac{1 - \sin x}{\cos x} + c$
		$\int \tan x \sec x dx - \tan x = \frac{1 - \sin x}{\cos x} + c$
		$\int \tan x \sec x dx = \frac{1 - \sin x}{\cos x} + \tan x + c$
		$\int_0^{\frac{\pi}{4}} \tan x \sec x \ dx = \left[\frac{1 - \sin x}{\cos x} + \tan x \right]_0^{\frac{\pi}{4}}$
The deposition of the contract		$= \left[\frac{1 - \frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} + 1\right] - [1 + 0]$ $= \sqrt{2} - 1 + 1 - 1 = \sqrt{2} - 1$
		$=\sqrt{2}-1+1-1=\sqrt{2}-1$

6	(a)	$\int_{0}^{5} 3f$	$f(x) dx + \int_{5}^{3} x - kf(x) dx = 8$				
		$3(8) - \int_{5}^{5} x - kf(x) dx = 8$					
		$24 - \int_3^5 x \ dx + \int_3^5 kf(x) \ dx = 8$					
		24-	$4 - \left[\frac{x^2}{2}\right]_3^5 + k \int_3^5 f(x) \ dx = 8$				
		24-	$24 - \left(\frac{25}{2} - \frac{9}{2}\right) + k(4) = 8$				
			4k = -8				
	(b)	k = -	-2				
	(0)	(1)	$\frac{-14x^2 + 14x - 3}{x(2x-1)^2} = \frac{A}{x} + \frac{B}{2x-1} + \frac{C}{(2x-1)^2}$				
			$-14x^{2} + 14x - 3 = A(2x - 1)^{2} + Bx(2x - 1) + Cx$				
			Let $x = 0, -3 = A$				
			Let $x = \frac{1}{2}, -\frac{14}{4} + 7 - 3 = \frac{1}{2}C \rightarrow C = 1$				
		<u>.</u>	Let $x = 1, -14 + 14 - 3 = A + B + C$				
			-3 = -2 + B				
			B=-1				
			$\frac{-14x^2 + 14x - 3}{x(2x - 1)^2} = -\frac{3}{x} - \frac{1}{2x - 1} + \frac{1}{(2x - 1)^2}$				
		400					
		(ii)	$\int \frac{-14x^2 + 14x - 3}{x(2x - 1)^2} dx$				
			$= \int -\frac{3}{x} - \frac{1}{2x - 1} + \frac{1}{(2x - 1)^2} dx$				
			$= -3\ln x - \frac{1}{2}\ln(2x-1) + \frac{(2x-1)^{-1}}{2(-1)} + c$				
			$= -3\ln x - \frac{1}{2}\ln(2x-1) - \frac{1}{2(2x-1)} + c$				
7	(a)		$=100\sin\theta-40\cos\theta$				
		_	$= 100\cos\theta + 40\sin\theta$				
		_	$100 + 40 + 100 \sin \theta - 40 \cos \theta + 100 \cos \theta + 40 \sin \theta$				
	<u></u>	<u>= 14</u>	$0+140\sin\theta+60\cos\theta$				

	(b)	$P = 140 + 140 \sin \theta + 60 \cos \theta$
		$60\cos\theta + 140\sin\theta = R\cos(\theta - \alpha)$
		$R = \sqrt{23200}$
		$\alpha = 66.8^{\circ}$
		$P = 140 + \sqrt{23200}\cos(\theta - 66.8^{\circ})$
	(c)	$250 = 140 + \sqrt{23200}\cos(\theta - 66.8^{\circ})$
		$\cos(\theta - 66.8^{\circ}) = \frac{110}{\sqrt{23200}}$
		Basic angle = 43.764° (Q1, 4)
		$\theta - 66.8^{\circ} = -43.764^{\circ}$ or 43.764°
		θ = 23.0°
8.	(a)	$\frac{d^2y}{dx^2} = 6e^{3x} - x$
		$\frac{dy}{dx} = \frac{6e^{3x}}{3} - \frac{x^2}{2} + c$
		5 = 2 + c
		c=3
		$\frac{d\mathbf{v}}{dx} = \frac{6e^{3x}}{3} - \frac{x^2}{2} + 3$
***************************************		$y = \frac{2e^{2x}}{3} + \frac{x^3}{6} + 3x + c$
		$\frac{2}{3}e^6 = \frac{2}{3}e^6 - \frac{4}{3} + 6 + 6$
		$c = -\frac{14}{3}$
		$y = \frac{2e^{3x}}{3} - \frac{x^2}{6} + 3x - \frac{14}{3}$

	T	(11)				
		(ii)	3			
			2.5			
			2			
			1.5			
			0.5			
			V = -1.9779x + 2.9842 * ●			
			0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5			
			$\frac{1}{y} = \frac{1}{2}$			
		(222)	Correct value of $y = 2$			
1		(iii)	$y = \frac{p}{x^2 + k}$			
			x + k			
			$x^{2}y + ky = p$ $x^{2}y = -ky + p$ $x^{2} = \frac{p}{y} - k$			
			$x^-y = -ky + p$			
			$x^2 = \frac{p}{-k} - k$			
			Gradient = $p = -2$			
			Vertical intercept = $-k = 3$			
10	(a)	1	k = -3			
10	(a)	$v = \frac{1}{2}$	$v = \frac{1}{2}t^2 - t - 4$ $s = \frac{1}{6}t^3 - \frac{1}{2}t^2 - 4t + c$			
		1	1 3 1 2			
		$s = -\epsilon$	$s = -t^2t^2 - 4t + c$			
		Whe	When $s = 0$, $t = 0$ therefore $c = 0$			
		$s = \frac{1}{6}t^3 - \frac{1}{2}t^2 - 4t$				
		At max velocity, $\frac{dv}{dt} = 0$				
		t-1	t-1=0			
		t=1				
		Displacement = $\frac{1}{4} - \frac{1}{4} - 4 = -\frac{13}{4}$				
	(b)	$\frac{6 2}{t^2 - 2t - 8 = 0}$				
		(t-4)(t+2) = 0				
			t = 4 or -2			
L	لــــــا					

(c)
$$s = \frac{1}{6}t^3 - \frac{1}{2}t^2 - 4t$$

 $t = 0, s = 0$
 $t = 4, s = -13\frac{1}{3}$
 $t = 6, s = -6$
Total distance travelled = $13\frac{1}{3} + 7\frac{1}{3} = 20\frac{2}{3}$ m

-End of Paper-