2017 4E AM Geylang Methodist SA1

GMS(S)/AMaths/MYE2017/4E/5N(A)

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

sin² A + cos² A = 1 sec² A = 1 + tan² Acosec² A = 1 + cot² A

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

 $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

 $\sin 2A = 2\sin A \cos A$

 $\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

Show that the equation $x^2 + (2 - k)x + k = 3$ has real roots for all real values of k. [4]

1

2

- (i) Sketch the graph of y = |4 x|. [2]
 - (ii) Determine the number of intersections of the line $y = \frac{1}{2}x$ with y = |4 x|, justifying your answer. [2]

3 Express
$$\frac{3x^2+2x-28}{x^2-5x+6}$$
 in partial fractions. [5]

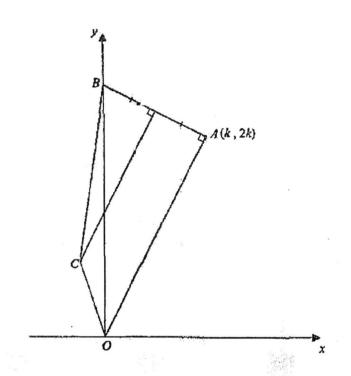
A rectangular block has a square base. The length of each side of the base is $(2\sqrt{2} - \sqrt{3})$ m and the volume of the block is $(21\sqrt{2} - 13\sqrt{3})$ m³. Find, without using a calculator, the height of the block in the form $(a\sqrt{2} + b\sqrt{3})$ m, where a and b are integers.

5 Find the range of values of x which satisfy both of the inequalities

$$3-2x < 5$$
,
 $2x^2 + 3x < 2$. [4]

6 Given that
$$\log_b(x^3y) = p$$
 and $\log_b(\frac{y}{x^2}) = q$, express $\log_b(xy)$ in terms
of p and q. [4]

- 7 Solve the equation $e^{2x} = e^x + 12$.
- 8 Given that the expansion of $(a + x)(1 3x)^n$ in ascending powers of x is $2 47x + bx^2 + \dots$ find the values of the constants n, a and b. [6]


Turn over

[5]

GMS(S)/AMaths/MYE2017/4E/5N(A)

- 9 A collector bought a painting in the beginning of 1990. The value V dollars of the painting is given by the formula $V = 2800 e^{kt}$, where t is the time in years since the beginning of 1990 and k is a constant. Find the value of the painting when the collector bought it. (i) [1] The value of the painting in the beginning of 2010 was 10000 dollars. Find the expected value of the painting in the beginning of 2020. [3] (ii) (iii) Find the year in which the expected value of the painting first crosses 40000 dollars. [2] Solve $\log_{16}(3x-1) = \log_4(3x) - \frac{1}{2}$. 10 [5] The expression $ax^3 + 2ax^2 - 15x + b$ is exactly divisible by x + 3 but leaves 11 a remainder of -12 when divided by x-1. Find the value of a and of b. [4] (i) Using the values of a and b found in part (i), factorise the expression (ii) completely and hence solve the equation $ax^3 + 2ax^2 - 15x + b = 0$ [4] The roots of the equation $2x^2 - 3x + 4 = 0$ are α and β . 12
 - (i) Form a quadratic equation whose roots are $\alpha 2\beta$ and $\beta 2\alpha$. [6]
 - (ii) Show that $4\alpha^3 = \alpha 12$. [3]
 - (iii) Find the value of $\alpha^3 + \beta^3$. [3]

GMS(S)/AMaths/MYE2017/4E/SN(A)

The diagram shows the quadrilateral OABC. The coordinates of A are (k, 2k), where k > 0, and the length of OA is $\sqrt{80}$ units.

(i) Show that k = 4. [2] AB is perpendicular to OA and B lies on the y-axis. Find the equation of AB and the coordinates of B. (ii) [4] The point C lies on the line through O parallel to y + 3x = 5 and also on the perpendicular bisector of AB. (iii) Calculate the coordinates of C. [4]

(iv) Calculate the area of the quadrilateral OABC. [2]

13

[4]

[4]

- 1 A curve is such that $\frac{dy}{dx} = \frac{4}{(2x+3)^2}$. Given that the curve passes through the point (1, -2), find the coordinates of the point where the curve crosses the x-axis. [4]
- 2 The radius, r cm, of a sphere is increasing at a constant rate of 0.5 cm/s.
 Find, in terms of π, the rate at which the volume is increasing at the instant when the volume is 972π cm³.
 [Volume of sphere, V = 4/3 π³]
- 3 An experiment on the topic of Optics in Physics was carried out to find the focal length, f cm, of a certain type of lens. The experiment requires the student to place an object at a distance, u cm, from the lens and to record the distance, v cm, at which the image can be seen on the other side of the lens. The data below shows some of the tabulated experimental results.

55	50	40	30	20	15	71
14.7				20	52.5	u V
	15.2	18.3	18.9	27.8	52.5	ν

It is known that u, v and f are related by the equation $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$. It is believed that an error was made in recording one of the values of v.

- (i) Plot $\frac{1}{v}$ against $\frac{1}{u}$ and draw a straight line graph which represents the experimental values in the table above. [2]
- (ii) Determine which value of v is the incorrect reading.
 Use the straight line graph obtained in part (i) to estimate the correct value that should replace the incorrect value of v. [2]
- (iii) Estimate the focal length of the lens, $f \, cm$, from the graph. [2]
- (iv) Verify the accuracy of the straight line graph drawn by evaluating the gradient. [1]

ļ	A po	lynomia	=12x+4,	f'(-1) = 1	and	f(2) = 19.	
	(i)	Using integration, show that f(a	$(x) = 2x^3 + 2x^3$	$x^2 - x - 3$.			

4

(ii) Show that x = 1 is the only solution to f(x) = 0. [3]

[2]

[2]

41

- 5 Variables x and y are connected by the equation $y = a^{b+x}$, where a and b are constants. Using experimental values of x and y, a graph was drawn in which lg y was plotted on the vertical axis against x on the horizontal axis. The straight line which was obtained passed through the points (0.48, 0.7) and (0.6, 0.82). Find
 - (i) the values of a and b, [4]
 - (ii) the coordinates of the point on the line at which $y = 0.1^{x}$. [3]
- 6 A curve has the equation $y = (x-1)\sqrt{2x+1}$.

(i) Show that
$$\frac{dy}{dx} = \frac{kx}{\sqrt{2x+1}}$$
, where k is a constant and state the value of k. [4]

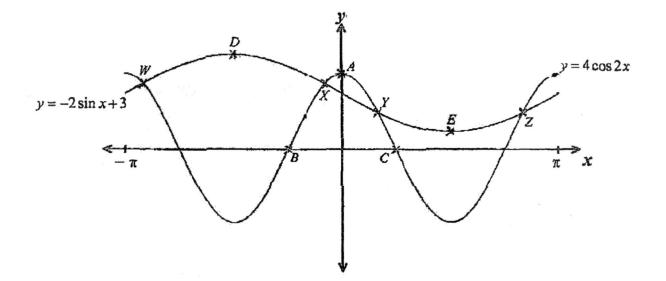
(iii) Hence, evaluate
$$\int_0^{12} \frac{6x}{5\sqrt{2x+1}} dx$$
. [4]

7 The point A(-1,2) lies on a circle with centre (3, -1).
(i) Given that AB is the diameter of the circle, find the coordinates of B.
(ii) Find the radius of the circle and hence, state its equation.

Another point C(3, 4) lies on the circle.

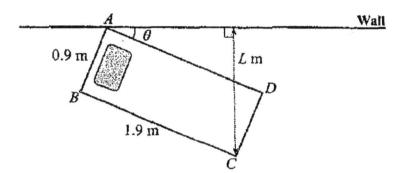
A line which passes through the point A, cuts the circle at point D and is parallel to BC. (iii) Find the equation of the straight line BD.

8 The equation of a curve is $y = x^2(x-2)^2$.


points.

(i) Show that dy/dx = 4x (x-1)(x-2) and hence state the number of stationary points of the curve. [3]
(ii) Find the coordinates of the stationary points of the curve. [3]
(iii) Find an exp dx⁻ ice determine the nature of these stationary

2


9	The	curve $y = f(x)$ is such that $f(x) = \frac{2x+6}{x+1}$ where $x \neq a$.	
	(i)	State the value of a.	[1]
	(ii)	Find $f'(x)$ and explain why the curve $y = f(x)$ is a decreasing function.	[4]
	The	curve intersects the x -axis at the point A .	
	(iii)	Find the equation of the tangent at A .	[3]
	(iv)	If the normal to the curve at A meets the y -axis at B,	
		show that the area of $\triangle AOB$, where O is the origin, is 4.5 square units.	[3]

The diagram shows the curves $y = 4\cos 2x$ and $y = -2\sin x + 3$ for $-\pi \le x \le \pi$ radians. 10 A, B and C are the axes intercepts of the curve $y = 4\cos 2x$. D and E are the turning points of the curve $y = -2\sin x + 3$. The curves intersect at the points W, X, Y and Z.

- (i) State the coordinates of A, B, C, D and E. [5]
- Show that the equation $4\cos 2x = -2\sin x + 3$ can be expressed as (ii) $\sin x - 1 = 0$.
- (iii) Hence, find in radians, the x coordinate of W, X, Y and Z. [4]

11 The diagram shows a rectangular single bed with wheels, ABCD, which is hinged to the wall at A. It is given that the dimensions of the bod is 1.9 m by 0.9 m and L m is the perpendicular distance from the wall to C. The bed can be rolled such that the angle between the wall and the side, AD, of the bed is θ and that $0^{\circ} \le \theta < 90^{\circ}$.

(i) Show that the length, L m, can be expressed as L = 1.9 sin θ + 0.9 cos θ. [3]
(ii) Express L in the form Rsin (θ + α) where R > 0 and α is an acute angle. [3]
(iii) Hence, find the maximum value of L and the corresponding value of θ. [3]
(iv) Find the value of θ when L = 1.3 m. [2]

12 (i) Prove the identity
$$\cos^4 x - \sin^4 x + 2\cos^2 x - 1 = 2\cos 2x$$
. [3]

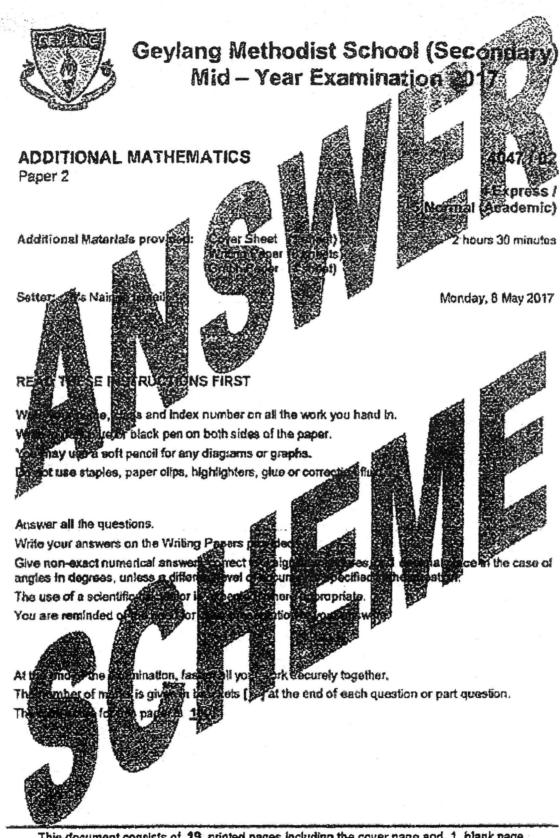
- (ii) Solve the equation $2\cos^4 x 2\sin^4 x = \sqrt{2}$, for $0 < x < \pi$, giving your answers in terms of π . [4]
- (iii) Given that $3\cos^4 x 3\sin^4 x = \sqrt{3}\sin 2x$, and without using a calculator,
 - (a) deduce that $\tan 2x = \sqrt{3}$, [2]
 - (b) find the possible values of $\tan x$. [3]

1				1
	$x^{2} + (2 - k)x + k - 3 = 0$ $b^{2} - 4ac = (2 - k)^{2} - 4(1)(k - 3)$ $= 4 - 4k + k^{2} - 4k + 12$ $= k^{2} - 8k + 16$ $= (k - 4)^{2}$ ≥ 0 The equation has real rooms for all real values of k.	M1 M1A1 A1	[4]	> 0 is not acceptable
2(i)	y = 4 - x (0,4) (B210		
(ii)	No. of solutions = 2 Justification: Correct sketch/ Explanation/ Solving	AI Al	[4]	
3	$x^{2} - 5x + 6 \frac{3}{3x^{2} + 2x - 28}$ $3x^{2} - 15x + 18$ $17x - 46$ $x^{2} - 5x + 6 = (x - 3)(x + 2)$ Let $\frac{17x - 46}{(x - 3)(x - 2)} = \frac{A}{x - 2} + \frac{B}{x - 3}$	BI MI		
	17x - 46 = A(x - 3) + B(x - 2) 34 - 46 = -A (Taking x = 2) A = 12 (Taking x = 3) $\therefore \frac{12}{x^2 - 5x + 6} = 3 + \frac{12}{x - 2} + \frac{5}{x - 3}$	MIA1	[5]	

ADDITIONAL MATHEMATICS Paper 1 (4047/01) - Marking Scheme

Reality of the local division of the	CENTER TRANSFERRED AND THE ADDRESS				
4	Height = $\frac{21\sqrt{2}-13\sqrt{3}}{(2\sqrt{2}-\sqrt{3})^2}$	BI			
	$\left(2\sqrt{2}-\sqrt{3}\right)^{-1}$				
ж 5	$=\frac{21\sqrt{2}-13\sqrt{3}}{8-4\sqrt{6}+3}$				
	$= \frac{21\sqrt{2} - 13\sqrt{3}}{21\sqrt{2} - 13\sqrt{3}}$				
	$=\frac{11-10}{11-4\sqrt{6}}$	M1			
	$=\frac{(21\sqrt{2}-13\sqrt{3})}{(11-4\sqrt{6})}\times\frac{(11+4\sqrt{6})}{(11+4\sqrt{6})}$	M1			
	$(11-4\sqrt{6})$ $(11+4\sqrt{6})$		1		
	$=\frac{231\sqrt{2}+84\sqrt{12}-143\sqrt{3}-52\sqrt{18}}{12}$	MI			
	$=\frac{75\sqrt{2}+25\sqrt{3}}{75\sqrt{2}+25\sqrt{3}}$				-
	$=\frac{7342+2343}{25}$				
	$=(3\sqrt{2}+\sqrt{3})$ m	Al	[5]		
6 5					
5	3-2x<5			1	2004
	-2x < 2 $x > -1$	BI			
	$2x^2+3x-2<0$				
	(2x-1)(x+2) < 0				
	$-2 < x < \frac{1}{2}$	M1A1			
	_				
	$\therefore -1 < x < \frac{1}{2}$	Al	[4]		
	2				
6	$\log_b(x^3y) = p$	ļ		<u> </u>	Charles Mittel Annual A
	$3\log_b x + \log_b y = p \dots \dots \dots \dots \dots (1)$	MI			
	$\log_b\left(\frac{\gamma}{r^2}\right) = q$				
	$\log_b y - 2\log_b x = q \dots (2)$				
		Ml			
	$(1)-(2) \Longrightarrow 5\log_b x = p-q$			Į	
	$\log_b x = \frac{p-q}{s}$			*	
	$\log_b y = q + 2\frac{(p-q)}{5}$				
	$\log_b xy = \log_b x + \log_b y$				
	$=\frac{p-q}{2}+q+2\frac{(p-q)}{2}$				
		MIA1	[4]		
				-	
				in the second seco	1.100

and the second se				
7	$e^{2x} - e^x - 12 = 0$		1	
	let $y = e^x$			
	$y^2 - y - 12 = 0$	MI	I	
	(y-4)(y+3) = 0			
	y = 0 or $y = -3$ (N.A)	MIAI	[
	$e^{x} = 4$	MIAI		
	$x = \ln 4$			
		26141		
	= 1.39 (3 s.f.)	M1A1	[5]	
0				
8	$(a+x)(1-3x)^n$			
	$= (a+x) \left[1 - \binom{n}{1} (3x) + \binom{n}{2} (3x)^2 + \cdots \right]$			
	$= (a + x) \left[1 - 3nx + \binom{n}{2} 9x^2 + \cdots \right]$			
		MIA1		
	$= a - 3anx + \binom{n}{2}9ax^2 + x - 3nx^2 + \cdots$			
	$= a + (1 - 3an)x + [\binom{n}{2}9a - 3n]x^2 + \cdots$			
	$-u + (1 - 5un)x + [(2)9a - 5n]x^{2} +$	MI		
	By comparison,			
	a=2	AI		
	$1-3\times 2n=-47$			
	-6n = -48	Al		
f	n = 8			
	$b = \binom{8}{2} \times 9 \times 2 - 3 \times 8 = 480$	AI	[6]	
9	(i) when $c = 0$			
	V = \$2800	B 1		
	t=20			
	$10000 = 2800e^{20k}$	1		
	10000 - 20002	1		1
	$e^{20k} = \frac{10000}{1000}$			
	$e^{20k} = \frac{10000}{2800}$			
-	$e^{20k} = \frac{10000}{2800}$			
-	$e^{20k} = \frac{10000}{1000}$	MIA1		
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$	MIAI		
	$e^{20k} = \frac{10000}{2800}$	MIAI		
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$ In the beginning of 2020, $t = 30$	MIAI		
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$			
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$ In the beginning of 2020, $t = 30$	MIA1 Al		
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$			
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$ $= 18900			
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$			
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln\left(\frac{10000}{2800}\right)}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$ $= 18900 (iii) $40000 = 2800e^{0.063648t}$			
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln(\frac{10000}{2800})}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$ $= 18900 {iii} $40000 = 2800e^{0.063648t}$ $t = \frac{\ln(\frac{40000}{2800})}{2800}$	Al		
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln(\frac{10000}{2800})}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$ $= 18900 {iii} $40000 = 2800e^{0.063648t}$ $\ln(\frac{40000}{2800})$			
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln(\frac{10000}{2800})}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$ $= 18900 {iii} $40000 = 2800e^{0.063648t}$ $t = \frac{\ln(\frac{40000}{2800})}{2800}$	Al		
	$e^{20k} = \frac{10000}{2800}$ $k = \frac{\ln(\frac{10000}{2800})}{20} = 0.063648$ In the beginning of 2020, $t = 30$ $V = 2800e^{30 \times 0.063648}$ $= $18898.06 \text{ (Accept)}$ $= 18900 {iii} $40000 = 2800e^{0.063648t}$ $t = \frac{\ln(\frac{40000}{2800})}{2800}$	Al	[6]	


10		1. K. K. A.		
10	$\log_{16}(3x-1) = \log_4(3x) - \frac{1}{2}$	1		
	2	ĺ		
	$\frac{\log_4(3x-1)}{\log_4 16} = \log_4 3x - \log_4 2$	DI		
		B1		B1 for correct
	$\frac{\log_4(3x-1)}{2} = \log_4\left(\frac{3x}{2}\right)$	MI		application of
	(3x)	2411		change of base
	$\log_4(3x-1) = 2\log_4\left(\frac{3x}{2}\right)$			Dase
	$\log_4(3x-1) = \log_4\left(\frac{3x}{2}\right)^2$			
	(47			
	$3x-1=\frac{9x^2}{4}$			
	$4 = 9x^2 - 12x + 4 = 0$	MIAI		
	$9x^2 - 12x + 4 = 0$ (3x - 2) ² = 0			
	$(3x-2)^{2} = 0$ $\Rightarrow 3x-2 = 0$		ļ	
	7			
	x = 2			
	3	Al	[5]	
11	(i) Let $f(x) = ax^3 + 2ax^2 - 15x + b$		1	
	f(-3)=0			
	-27a + 18a + 45 + b = 0			
	-9a + b = -45(1)	MI		
	f(1) = -12 a + 2a - 15 + b = -12			
	a + 2a - 15 + b = -12 3a + b = 3			-
	3a + b = 3 - (2) (1)-(2) $\Rightarrow -12a = -48$	MI		
	$(1)^{-}(2) \rightarrow -12u = -40$ a = 4			
	12 + b = 3			
	b = -9			
	a=4, $b=-9$	A2		
	(11)			
	$4x^2 - 4x - 3$		° ≚.	
	$x+3$ $4x^3+8x^2-15x-9$	1		
	$4x^3 + 12x^2$			
	$-4x^2 - 15x$			
	$-4x^2 - 12x$			
	-3x - 9			
	-3x-9			
	0			(
	$(x+3)(4x^2-4x-3)=0$	MI		
	(x+3)(2x-3)(2x+1) = 0	MIAI		
	$x = -3 - \frac{1}{2}$	A1	[8]	
Binnis Canild de apo gorques.				1

i

r Shakh

12	(i) $\alpha + \beta = \frac{3}{2}, \ \alpha\beta = 2$	BIBI	T]
	-			
	$\alpha - 2\beta + \beta - 2\alpha = -(\alpha + \beta) = -\frac{3}{2}$	Al	[
	$(\alpha - 2\beta)(\beta - 2\alpha)$		-	
	$= \alpha\beta - 2\alpha^2 - 2\beta^2 + 4\alpha\beta$	1 1	1	
	$= 5\alpha\beta - 2(\alpha^2 + \beta^2)$		l	
	$= 5\alpha\beta - 2[(\alpha + \beta)^2 -$			
	2αβ]		1	
	$= 9\alpha\beta - 2(\alpha + \beta)^2$			
	$=9 \times 2 - 2 \times \left(\frac{3}{2}\right)^2$			
		MIA1		
	$=\frac{27}{2}$			
	$\therefore \text{ The equation is } x^2 + \frac{3}{2}x + \frac{27}{2} = 0$			
	2 2		1	
	ie. $2x^2 + 3x + 27 = 0$	Al		
	(ii) Since α is a root,			
	$2\alpha^2 - 3\alpha + 4 = 0$	BI		
	$2a^2=3a-4$			
	$4\alpha^3 = 6\alpha^2 - 8\alpha$			
ļ	$=3(2\alpha^2)-8\alpha$			
	$= 3(3\alpha - 4) - 8\alpha$	MIA1		
	$= \alpha - 12$ (shown)		1	
	(iii) $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$	Bl		
	$=\frac{3}{2}[(\alpha+\beta)^2-3\alpha\beta]$			×
1	L _	TATAT	100	
	$=\frac{3}{2}\left[\left(\frac{3}{2}\right)^2-3\times 2\right]$	MIAI	[12]	
	= - 45			
ļ	8			
13.	1. (i) $(2k)^2 + k^2 = 80$		1	
	$5k^2 = 80$			
	$k^2 = 16$			
	k = 4			2
1		MIAI	1)
	(ii) A(4,8)			
	$M_{OA} = 2$		THE REAL PROPERTY IN	
	$M_{AB} = -\frac{1}{2}$			
	PAB 2	MI		Į.
	Francisco of AD is			
	Equation of AB is			
	$y - 8 = -\frac{1}{2}(x - 4)$		1	
		MIAI		4
		1	1	
	∴ <i>B</i> (0,10)	A1		
	1			

(iii) Equation of OC is $y = -3x$ (1) Midpoint of AB is (2,9)	BI		
Equation of the perpendicular of AB is y - 9 = 2(x - 2)	M1		
y = 2x + 5 (2) Solving (1) and (2), C is (-1, 3)	MIAI		
(iv) Area = $\frac{1}{2} \begin{vmatrix} 0 & 4 & 0 & -1 & 0 \\ 0 & 8 & 10 & 3 & 0 \end{vmatrix}$ = $\frac{1}{2} [40 + 10]$		[12]	
$= 25 \text{ units}^2$	MIAI	[12]	

This document consists of 19 printed pages including the cover page and 1 blank page.

Tum over

Mathematical Formulae

1. ALGEBRA

Quadratic Equation For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^{2} A + \cos^{2} A = 1$$

$$\sec^{2} A = 1 + \tan^{2} A$$

$$\csc^{2} A = 1 + \cot^{2} A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^{2} A - \sin^{2} A = 2\cos^{2} A - 1 = 1 - 2\sin^{2} A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^{2} A}$$

Formulae for **ABC**

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc\cos A$$
$$\Delta = \frac{1}{2}ab\sin C$$

A curve is such that $\frac{dy}{dt} = \frac{4}{(2x+3)^2}$. Given that the curve passes through the L point (1, -2), find the coordinates of the point where the curve crosses the x-axis. [4] Given: $\frac{dy}{dx} = \frac{4}{(2x+3)^2}$ and (1, -2)1 $y = \int \frac{4}{(2x+3)^2} dx = \int 4(2x+3)^{-2} dx = 4 \int (2x+3)^{-2} dx$ $=4\left[\frac{(2x+3)^{-2-1}}{(-2+1)(2)}\right]+c=4\left[\frac{(2x+3)^{-1}}{(-1)(2)}\right]+c$ $y = -2\left[\frac{1}{(2x+3)}\right] + c$ At (1, -2), (x=1, y=-2) $-2 = -2 \left[\frac{1}{(2(1)+3)} \right] + c$ $-2 = -2\left[\frac{1}{5}\right] + c$ $-2+\frac{2}{5}=c$ $c = -\frac{8}{5}$ $\Rightarrow y = -\frac{2}{(2x+3)} - \frac{8}{5}$ Crosses the $x - axis \Rightarrow y = 0$ $0 = -\frac{2}{(2x+3)} - \frac{8}{5}$ $\frac{2}{(2x+3)} = -\frac{8}{5}$ (2)(5) = -8(2x+3) 10 = -16x - 2416x = -24 - 1016x = -34 $x = -\frac{34}{16} = -\frac{17}{8} = -2\frac{1}{8} = -2.125$ Coordinates: $\left(-\frac{17}{8}, 0\right)$; $\left(-2\frac{1}{8}, 0\right)$; $\left(-2.125, 0\right)$

Turn over

4

The radius, $r \, \text{cm}$, of a sphere is increasing at a constant rate of 0.5 cm/s. Find, in terms of π , the rate at which the volume is increasing at the instant when the volume is $972\pi \, \text{cm}^3$. [Volume of sphere, $V = \frac{4}{3}\pi r^3$]

		an an anna ann an ann an ann an an an an	na na na manana ana ana ana ana ana ana
2	Given: $V = \frac{4}{3}\pi r^3$; $V = 972\pi \text{ cm}^3$; $\frac{d}{d}$	$r = 0.5 \mathrm{cm}\mathrm{s}^{-1}$	
	$\mathcal{V}=\frac{4}{3}\pi r^{3}$		
	$972\pi = \frac{4}{3}\pi^{3}$		
	$972 = \frac{4}{3}r'$		
	$972 \div \frac{4}{3} = r^3$		
	$r^{3} = 972 \times \frac{3}{4}$		
	$r^3 = 729$		
	$r = 9 \mathrm{cm}$	MI	
	$V = \frac{4}{3}\pi r^3$		
	$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{4}{3}(3)\sigma^{1-1}$		
	$\frac{dV}{dr} = 4\pi r^2$		
	$\frac{dr}{dr} = 4\pi(9)^2$		
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4 \times 81\pi$		
	$\frac{\mathrm{d}V}{\mathrm{d}r} = 324\pi$	MI	
		E	
	$\left(\frac{dV}{dr}=324\pi ; \frac{dr}{dt}=0.5\mathrm{cms^{-1}}\right)$		
	$\frac{\mathrm{d}V}{\mathrm{d}r} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$		
	$\frac{dV}{dt} = 324\pi \times 0.5$		
	$\frac{dV}{dt} = 162z$	AD	
- 6	<u>ل</u>	र्ग्रहेर्	

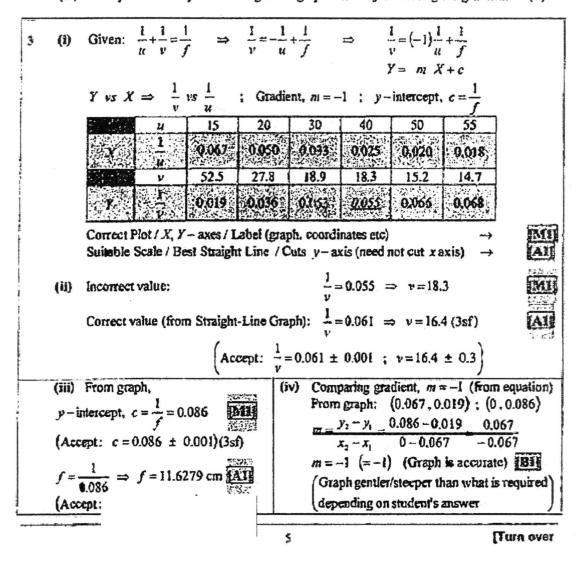
GMS(S)/AMath/P2/MYE2017/4E/5N(A)/Answor Scheme

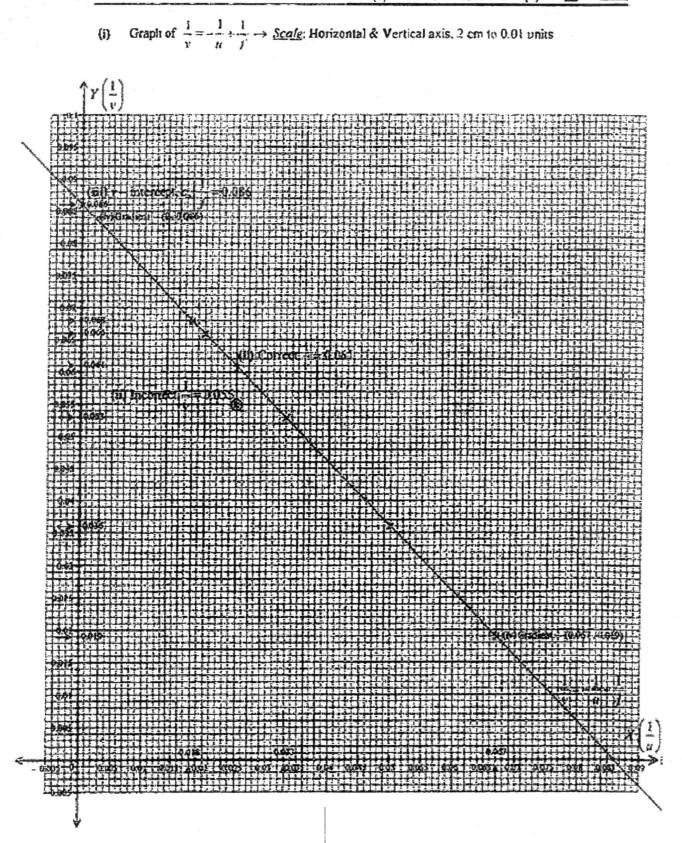
[2]

[2]

Same.

An experiment on the topic of Optics in Physics was carried out to find the facal length, f cm, of a certain type of lens. The experiment requires the student to place an object at a distance. u cm, from the lens and to record the distance. v cm, at which the image can be seen on the other side of the lens. The data below shows some of the tabulated experimental results.


и	15	20	30	40	50	55
r.	52.5	27.8	18.9	18.3	15.2	14.7
	and the second se	interest energy of the second consection of the second second second second second second second second second	feer a ser sen gevorgen i der bezeigt gevoren og her der		And Annual Contract of the Designation of the Owner of th	And the second se


It is known that u. v and f are related by the equation $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$.

7

It is believed that an error was made in recording one of the values of v.

- (i) Plot ¹/_v against ¹/_n and draw a straight line graph which represents the experimental values in the table above.
 (ii) Determine which value of v is the incorrect reading.
- Use the straight line graph obtained in part (i) to estimate the correct value that should replace the incorrect value of v.
 (iii) Estimate the focal length of the lens, f cm, from the graph.
- (iv) Verify the accuracy of the straight line graph drawn by evaluating the gradient. [1]

GMS(SVAMentyP2/MYE2017/4E/5N(A)/ArtisterScherter

[3]

- 4 A polynomial f(x) is such that f'(x)=12x+4, f'(-1)=1 and f(2)=19.
 - (i) Using integration, show that $f(x) = 2x^3 + 2x^2 x 3$. [4]
 - (ii) Show that x = 1 is the only solution to f(x) = 0.

4 (i) Given:
$$f'(x) = 12x + 4$$
, $f'(-1) = 1$ Since: $f'(x) = 6x^2 + 4x - 1$, $f(2) = 19$
 $f'(x) = \int f'(x) dx$ $f(x) = \int f'(x) dx$
 $f'(x) = \int (12x + 4) dx$ $f(x) = \int (6x^2 + 4x - 1) dx$
 $= 12\left[\frac{x^{1+1}}{1+1}\right] + 4\left[\frac{x^{0-1}}{0+1}\right] + c$ $= 6\left[\frac{x^{2-1}}{2+1}\right] + 4\left[\frac{x^{1-2}}{1+1}\right] - 1\left[\frac{x^{0-1}}{0+1}\right] + c$
 $f'(x) = 12\left[\frac{x^2}{2}\right] + 4\left[\frac{x^1}{1}\right] + c$ $= 6\left[\frac{x^2}{2+1}\right] + 4\left[\frac{x^2}{2}\right] - 1\left[\frac{x^1}{1}\right] + c$
 $f'(x) = 6x^2 + 4x + c$ $f(x) = 2x^3 + 2x^2 - x + c$ $f(x) = 19$,
 $f'(-1) = 1$, $f(2) = 19$,
 $f'(-1) = 6(-1)^2 + 4(-1) + c$ $f(2) = 2(2)^2 + 2(2)^2 - (2) + c$
 $1 = 6 - 4 + c$ $19 = 16 + 8 - 2 + c$
 $c = 1 - 6 + 4$ $c = 19 - 16 - 8 + 2$
 $c = -1$ $c = -3$
 $\Rightarrow f'(x) = 6x^2 + 4x - 1$ $f(x) = 2x^3 + 2x^2 - x - 3$ (Shown) $f(x) = 2x^3 + 2x^2 - x - 3$
(ii) Show: $x = 1$ is the only solution to $f(x) = 0$
 $(x - 1)$ is a factor of $f(x) = 2x^3 + 2x^2 - x - 3$.
Try: $f(1) = 2(1)^3 + 2(1)^2 - (1) - 3$
 $= 2 + 2 - 1 - 3$
 $= 0$
 $\Rightarrow f(1) = 0 \Rightarrow x = 1$ is a solution to $f(x) = 2x^3 + 2x^2 - x - 3 = 0$
 $f(x) = 2x^3 + 2x^2 - x - 3 = 0$ $x - 1\frac{2x^2 + 4x + 3}{4x^2 - x - 3} = 0$
 $f(x) = 2x^3 + 2x^2 - x - 3 = 0$ $x - 1\frac{2x^2 + 4x + 3}{4x^2 - x - 3} = 0$
 $f(x - 1)(2x^3 + 4x + 3) = 0$ $-\frac{-(2x^2 - 2x^3)}{4x^2 - x - 4}$
 $f(x - 1) = 0$; $(2x^2 + 4x + 3) = 0$ $-\frac{-(4x^2 - 4x)}{4x^2 - x - 4}$
 $f(x - 1) = 0$; $(2x^2 + 4x + 3) = 0$ $-\frac{-(4x^2 - 4x)}{4x^2 - x - 4}$
 $h^2 - 4ac = -8 < 0$ **For**
No solution for:
 $(2x^2 + 4x + 3) = 0$
Hences the form of $f(x) = 0$ **For** $\frac{2}{2} + \frac{2}{2} - \frac{1}{3} = \frac{3}{3} + \frac{2}{3} + \frac{3}{3} = 0$

7

[Turn over

GMS(S)/AMath/P2/MYE2017/4E/5N(A)/Administ

5 Variables x and y are connected by the equation $y = a^{b-x}$, where a and b are constants. Using experimental values of x and y, a graph was drawn in which $\log y$ was plotted on the vertical axis against x on the horizontal axis. The straight line which was obtained passed through the points (0.48, 0.7) and (0.6, 0.82). Find

the coordinates of the point on the line at which $y = 0.1^r$.

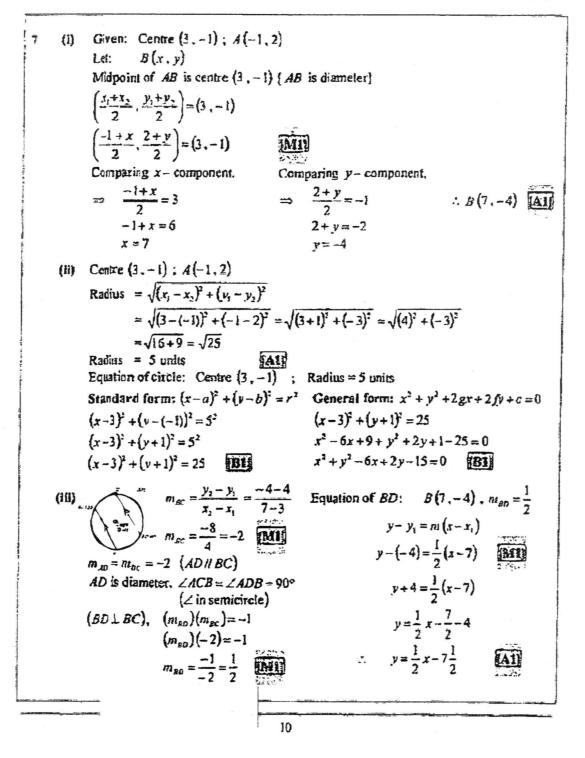
(i) the values of a and b.

(Ii)

[4] [3]

5 Given: $y = a^{b+z}$ (i) $y = a^{b + x}$, (a = 10, b = 0.22)(ii) $\lg v = \lg a^{b+x}$ $y = 10^{0,22-x}$ \rightarrow (1) $\lg y = (b + x) \lg a$ $y = 0.1^{4}$ \rightarrow (2) lgy = blga + xlga $(1) = (2): 10^{0.25 x} = 0.1^{x}$ MI lgy = (lga)x + blgaIMI $10^{4.22}$ = $\left(\frac{1}{10}\right)^3$ Y = m X + c Y vs X => lgy vs x 100.22-2 = (10-1) Gradient, $m = \lg a$ 100.22+2 = 10-2 y-intercept, $c = b \lg a$ 0.22 + x = -x3 x + x = -0.22(0.48, 0.7) and (0.6, 0.82) 2x = -0.22 $m = \frac{y_2 - y_1}{x_2 - x_1}$ =-0.11 ... x $\lg a = \frac{0.82 - 0.7}{0.6 - 0.48}$ Sub x = -0.11 in Straight-Line equation: $\lg y = \{1\} \quad x$ + 0.22 <u>____0.12</u> => $\lg y = (1)(-0.11) + 0.22$ INTH 0.12 $\lg y = -0.11 + 0.22$ TAN lga =1 $\lg p = 0.11$ $\log_{10} a = 1$ =10' ۵ Hence, point on the straight line MI :. a =10 \Rightarrow ig v = x + 0.22 $(x, \lg y) \rightarrow (-0.11, 0.11)$ AI $(x, \lg y) \Rightarrow (0.48, 0.7), \lg a = 1$ $\lg y = (\lg a) x + b \lg a$ $0.7 = \{1\} (0.48\} + b (1)$ b = 0.7 - 0.48 $\therefore b = 0.22$ A Hence, Straight-Line equation: lgy = (1)x + 0.22Y = m X + c

GMS(SVAMeth/P2/MYE2017/4E/5N(A)/Answer Solution


Turn over

121

- 7 The point A(-1, 2) lies on a circle with centre (3, -1).
 - (i) Given that AB is the diameter of the circle, find the coordinates of B. [2]
 - (II) Find the radius of the circle and hence, state its equation.

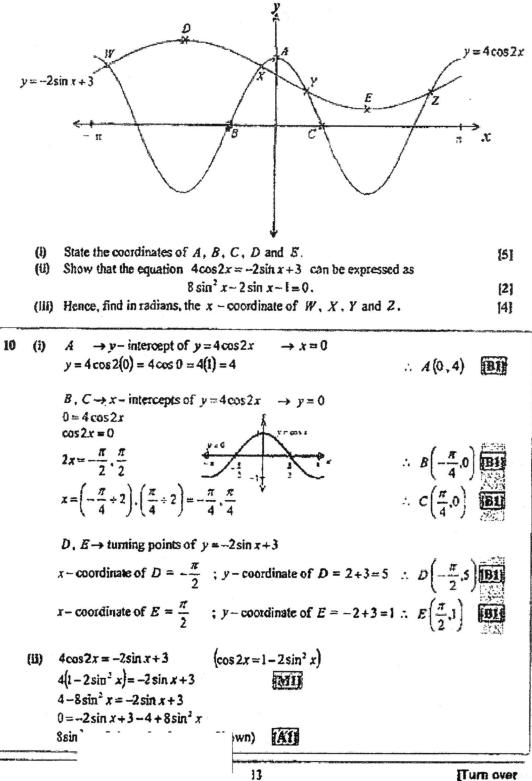
Another point C(3, 4) lies on the circle.

A line which passes through the point A, cuts the circle at point D and is parallel to BC. (iii) Find the equation of the straight line BD, [4]

The equation of a curve is $y = x^2(x-2)^2$. 8 Show that $\frac{dy}{dx} = 4x(x-1)(x-2)$ and hence state the number of stationary points (1) of the curve. [3] (ii) Find the coordinates of the stationary points of the curve. [3] (iii) Find an expression for $\frac{d^2y}{dx^2}$ and hence determine the nature of these stationary points. [4] Given: $y = x^2(x-2)^2$ 8 (1) Let: $u = x^2$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \mu \,\mathrm{d}v + v \,\mathrm{d}u$ $\frac{\mathrm{d}u}{\mathrm{d}x} = 2x$ $= (x^{2})(2)(x-2) + (x-2),$ = (2x)(x-2)[(x)+(x-2)]= (2x)(x-2)[2x-2] = (2x)(x-2)(2)(x-1)(Shown) $v = (x-2)^2$ $\frac{\mathrm{d}v}{\mathrm{d}x} = 2(x-2)(1)$ $\therefore \frac{dy}{dx} = 4x(x-1)(x-2) \quad (\text{Shown})$ $\frac{\mathrm{d}v}{\mathrm{d}x} = 2(x-2)$ Stationary points: $\frac{dv}{dr} = 0$ 4x(x-1)(x-2)=03 solutions for x for $\frac{dy}{dx} = 0$... Number of stationary points: 3 (Shown) AI (ii) From (i): 4x(x-1)(x-2)=0 \rightarrow (x-2)=0 $\rightarrow 4x = 0$ $\Rightarrow x = 0$ Substitute in $y = x^2(x-2)^2$, $\rightarrow y = 0^{1}(0-2)^{2}$ $\Rightarrow y=0$.: Coordinates of stationary points: (1.1) BI (2.0) [B] (0, 0)BIL (iii) $\frac{d^2y}{dx^2} = 4x(x-1)(x-2) = 4x(x^2-3x+2) = 4x^3-12x^2+8x$ $\frac{d^2 y}{dx^2} = 4(3)x^{3-1} - 12(2)x^{2-1} + 8 = 12x^2 - 24x + 8$ $\frac{d^2 y}{dx^2} = 12(0)^2 - 24(0) + 8 = 8 \qquad \left(\frac{d^2 y}{dx^2} > 0\right) \to (0, 0) \text{ (Min. pt.) BIB}$ $\frac{d^2 y}{dx^2} = 12(1)^2 - 24(1) + 8 = 12 - 24 + 8 = -4 \left(\frac{d^2 y}{dx^2} < 0\right) \rightarrow (1, 1) (Max. pt.)$ $\frac{d^2 y}{dx^2} = -12(2)^2 - 24(2) \pm 2 = 48 - 48 + 8 = 8 \quad \left(\frac{d^2 y}{dx^2} > 0\right) \to (2,0) \text{ (Min. pt.)}$

11

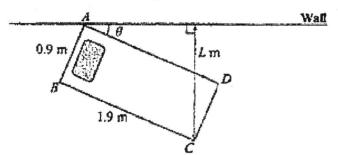
Turn over

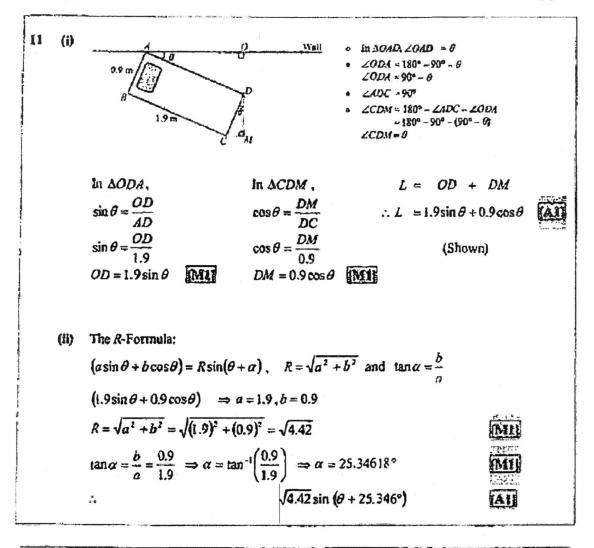

GMS(S)AMath/P2/MYE2017/4E/5N(A)

9	The	curve $y = f(x)$ is such that $f(x) = \frac{2x+6}{x+1}$ where $x \neq a$.	
	(i) (ii)	State the value of a . Find $f'(x)$ and explain why the curve $y = f(x)$ is a decreasing function	[1]
		curve intersects the x - axis at the point A . Find the equation of the tangent at A .	[3]
	(lv)	If the normal to the curve at A meets the y -axis at B, show that the area of $\triangle AOB$, where O is the origin, is 4.5 square units.	[3]
9	(1)	f(x) is not defined when $x+1=0$	ni anti di chi a cardana ayana di cara a
		Hence, $x+1\neq 0 \rightarrow x\neq -1 \rightarrow x\neq a$ Value of a is -1 BI	
	(ii)	27+6	r+6
		$f'(x) = \frac{v du - u dv}{2} \qquad \qquad$	2
		$=\frac{(x+1)(2)-(2x+6)(1)-2x+2-2x-6}{(x+1)^2}$ (M1) $(x+1)^2$ (x+1) ²	+1
		$f'(x) = \frac{-4}{(x+1)^2}$ (x+1) $\frac{dv}{dx} = 1$	
		$(x+1)^2 > 0 (x \neq -1)$	
		$\frac{-4}{(x+1)^2} < 0$	
		f'(x) < 0	
		$\therefore \text{ Hence } y = f(x) \text{ is a decreasing function} \qquad \textbf{A1}$	
	(m)	Curve intersects the $x - axis \Rightarrow y = 0$ $y = f(x) = 0$ $m_{\infty} \text{ at } x = -3$ Equation of tangent	<i>n</i> -
			18:
		$0 = \frac{2x+6}{x+1} \qquad f'(-3) = \frac{-4}{(-3+1)^2} = \frac{-4}{(-2)^2} \qquad y = -1$	
		$0 = \frac{1}{x+1} \qquad f'(-3) = \frac{1}{(-3+1)^2} = \frac{1}{(-2)^2} \qquad y = -1$	
		$2x+6=0$ $f'(-3) = -1$ $\therefore y = -x$	
		$2x = -6$ $m_{im} = -1$ at $x = -3$ [M2]	and the second
		x = -3 A(-3,0)	
	(lv)	$(m_{int})(m_{int}) = -1$ Meets the y-axis: \therefore Area of $\triangle AOB$	
		$(-1)(m_{nx}) = -1$ $x = 0$ = (0.5) (base) (1 height)	
•		$\{m_{wr}\} = 1$ $y = 0 + 3$ $= (0.5)(3)(3)$	
		Equation of normal: $y=3$ = 4.5 square units	12
		$A(-3,0); m_{ex} = 1$ $B(0,3)$ [M1] (Shown)	
		$y - y_1 = m_{ref} (x - x_1)$ (3.10 m/s)	- 7
		y = 0	
			A i i intaint

12

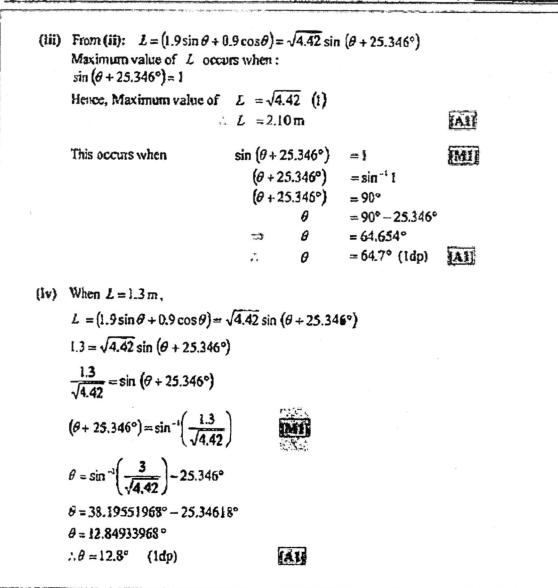
i


The diagram shows the curves $y = 4\cos 2x$ and $y = -2\sin x + 3$ for $-\pi \le x \le \pi$ radians. 111 A, B and C are the axes intercepts of the curve $y = 4\cos 2x$. D and E are the turning points of the curve $y = -2\sin x + 3$. The curves intersect at the points W, X, Y and Z.

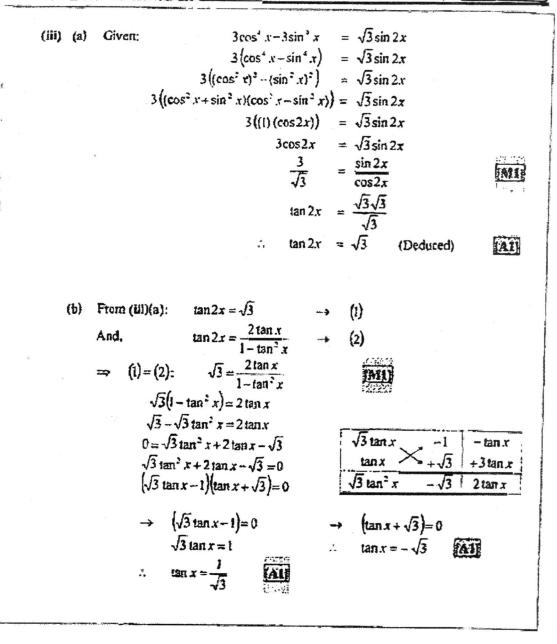

GMS(S)/AMallyP2/MYE2017/4E/SN(A)/Answer Schome

(1) (iii) $y = 4\cos 2x$ (2) $v = -2\sin x + 3$ --> (Intersection points) 4sin.r +1 +2sin x $\frac{4\sin x}{2\sin x} + \frac{1}{-1} + \frac{2\sin x}{-4\sin x}$ (1) = (2): $4\cos 2x = -2\sin x + 3$ $8\sin^2 x - 1 - 2\sin x$ $8\sin^2 x - 2\sin x - 1 = 0$ [From (ii)] $(4\sin x+1)(2\sin x-1)=0$ $(4\sin x+1)=0$ $(2\sin x - 1) = 0$ $4\sin x = -1$ $2\sin x = 1$ $\sin x = -\frac{1}{4}$ $\sin x = \frac{1}{2}$ [sin x is negative \rightarrow Quadrants 3 and 4] $\{\sin x \text{ is positive} \rightarrow \text{Quadrants } 1 \text{ and } 2\}$ Basic angle, $\alpha = \sin^{-1}\left(\frac{1}{4}\right) \Rightarrow \alpha = 0.25268$ Basic angle. $\alpha = \sin^{-1}\left(\frac{1}{2}\right) \Rightarrow \alpha = \frac{\pi}{6}$ \Rightarrow $x = \frac{\pi}{6} \cdot \left(\pi - \frac{\pi}{6}\right)$ x = -0.25268, $-(\pi - 0.25268)$ 3 \Rightarrow $x = \frac{\pi}{6}, \frac{5\pi}{6}$ x = -0.253, -2.89 (3sf) x - coordinate of W =-2.89 BI $\therefore x - \text{coordinate of } X =$ -0.253 BI π δ x - coordinate of Y = $\frac{5\pi}{6}$ $\therefore x - \text{coordinate of } Z =$

11 The diagram shows a rectangular single bed with wheels, ABCD, which is hinged to the wall at A. It is given that the dimensions of the bed is 1.9 m by 0.9 m and L m is the perpendicular distance from the wall to C. The bed can be rolled such that the angle between the wall and the side, AD, of the bed is θ and that $0^{\circ} \le \theta < 90^{\circ}$.



- (i) Show that the length, L m, can be expressed as $L = 1.9 \sin \theta + 0.9 \cos \theta$. [3]
- (ii) Express L in the form $R\sin(\theta + \alpha)$ where R > 0 and α is an acute angle. [3]
- (11i) Hence, find the maximum value of L and the corresponding value of θ . [3]
- (iv) Find the value of θ when L=1.3 m.


Turn over

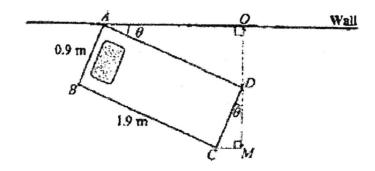
[2]

		GMS(S)/AMath/P2/MYE2017/4E/5N(A)/ATTAVE	Scheme
12	(i)	Prove the identity $\cos^4 x - \sin^4 x + 2\cos^5 x - 1 = 2\cos 2x$	131
	(ii)	Solve the equation $2\cos^2 x - 2\sin^4 x = \sqrt{2}$, for $0 < x < \pi$.	
		giving your answers in terms of π .	[4]
	(iii)	Given that $3\cos^4 x - 3\sin^4 x = \sqrt{3}\sin 2x$, and without using a calculator,	
		(a) deduce that $\tan 2x = \sqrt{3}$.	[2]
		(b) find the possible values of $\tan x$.	[3]
12	(1)	Given: $\cos^4 x - \sin^4 x + 2\cos^2 x - i = 2\cos 2x$. LHS = $\cos^4 x - \sin^4 x + 2\cos^2 x - i$ $(\cos 2x = 2\cos^2 x - i)$ = $(\cos^2 x)^2 - (\sin^2 x)^2 + (2\cos^2 x - i)$ (1) = $(\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) + (\cos 2x)$ (1) = $(1)(\cos 2x) + (\cos 2x)$ $(\cos^2 x - \sin^2 x) + (\cos^2 x)$ $(\cos^2 x + \sin^2 x - i)$ = $2\cos 2x$ $(\cos^2 x + \sin^2 x)(\cos^2 x - \sin^2 x) + (\cos^2 x)$ (1)	-6))
	(11)	Solve: $2\cos^{4} x - 2\sin^{4} x = \sqrt{2}$, for $0 < x < \pi$ $2(\cos^{4} x - \sin^{4} x) = \sqrt{2}$ $2((\cos^{2} x)^{2} - (\sin^{2} x)^{2}) = \sqrt{2}$ $(\cos^{2} x)^{2} - (\sin^{2} x)^{2} = \frac{\sqrt{2}}{2}$ $(\cos^{2} x + \sin^{2} x)(\cos^{2} x - \sin^{2} x) = \frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ $(1)(\cos 2x) = \frac{1}{\sqrt{2}}$ $\cos 2x = \frac{1}{\sqrt{2}}$ [cos 2x is positive -+ Quadrants 1 and 4] Basic angle, $\alpha = \cos^{-1}(\frac{1}{\sqrt{2}}) \Rightarrow \alpha = \frac{\pi}{4}$ $\Rightarrow 2x = \frac{\pi}{4}, (2\pi - \frac{\pi}{4}), (\frac{\pi}{4} + 2\pi), (2\pi - \frac{\pi}{4} + 2\pi)$ $\Rightarrow 2x = \frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \frac{15\pi}{4}$ $\Rightarrow x = \frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8}$ $\therefore x = \frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8}$ ($0 < x < \pi$)	
		17	
		f) [Turn	over

GMS(S)/AMath/P2/MYE2017/4E/SN(A)/AriswerScherno

- End Of Paper -

GMS(S)/AMaltyP2/MYE2017/4E/5N(A)


	UNITED FOR THE FAIL AND MADE TO POST AND A STATE OF THE POST OF
1	$\left(-\frac{17}{8},0\right)$; $\left(-2\frac{1}{8},0\right)$; $\left(-2.125,0\right)$
2	$\frac{dV}{dt} = 162\pi \text{ cm}^3 \text{ s}^{-1} = 162\pi \text{ cm}^3/\text{s}$
	(i) On graph
	(ii) Incorrect value: $\frac{1}{v} = 0.055 \implies v = 18.3$, Correct value: $\frac{1}{v} = 0.061 \implies v = 16.4$ (3sf)
	$\left(\text{Accept: } \frac{1}{\nu} = 0.061 \pm 0.001 ; \nu = 16.4 \pm 0.3\right)$
3	(iii) $y - intercept, c = \frac{1}{f} = 0.086$ (Accept: $c = 0.086 \pm 0.001$) (3sf)
	$f = \frac{1}{0.086} \implies f = 11.6279 \text{ cm}$ (Accept: $f = 11.6 \pm 0.2$)(3sf)
	(iv) Comparing gradient, $m = -1$ (from equation) (Graph genuler/stoeper than what is required depending on student's answer)
4	(i) Use integration (ii) Show: $b^2 - 4ac < 0$
5	(i) $a = 10$, $b = 0.22$ (ii) $(x, \lg y) \rightarrow (-0.11, 0.11)$
¢	(i) $\frac{dy}{dx} = \frac{3x}{\sqrt{2x+1}} \left(\frac{kx}{\sqrt{2x+1}} ; k=3 \right)$ (ii) $\frac{112}{5} ; 22\frac{2}{5} ; 22.4$
	(ii) Radius = 5 units $(1 - 1)^2 = (1 - 1$
1	(i) $B(7,-4)$ $(x-3)^2 + (y+1)^2 = 5^2 OR$ (iii) $y = \frac{1}{2}x - 7\frac{1}{2}$ $x^2 + y^2 - 6x + 2y - 15 = 0$
1	(i) Use differentiation (Froduct rule) (ii) $(0, 0), (1, 3), (2, 0)$ (iii) $\frac{d^2y}{dx^2} = 12x^2 - 24x + 8$ (0, 0) (Minimum point) (1, 1) (Maximum point) (2, 0) (Minimum point)
5	(i) $a = -1$ (ii) $f'(x) = \frac{-4}{(x+1)^2}$ Show: $f'(x) < 0$ (iii) $y = -x - 3$ (iv) Show: Area = 4.5 units ²
]	(i) $A(0,4)$; $B\left(-\frac{\pi}{4},0\right)$; $C\left(\frac{\pi}{4},0\right)$ $D\left(-\frac{\pi}{2},5\right)$; $E\left(\frac{\pi}{2},1\right)$ (ii) Use: $\left(\cos 2x = 1 - 2\sin^2 x\right)$ (iii) $x - \operatorname{coordinate of}$: $x_{\pi} = -2.89$; $x_{\chi} = -0.253$ $x_{\tau} = \frac{\pi}{6}$; $x_{2} = \frac{5\pi}{6}$
ľ	(i) Show: $L = OD + DM$ (ii) (iii) (iii) (iii) (iv) Max $L = 2.10 \text{ m}$ $\theta = 64.7^{\circ}$ (ldp) (iv) $\theta = 12.8^{\circ}$ (ldp)
3	(iii) $x = \frac{\pi}{2} - \frac{7\pi}{3}$ (iii)(b) $\tan x = \frac{1}{\sqrt{3}}$; $\tan x = -\sqrt{3}$

(Turn over

19

-1

GMS(S)/AMaIN/P2/MYE2017/4E/5N(A)/21000

