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2
- Mathematical Formulae
Quadratic Equation

For the equation ax’ +bx+c=0

Binomial expansion

('a'+b)"=a"+( ': )’a""b+( '21 )a”2b2+._,+( n Ja""b'v+...+b",
r

where n.is a positive integer and

(il ),: n! __n(n»—'l),..(n-»rﬂrl)‘ ‘

r ) rHa-n) r!

2. TRIGON OMETRY

Identities

sin® A+cos?A =1
sec’ A=1+tan’ A
cosec’A =14 cot* A
sin{A= B)=sin Acos B+cosAsin B
cos{(Ax B)=cosAcosBFsinAsinB
tan(Ax B) = SRAEt0E
lFtanAwunB
sin2A=2sin AcosA.
cos2A=cos’ A-sin® A=2cos’ A~1=1-2sin’ A
an2A o 21204
1—-tan® A
Formulae for AABC
a b ¢
sind sinB - sinC
@ =b*+c*=2bccos A

A=Lbesind
- 2



Solve the following equations

@ 52 -3(5"")+10=0, (4]
- 1
(b) log, v3-3x = 5” logy, (1-2x). (4]
(a)  Find the greatest value of the integer & for which - 3x* + kx -5
is never positive for all values of x. [3]
2 2
(b) A curve has an equation y = , where x = g
~3x
Find the range of values of x for which y is decreasing. [4]
. 2 2
: sin” 4 cos” A
i Prove the identity 1+ + =0. {3}
@ v 1-sec’ 4 1-cosec’4
sin® A cos’ 4
(i)  Hence, solve the equation — + — = tan (24 +10°)
1-sec® A 1-cosec’4 -
for —180° < 4 <180°. [4]
tan(r-2)
A curve has the equation y = 4¢e
. . . dy
i Find —=-. 2
® ~ (2]
(if) If x and y vary with time and y increases at the rate of e units
per second when x = 7 radian, find the exact value of the
rate of decrease of x at this instant. [4]
(a)  Sketch thegraphoff(x)=2—-‘5—3x{ for -1sx<6.
Indicate clearly the vertex and the intercepts of the axes. 3]
(b) Solve the equation 2 —]5 - 311 =x~-1. 2]
(c) i) State the range of the values of ¢ if there is no solution for

the equation 2 ~|5 - 3xf =c, (1]
(i) State the range of the values of m if there are exactly two

solutions for the equation 2 ~ lS - 3x| =mx. [1]



4

The amount of radioactive Sodium-24, M measured in grams, used as a

tracer to measure the rate of flow in an artery or vein can be modelied

by M = M€, where tis the time in hours, M, and k are a constants.

The hospital buys a 40-grams sample of Sodium-24 and will reorder when

the sample is reduced to 3 grams.

@) Given that there are only 20 grams of Sodium-24 left after 14.9 hours.
Find the value of A/, and of k. 3]

» (ii)  Find the amount of Sodium-24 remain afier 60 hours. 1]

(i)  Calculate the ime taken before the hospital reorders Sodium-24.  {2]

(@  The function fis defined, for -12’- <xs % by the equation

f{x)=2tan3x.
(i) State the period of /. 1]
s b1 b4
(i) Sketch the graph of y = f(x) for - S sxs S 2]
(b) On the same diagram drawn in part (a), sketch the
graph of g(x)=1-2sinx for—-%sxs%. 2]
(c) State the number of solutions of the equation
sinx+tame-=-;—intheinterval——;fsxs£ [1]
The function f(x) = —~Inxis defined for x > k.
@) State the value of k. {1
(i)  Sketch the graph of f(x)=~Inx for x> k. 2]

(i)  Explain how another straight line drawn on your diagram in
part (ii) can lead to the graphical solution of xe*?* =1.
Draw this straight line and hence state the number of solutions

for xe*** = 1. 3]
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The diagram shows a quadrilateral OPOR where OR = 6 cm,
angle OPQ = anglcPQR':'—'g- radian and angle ROP = @ radian, 8 isa

variable and an acute angle. T is a point on PQ such that angle ORT = -'725

radian and RT =3 cm.

4%

&,
R

@) Show that the area, A cm® of the quadrilateral OPQR is given by
A=95in20 +18sin* (3]
(ii) Given that § can vary, find maximum area of the quadrilateral OPQR .

(6]

A particle P moves in a straight line so that ¢ seconds after passing through a
fixed point O, its velocity, v m/s is given by

v o1 9
d Gr+1)?
@) Calculate the initial acceleration of the particle P. 2]
(il)  Show that the particle P is at instantaneously rest at 1 = % [2]

(iii)  Calculate the average speed of the particle P during the first
3 seconds after passing O . {4]

Another particle O moves in a straight line and its displacement, § meter

from O after ¢ secondsis givenby S, =7 -1.

(iv)  Find the distance from the fixed point O when P first collides
with Q. (2]



11 In the diagram, 4; B, C and D are poinis.on the circle. MN is a tangent to the
circle at 4. MBC is a straight line.

(a)  Name a triangle which is similar to triangle CAM . [1]
Hence prove that AC = Qﬁ [3]
B4 BM

{b)  Given further that 4D and BC are parallel, show that
(i) triangle ABM is similar to triangle ADC, [2]

(ii) ADx AM = ACxCD . 2]

~ End of Paper ~
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Mathematical Formulae

OQuadratic Eqiiation

For the equation ax* +bx+c=0

Binomial expansion

(a+b)" =a" +( ’; )a‘"”b-r( Z )a’"'zbf“'-».,‘-l-( n ]a""b’+.,..+b”,
2 r

where # is a positive integer and

( n } al _ n{n-D.{n-r+1)

r ri{n—-nri ri

2 TRIGONOMETRY

Identities

sin® A+cos” A=1
sec’ A=l+tan’ A
cosec’A =1+cot’ A
sin{A = B)=sin Acos Bxcas Asin B
cos{A+B)=cosAcosBFsinAsinB
tanA=xtan B

1TtanAtan B
sin2A =2sin Acos A

cos2A=cos’ A—-sin“A=2cos’ A-1=1-2sin* 4

tan(A=B)=

an2a - 2tanA_
I-tan” A
Formulae for AABC
a b ¢

sinA sinB  sinC
a®> =b"+¢c* -2bccosA

= lbcsinA
2



Solve the following equations

@ 57 =3(5"")+10=0
W) log,V3-3x = 12 ~Togg,(1-2%)

(@) 5 -3(5")+10=0

25(5’)—g+10=0
h
e 3 . _
5(5')~§;+2=0 [M1]
' Létp=5’“
5p—~3—+2=0
P
Sp’+2p-3=0 [(M1]
(S5p-3)(p+1)=0
_3 or p=-1
5
X 3 X .
5 =3 or 5% =-1 (reject)
x 3 ,
Ig5 =lg(§) (M1}
3
1g(2)
=
1g5

x=-0317 [A1]

(pif never reject 5° = 1)

4]

[4]
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® logyVv3-3x = % ~log,, (1-2x)

log, 3 -3¢ = - ~logy (1-29)
log, \3—3x = - 108:(1-20)

2 log, 81
-2 .

—;—logg(B ~-3x) = —;— - 1—0‘%-9—(—12——)6) M1 for changing base])
log,(3-3x) +log,(1-2x) =1
log,(3~-3x)(1-2x) =1 [M1]
(3-3x)(1-2x)=9"
(1-x)(1-2x)=3 M1]
2x2 =3x-2=0
2x+1)(x-2)=0
X = -—?12— o x=2 (rejéct) (pif never reject x = 2)
X = 1 [AT]
X \

(a) Find the greatest value of the integer & for which - 3x” + Jx -5
is never positive for all values of x. : 3]
2

A

(b) A curve has an equation y = ,where x = 3

2-3x
Find the range of values of x for which y is decreasing.

[4]

(a)  Forall values of x, —3x? + kx — 5 is never positive,

Discnminant < 0

k- 4(=3)(=5) < 0 [MI]
k*-60<0

(k - 60)(k +60) < 0

~-J60 < k < /60 [Al]

OR 215 <k <215
OR —7.7460 < k < 7.7460

The greatest integer value of kis 7 [Al]



by L x2 o E
¥ 3773
- A . 2
__d)__z . 2x(2 ;. 3x)4;3x [M1]
dx (2 -3x)*
_4x ~3x?
T (2-3x)
( ) £12<0 2
Since the curve is decreasing, dx and x = 3
-3x?
dx-x [M1]
(2 -3x)
Since (’2—33()2‘ >0, . 4x -3x? <0
3x* —4x>0 {M1]
x(3x-4)>0
x<0or x>§ [A1]
2 2
(i) Prove the identity 1+ S 74 P —=0.
' l-sec” 4 l-cosec’Ad
.2 2
(ii) Hence, soive the equation St '24 cos A2
1-sec® A l—cosec‘Ad
for —180° < 4 <180°.
o2 2
sin“ A cos” A
i To prove 1+ : + ={.
© P —sec’ 4 l-cosec’d
LHS = 1+ sin® 4 cos® A
l-sec’ A 1-cosec’A
.2 2
14 sin ,A + cos ZA‘ (B1]
~tan“ 4 —cot" A4
=1-cos’ A-sin’ 4 [B1]
=1-1 B1]
=0
=2 2
Hence 1+ S f cos A’, = 0. ( Proved)
l-sec”A l-cosec™ A A

[3]

= tan (24 +10°)

[4]
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in? -0s> _
(i) Since 2 f o A; = tani (24 +10°)
l-sec®4 1-cosec™4
tan (24+10°) = -1 [B1]
Basicangle=45°
24 +10%=-45°,.225°,135°,315° [M1]

A=-27.5° ~117.5° 62.5°,152.5°
[Alforboth]  [Alforboth]

) . tan(zr—%)
A curve has the equation ¥ =4e .

@  Find 2. [2]
dx
(i) If x and y vary with time and y increases at the rate of e units per

second when x = s radian. Find the exact value of the rate of decrease

of x at this instant. [4]
. dy i 3 X, t(z-3)
H Y s Yysect(m - D) Ml
(1) e ( 4)580 (w 4)6 . (M1}
& _ sec’ (7 x)em{m‘_‘) [BI]
dx 4

(i1) When x =,

(] 2 3.7f !m(l"
= = - - A1
. sec (4 Je [M1]
'—'"('—‘\/_2_)26—3
2 [A1]
e
& _ax b
dt  dir dx
dx 2\
=——X| —— 1
¢ dtx( e) (M1}
& _ &
dt 2

2
Theexact raté of decrease of xis%—wzits/ s [Al]}

Z



(a)

)

(9

(a)

(b)

(c)

7

Sketch the graph of f(x) = 2—‘5 —3x‘ for-1sx=<6.

Indicate clearly the vertex and the intercepts of the axes. 31
Solve the equation 2 -|5-3x = x -1 [2]
(1) State the range of the values of ¢ if there is no
solution for the equation 2 -|5-3x =¢, (1]
(i) State the range of the values of m if there are exactly two
solutions for the equation 2 —|5 - 3x| = mx. [11

Tuming Points = (12’2) [B]} :‘ _A (1-2_ 2,) —
Shape - inverted v-shape [B1] S ’ LR

intercepts : (0,-3), (1, 0), (2%,0)
terminal points : (-1, -6), (6, -11) [B1]

2—}5 —-3xi =x—1
5-3x=3-x
5-3x=3-x or 5-3x=-(3-x) [M1]
x=1 x=2 [A1]
) c>2 [B1]
(i)  Gradient of OA = —g—
Gradient of AB =-3
The range of valuesof m: -3 <m <= [B1]

B s gy
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The amount of radicactive Sodium-24, M measured in grams, used as a tracer

to measure the rate of flow in an artery or vein can be modelled by

M =M ", where tis the time in hours, M, and k are a constants.

The hospital buys a 40-grams sample of Sodium-24 and will reorder when the

- sample is reduced to 3 grams.

@) Given that there are only 20 grams.of Sodium-24 left.after 14.9 hours.

Find the value of M and of &.

31

(ii) Find the amount of Sodium-24 remain after 60 hours. ]

(iii)  Calculate the time taken before the hospital reorders Sodium-24 . {2]

()  When t=0,M =40

M, =40
When £ =149, M =20
20 = 40"
el4.9k = _}__
2
k= L 1ni
149 2
k= In2
14.9
: = ~0.046520

k=-0.0465 (3s.f)

(i)  When ¢ = 60,

3
—(——1n2X60)
M =40¢ 3

M - 6-2.7912
M =00613g

(1) When M =3,

3 = 406—0.046521

_3_ = o~004652

40
3

o = = -0.04652¢
40

i 3
t=- In| —
0.04652 (40)
t = 55.7 hours

[B1]

IMI]

[A1]

[Al]

(M1]

(Al]
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(@)  The function fis defined, for —g =xs i, by the equation
f(x)=2tan3x.
3] State the period of /. [1]
(ii)  Sketch the graph of y = f(x) for —% <xs er. [2]
(b) On the same diagram drawn in part {a), sketch the graph of
g(x)=1-2sinx for T ax<Z, [2]
2 2
{c) State the number of solutions of the equation sinx+tan3x = % in
the interval-—%sxsﬁ. | (1]
(@) (i) Period= 13”- [B1]
(i) Shape [B1]
4 asymptotes [B 0.5]
. T T
x-intercept : ——; 0; —; [BO.S
pt: -3 0 (B 0.5]
(b) Shape [B1]
turning points (-—%,3);(% —D;[B 0.5]
intercepts : (0, 1), (%,0) [B0.5]
©

. 1
sinx +tan3x = —

2
2sinx+ 2tan3x = |

2tan3x =1-2sinx

. . . 1.
There are 3 solutions for the equation sinx+ tan3x = 5 in the

intervai—izr-sxsf. {Al]
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The function f(x) = -Inx is defined for x> k.

(i State the value of & . ]
(ii)  Sketch the graph of f(x)=-lnx for x>%. 2]
(iii) Explain how another straight line drawn on your diagram in part (b)
can lead to the graphical solution of xe> =1. Draw this straight line
and state the number of solutions for xe>* =1 (3]
@ k=0 [B1] RN
(ii)  Shape [B1]
Asymptote x=0 [B0.5]
x-intercept : (1,0) {B0.5]
(i)  Since
X 621—3 - 1
" In(xe”?)=0
Inxe® =0
Inx+2x-3=0
y=3-2x (B1j
Hence, by drawing the line y =3 — 2x on the diagram in part (b),
the x-coordinates of the points of intersection would give the solutions
for x> =1. [B]
From the sketch, we can conclude that there are 2 solutions for
xe”” =1. [Al]
The diagram shows a quadrilateral OPQOR where OR = 6 c¢m,

angle OPQ = angle POR = izr—radian and angle ROP = @radian, @ is a variable

and an acute angle. T is a point on PQ such that angle ORT =§ radian and
RT=3m.
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@) Show that the area, A cm® of the quadrilateral OPQR is given by

A=9sin26 +18sin* & £3]
(i)  Given that @ can vary, find maximum area of the quadrilateral OPQR .
(6]
PSR = Z rad %
~ 2 // \
RTQ =60 (alt £, PQ//SR) AN
54 N
P 4 A 7
OQQ\ Jan | ?) ¢
A=~ (0S)(RS) + (RS)(RQ) s
5 ~
A= %(6 cos@)(6sin ) + (6sinH)(B3sinf) [MI][M1]
A =18sinfcos@ +18sin’6  [Al]
A=9sin260 +18sin’ & (Shown)
A=9sin26 +18sin* 8
—3‘% = 18c0s28 + 18(2)sin cos b)

=18¢0s28 +18sin 2¢
For maximum area, ﬁ = (0.
a6

-:_’; =18¢0s20 +18sin26 = 0 [BIl}]

cos28 +sin28 = 0
1+tan26 =0
tan2d = -1

Basic angle = %

2% 1%
474
(N.A)
637

[B1] [BI]
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12

2
-3—'-{ =-36smn 28 + 36cos26

82

[Bl]

4 Iz d*4 1 i
When 6 = =, —= = 36} — | + 36| -—
N (ﬁ) ( ﬁ)

~-36J2 <0

Therefore, maximum area

N,
=9sin2(§£)+1ssm~fﬁ)
8 8

i)
V2

2
=9(1+2%
( 2)

=154 cm’ [A1]

A particle P moves in a straight line so that ¢ seconds after passing through a

fixed point O, its velocity, v m/s is given by

v, =1- 2
d Ge+1)?
@) Calculate the initial acceleration of the particle P. 2]
(ii) Show that the particle P is at instantaneously restat ¢ = % 2]

(iii)  Calculate the average speed of the particle P during the first 3 seconds
after passing O . [4]

Another particle Q moves in a straight line and its displacement, S m from O

after ¢ seconds is given by

(iv)  Find the distance from the fixed point O when P first collides with Q.

(2]
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(l) Vp = 1 —-W

L dv
-acceleration, a = —
ar

54

(3t + D’

[M1]

Initial acceleration = 54 m/s*  [Al1]

() At instantaneously rest, v, =0

i-—2 -0
(Br+1)?
(Bt+1)2 =9 - MI1]

(reject)
=-§- (Shown) [A1]

9
(3t +1)?

(i) S,= ﬂx— Tde

S, =f+—
i 3t+1

+c (M1}

Whenr=0,S§, =0,
0=3+c

c=-3

-3 [Al]

When
t=0,8 =0m
9
==,5= —I—l—m
3 3.

£=3,S=*l-§-m



Hence, the particles first collides at %m from the fixed point O.

14

average speed

4 3
3‘?“2 +1—0-
Mt
2
_®
920

-0989 m/s  [Al]

When P collides with 0, S, = 5,

i+ 3 —3=t-1
3+l
3 _
3t +1
314—'1=2
2
r=L [M1]
6 i
1 1
When t=——,SQ=——1
. 6 6
5

[A1]

11 In the diagram,. A, B, C and D are on the circle. MN is a tangent to the circle
at 4. MBC is a straight line.

M
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(a)  Name a triangle which is similar to triangle CAM . [
AC\' M
Henceprove that | — | = ——. 3]
P ( BA ) BM [
(b)  Given further that AD and BC are parallel, show that ‘
(i) triangle ABM 1s similar to triangle ADC. 2]
(i) ADx AM = ACxCD. 2]
@
AMB = CMA (common angle)
MAB = MCA (alternate segment theorem)
tnangle CAM issimilar to tnangle ABM [B1]
C MC
AC M _mMC B1]
BA BM MA o
2 2
ACY _(AM [B1]
BA BM
- BMxMC  (\M?=mCxBM) [BI]
BM
_Mc
BM
2
(%3) - % (proved) [ p if no conclusion]
(b) A i
ABM = ADC ( angle in opposite segment)
MAB=MCA (alternate segment theorem)
= CAD (alternate angle, AD//BC)
triangle ABM is similar to triangle ADC B 2,10}
4 oy
AB MB
4D _ 4B
D MB
AD AC . AB  AC
— =" since — = — (fr it Bl
cD ~ AM mB - an o P @ Bl

ADx AM = ACxCD (Proved) [ p if no conclusion]

~ End of Paper
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Mathematical Formulae

L ALGEBRA
Quadratic Equation

For the equation ax” + bx+c=0
_ —h=xb’—4ac

B 2a

Binomial expansion

- (a+b) =a" +k( ;’ )a.""b+( ;‘ )a"‘zb%..,@-( h )a""b"+.,.fb“.
r

L

where 7 is a positive integer and

n }_ nt ___n(n—l)...(n—;‘«rl)
rj o orin-nt r!

2. TRIGONOMETRY

Identities

sin®A+cos’A=1
sec’A=1+tan’ A
cosec’A=I1+cot’ A
sin{A+B)=sinAcosB+cosAsinB
cos(A=B)=cosAcosBTsinAsinB
tanA+tan B
1FtanAtan B
sin2A =2sin Acos A

cos2A =cos” A-sinfA=2cos? A-1= 1-2sin” A

tan{(AxB)=

2
tan2A = _~‘_a_“_7A__
l-tan" A
Formulae for AABC
a b c

sinA  sinB  sinC
a*=b*+c* —2bccos A

=lbcsinA
2



3

The curve y=1f(x) is such that £'(x)=(k-2)e™.

®

(i)

®
(i)
(i)

The equation of a curve is y=6x3.

®
(i)

@

(i)

(iii)

(iv)

For y to be an increasing function of x, what condition must be applied
to the constant k? (2]

Given that P(0,3) is a point on the curve and the gradient of the

tangent to the curve at P is 4, find an expression for f(x}. {4}
Differentiate In (sin x) with respect to x. 2]
Show that &(—ix—(xcotx) = cot x— xcosec’x. 3]
Using the results from parts (i) and (ii), find f xcosec’x dx. = [3]

s

JRR RN

Sketch the curve y=6x?. 2]

The point P lies on the curve such that the gradient of the normal to the
curve is ~EIZ— . The normal at P meets the x-axis at 4 and the y-axis at B.

Find the ratio AP:PB. . (6]

Given that n is a positive integer, write down, without simplifying,

the (» +1)th term in the binomial expansion of (—]25—-}52—) . m
x
The binomial expansion of (—;— - —2) has a constant term. Show that
X
n is a multiple of 3. 1]

Given that n =9 and that the constant term is —-2625

, find the
value of £. 3]

Using the value of k found in part (iii), find the term independent of x

. 9
in the expansion of (2 + x> )(—;£ - L) ) [3]
x .

2



" The equation of a curve is y =

The diagram shows a triangle 4BC such that AB = (242 -1) cm and
AC=(4V2 + 7) cm. The point X lies on AC such that ZAXB = ZABC.

(i) Show that AX x AC = AB”. ) 2]
1
(i)  Find an expression for AX in the form ﬁ(-a +62 ) . (4]
(i)  Given that BC? =72 +602 , show that ZAXB = 90°. (3]
(2x-5)

, where x=1.
x-1

. . . d . . .
(i) Find an expression for d-xv— and obtain the coordinates of the stationary

points of the curve. [5]

2
(i)  Find an expression for gd;}; and show that its can be expressed in the

form

( )3 . Hence, or otherwise, determine the nature of these
x-1

stationary points. [4]

The highest point on a circle C, is (2,8). The line T, 3y =42—-4x, is a tangent
to C, at the point (6,6).
@ Find the coordinates of the centre of C,. (4]

(ii)  Find the equation of C,. (2]
The circle C, is a reflection of C, in the line T

(iii)  Find the equation of C,. (33
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(). Showthat 3x-1 is a factor of 3x° +11x” +8x—4 and hence factorise

completely the cubic polynomial 3x* +11x* +8x-4.
5x>=2x+11
3x* +11x* +8x-4

5x2-2x+11
3x>+11x* +8x-4

(ii) Express as the sum of 3 partial fractions.

(iii) Hence find f

The roots of the quadratic equation 4x” +3x+1=0 are 1 and —1—
a

(i)  Find the value of a’+f°.
(iiiy Show that the value of o’ + 8’ is 9.

(iii)  Find a quadratic equation whose roots are o’ + 8 and a+ f°.

s A R
g
© =
° 3
B
D
P C Q

(3]

[4]

(31

(4]
[2]
(4]

The diagram shows a rug in the shape of a rectangle ABCD such that AB=5m
and AD = 2 m. The rug is placed inside a rectangular function room PQRS
such that each of the corners A4, B, C and D touches the sides of the room SR,
SP, PQ and QR respcctively. The side of the rug 4B makes an acute angle 8
with the side of the room SR. The lengths of the room SR and SP are L m and

W m respectively.

(a) (i) Find the values of the integers a and & for which
L =acosf+bsinb.

(i) Obtain a similar expression for 7.

(iii) Hence find the perimeter of the room PQORS in exact form if

PQORS is a square.
(b)  Using the values of ¢ and b found in (a) part (i),

(i) express L in the form Rcos(8-a), R>0 and 0° < <90°.

(il) find the value of 8 if L =4 and the area of the rectangular

function room PQORS.

(2]
(1]

(3]

(2]

(4]
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The amount of expendlture, $y, incurred by a textile company is related to $x,.

the-amonnt of sales geneérated. The variables x and y are related by the fornla
k a

'x“, where. a and k are -constants. The following table shows

xéorraspgndlng,\(élﬂés of xandy.

*(5) 6 | 35 234 1995 | 6310
(8 148 | 295 628 | 1480 2344
(®  Plot lgy against lgx. for the given data and draw a straight line
graph. (3]
(i)  Use your graph to estimate the value of a and of £. 43
(ili)  Estimate the amount of expenditure incurred when the sales
generated is $4000, (2]
(iv)  Draw a straight line on the same axes to estimate the amount of

sales to be generated in order for the textile company to breakeven, [2]

- End of Paper -
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Mattematical Formulae
1. ALGEBRA
Quadratic Equation

For the equation ax’+ bx =0

o ~bxb? —4ac

2a

Binomial expansion

r

4

' (0+b)"=ﬂ"+( ": )a““bﬂr( z )a""2b2+..,+( " }a""b’-v—

where n is a positive integer and

( n )_ nt" " an-D. n-r+1)
r

Critn—r)! r!

2. TRIGONOMETRY

Identities

sinA+cos’A=1
sec’ A=1+tan’ A
cosec’A =1+cot® A
sin(A +B)=sinAcosBxcosAsinB

cos(A=B)=cosAcosBFsinAsinB

tan(A = B) = M
I¥tanAtanB
sin2A=2sinAcosA

cos2A=cos’ A-sin®A=2cos’ A-1=1-2sin" A

{@an2A = 2tan;4
1-tan" A
Formulae for AABC
a b c

sinA sinB  sinC
a’ =b*+c* ~2bccos A

A= lbcsinA
2

4

LY A



3
Thecurve y=£(x) issuchthat £'(x)=(k-2)e>".
()  Foryto bean inéreasing fiinction of x, what condition must be applied

to the constant £? @
Solution: o
For yis an increasing function of x,
s {k-2)e" >0 . M1]
Since e¥ >0, k=250
Sk>2 . [Al)

(if)  Given that P(O_,Bj) is a point on the curve and the gradient of the
tangent to the curve at P is 4, find an expression for f(x). (4]

Solution:

f'(x)=(k-2)e”

Subst x = 0 and (%) = 4,
4=k-2

k=26 [Al]

(k-2)e*

f(x)= +c [(M1]

Subst x = 0 and f(x) = 3,
.4
3 =§+ c

—12
c=13 [Al]
f(x) =§e3x .+-35- [Al]



@

(i)

(iii)

4

Differentiate In (sin,x) with respect to x. [2]
~ Solution:
2. (In@sin®))= [M1]
—(Intsin 0))
[Al]
Show that —d-x COLX = Cot X — xcosec x. 3]
X
Solution:
1 xcotx= »‘i X
dx dx tanx
tanx —xsec’ x
- M1
tan® x (M1]
1 cos’ x
=cotx—Xx - — ™M
cos” x/\ s x
| =cotx—xcosec’x [Al])
Using the results from parts (i) and (ii), find f xcosec’x dx. (31
Solution:
f(cotx~xcos_ec2x) dx=xcotx+c [M1]

fcotx dx—fxcoseczx dy=xcotx+c
{ln(sinx)+c]—fxcosec2;v dy=xcotx+c [MI]

fxcoseczx dx=ln(sinx)~xcotx+c [Al]



The equation of a cuiveds y = 6x§
1} | Sketchthe curve: y = 6x§ . {2}
Solution: :
Solution: ¥ A .. 6x§
im T X — Im
> X

(i)  The point P lies on the curve such that the gradient of the normal to the

1 N :
curve is -3 The normal at P meets the x-axis at 4 and the y-axis at B,

Find the ratio AP:PB. ' B [6]
Solution:

Y= Gx%

% = x—% M1]

Gradient of tangent at P=-1+ (—:1;)

<

=2
dy . = .
When -~ =2, 4x3=2 M1}
dx
2
1
x3=2
x=8 [Al]
y=6(8)3
=24 [Al]

Equation of normal, y-24= —;l)-(x -8)

A(56,0), P(8,24),B(0,28)
AP:PB=24-0:28-24
=24:4
=6:1 [Al]



®

(ii)

(iii)

@iv)

Given that n is a positive integer, write down, without simplifying,

the (r +1)th term in the binomial expansion of (g_‘- - %) . [1]
Solution:
(r + Dth term =( " )(i)m (__1?2‘)' B1]

r \2 x
The binomial expansion of (% - %)n has a constant term. Show that
n is a multiple of 3. (1]
Solution:

For constant term, n—-r-2r=0

n=3r
Since r is an integer and n = 37, 7 is a multiple of 3. [A1]

) . 2625
Given that n = 9 and that the constant term 18 —

, find the
value of &. : 3]
Solution:
Constant term = — —2—6;—5—

9 Y1\ iy 2625
[3 )(—2-) (k) = 5 (M1}

64 2
k* =1000 M1]
k=10 [Al]

Using the value of & found in part (iii), find the term independent of x

9
in the expansion of (2 +x° )(% - 5—2) ) [3]
Solution:
let9-3r=-3
r=4

9
Constant term in the expansion of (2 + x’)(—x- - -122)
x

AR JeI v

=36750 [Al]




The diagram shows a triangle ABC such that AB = (2\/5 ~1)cm and
AC = (4\/5 +7) cm. The point X lies on AC such that ZAXB = ZABC.

®

Show that AX x AC = AB®. (2
Solution:

£LAXB=/LABC (given)

LXAB=/BAC (common £)

AAXB is similar to AABC.

AX _AB- M1}

AB . AC »

L AX x AC = AB? [Al]

1
(ii) Find an expression for 4X in the form 'ﬁ(‘”bﬁ) . [4]

Solution:
AX x AC = AB?

=AB2
AC
[22-1]
7442
(2\5)2—-4\/—2—“
7+4\[2—
_9-42 7-4V2
7+42 7 7-42
_63-362-28V2+32
17
1
=1—7—(95—64\5) (Al]

[\

M1]

(M1]

[M1]

(iiiy Given that BC? = 72 +60+/2 , show that ZAXB = 90°. (3]

Solution:
AB?+BC? = [2Ji - 1]’ +72+6042

=8-4J2 +1+72+602
=81+5642 M1}



AC*=[a42+ 7]2

=32456:/2+49

=81+56+2 M1}
Since AC? = AB*+ BC?, by Converse of Pythagoras’ Theorem,
LACB=90°.

[Al]
- LAXB =90° (since ZAXB =/ ACB)
2x-5Y
The equation of a curve is y = (—j———l—)— .
. X—

(D Find an expression for % and obtain the coordinates of the stationary
points of the curve. [5]
Solution:

&y _(x-1)2)2x-5)(2)-Cx-5) (1)
— = 5 [M1]
dx (x - I)
_(2x ~5)(4x-4-2x+5)
(x-1)°
2x-5H2x+1
_@r-s)(exen) .
(x-1)
dy
When — =0, (2x-5)(2x+1)=0  [M1]
x=25 or -05 [Al1]
When x=25, y=0
When x=-05, y=-24
Stationary points are (2.5,0) and (-0.5,-24) [Al]
2
(i1)

. . d . .
Find an expression for ax—’r and show that its can be expressed in the

form )3 . Hence, or otherwise, determine the nature of these
x-1

stationary points. [4]
Solution:

_di}_l _ (.\*—1)2 (Sx -8)~(2x —5)(2x+1)(2)(x_1)
dx® (x-l)‘

(x-1){8x" ~16x+8-8x" +16x+10)

(x-1)
= [Al]

Mi]




d’ dy_ 18
& (<05-1)
(<0.5,~24) is a maximum point. [Al]
2
When x=2.5, d ); —-—1—8-—3->0
dx®  (2.5-1)

(2.5,0) is a minimum point. [Al]

When x =-0.5, <0

The highest point on a circle C, is (2,8). The line T, 3y =42 -4x, is a tangent
to C, at the point {6,6).

(i) Find the coordinates of the centre of C,. 4]
Solution:
Since the highest point on a circle C; is (2,8), the centre is (2, ). [M1]

Gradient of normal at (6, 6) = 1+ (—- z) [M1]

Equation of the normal at (6,6): (y—6) = %(x - 6)

(y—6)=2(x—6)
y=2x+3 [Al]
Whenx=2, y=3
The centre of C, is (2, 3). [Al]

(ii)  Find the equation of C,. 2]

Solution: .
Equation of C,: (x — 2)2 + (y — 3)* = (8 — 3)*[M1]
(x—22+(y—3)2=25 [A1]

The circle C, is a reflection of C, in the line 7.

(iiiy  Find the equation of C,. 3]
Solution:
The centre of C, is (2 +2(6—-2),3+2(6- 3)) = {10,9). [B2]

Equation of C,: (x —10)* + (y —9)? = 25 (A1}



(i)
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Show that 3x =1 is a factor of 3x> +11x* +8x -4 and hence factorise

completely the cubic polynomial 3x* +11x* +8x-4.

Solution:
Let f(x) =3 +11x* +8x~-4

3 2
f(l)=3(l) +11(l)-+8(1)-4 M)
3)77\3) 5 T
-0

Since f (é) =0, (3x-1) is a factor.

30 +11x" +8x -4 = (3x-1){x* + bx +4)
Comparing x term, 12-b=8

b=4
3x +11x° +8x—4=(3x—1)( 2 +4){+,4) [M1]

- (Bx=1)(x+2)’ (A1l

5x*-2x+11

Express —— .
3x"+11x"+8x-4

Solution:

Sx*-2x+11  S5x*-2x+11
3% +11x" +8x -4 (3x-1)(x+2)’

s°-2x+11 __A B __C (M1]

(Bx-1)(x+2)° (3x-1) (x+2) (x+2)
S5x*-2x+11=A(x+2)" + B(3x-1)(x+2)+C(3x-1)
Letx=-2, -7C=35

C=-5 [A1]
Letx=l £A=%
9 9
A=2 [Al]
Letx=0, 4A-2B-C=11
8-28—(—5)=11
B=1 [Al]
5x* =2x+11 2 i 5

3 +11x +8x—4 (3x—1)+(x+2) (x+2)2

as the sum of 3 partial fractions.

(3]

(4]
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Sx-2x+11
3 +11x* +8x-4

(iii)  Hence find [ 31

Solution:-
5x*-2x+11 2 1 5
dx = -
f3xf+11x2+8x~4 / (3x—1)+(x+2) (;chz)"'jx

2 5 -1
== -~ ) T
3ln(Bx 1)+In(x+2) (_})(x+2) +c M2}

=—§-1n(3x-1)+1n(x+2)+—§——+c [A1]

(x+2)

The roots of the quadratic equation 4x” +3x+1=0 are 1 and 1 .
) ax
()  Find the value of o®+ g7, [4]
Selution:
Sum of roots:= + = = — 2
a B o4

a+p 3

apf 4
Product of roots: Elb" => . M1]
aff =4
a+f
o+ ﬁ = -{-x?;—x C(,B
—§x4
= -3 (M1}
a? + p% ={a + f)? - 2ap
=(=3*-2(49) [M1]
=1 [A1]

(ili)  Show that the value of @’ +p%is 9. [2]
Solution:
a’+p’=(a +ﬁ)(a2 —a,6+/32)
=(-3)(1-4) [M1]
=9 (shown) [Al]

(iii)  Find a quadratic equation whose roots are @’ + 8 and a + °. [4]
Solution:
o’ +f+o+p=1+(-3)
-2 (B1]
(azi + ﬁ)(a + ﬂz) =+’ +af+
=9+(4) +4 M1}

=29 [Al]
The new equation is x? + 2x +29 =0 [A1]
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s 4 R
)
© LS
> 3
B
D
P C Q

The diagram shows a rug in the shape of a rectangle ABCD such that AB=5m
and AD = 2 m. The rug is placed inside a rectangular function room PORS
such that each of the corners 4, B, C and D touches the sides of the room SR,
SP, PQ and QR respectively. The side of the rug AB makes an acute angle 6

with the side of the room SR. The lengths of th¢ room SR and SP are L m and
W m respectively.

(a) (i) Find the values of the integers a and & for which

- L=acos@+bsinf. . o {2

Solution:

L=SA+AR

=Scosf +2sind

a=5, b=2 [B2]
(ii) Obtain a similar expression for #. 1

Selution:

W =SB+ BP
= 5sin@+2cosd (B1}

(iii) Hence find the perimeter of the room PORS in exact form if
PQRS is a square. (3]

Solution:

W =SB+ BP

=5sin8+2cosf [B1}
If PORS is asquare, L=W
S5cos@+2sin@=5sin8+2cosf [M1]
3sin@ =3cosf
tang=1
g=45° [Al]
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Perimeter of PORS = 4(5cos45° +25sin45°)

{2 2

=142 m [A1]

(b)  Using the values of ¢ and b found in (a) part (i),

(i) express L in the form Rcos(6-a), R>0 and 0° <& < 90°,

Solution:
‘Z};é 5cosf+2sinf

=5 +27 cos (9 —tan™' %)
=\/2_9608(3~v2} .801")

=+29cos(8-21.8°) (1dp) | [B2]

(ii) find the value of @ if L =4 and the area of the rectangular

function room PORS.
Solution:
L=4
J29 cos(6-21.801°) = 4
» 4
cos{6-21.801°%) = —— M1
( )5 (1]
- 0-21.801°=42.031°
g =63.832°
=63.8° (1dp) (A1]

Azea of room POQRS =L xW
R =4 x(55in63.832°+2¢c0s63.832°)
- 4x5.3695 |
=215 m’ [AT]

(21

141

MI]
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The amount of expenditure, 8y, incurred by a textile company is related to Sx,
the amount of sales gcncmted The variables x and y are related by the formula

y= 10* x°, where incurs & and k- are constants. The following table shows

-cgrrespondmg, values of x and ¥,

x® | & | 35 234 1995 6310
y@& | 148 295 628 1480 2344
(i)  Plot lgy agdinst 1gx for the given data and draw a straight line
graph. [3]
(if)  Use your graphto estimate the value of @ and of £. [4]

(iti)  Estimate the-amount of expenditure incurred when the sales
generated is $4000. 2]

(iv)  Draw a straight line on the same axes to estimate the amount of
sales to be generated in order for the textile company to breakeven. [2]
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(u) y = 10kx@
lgy = lg10% + Igx®

lgy = algx + k
a = gradient
_337-247
T 3.80-1.54
= 04+
(accept 0.375 — 0.425) |
k =lgy —intercept . ~
=185

ca i § ..

|

(iii} When x=4000,

(accept 1.82 -1.88)

lgx =~ 3.6
From the graph,

-} when lgx = 3.6,

lgy = 3.3 (3.25-3.35)
y = 2000
When sales is $4000,
expenditure is $2000.
(accept $1778 - $2239)

Y

TR Y

v

(iv) To breakeven,
Sales = Expenditure

xX=y
lgx=1gy
The graphigx=lgy
cuts the original graph at
lg x = 3.1(accept 3.05 - 3.13)
Amount of sales to breakeven
= $(103 l)
=$1260

(accept $1120 - $1330)







