
Magnesium carbonate was added to a solution of dilute hydrochloric acid, and a chemical reaction occurred.

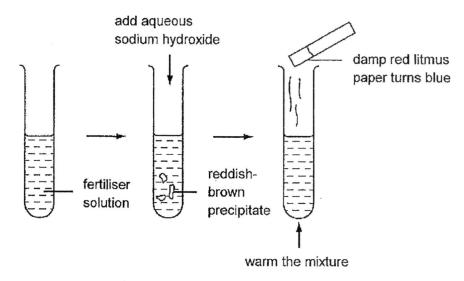
The diagram shows part of the apparatus used to measure the rate of reaction.

Which piece of apparatus is connected at position X?

- A burette
- B data logger
- C gas syringe
- D measuring cylinder
- 22 A bottle of zinc carbonate has been contaminated by some solid potassium sulfate.

How can the potassium sulfate be removed from the zinc carbonate?

- A add dilute acid to the mixture and filter
- B add water to the mixture and filter
- C add water to the mixture and place it in a separating funnel
- D heat the mixture and allow it to cool
- Some turquoise powder is placed in a beaker. Water is added and the contents of the beaker are stirred and filtered. A green solid is left on the filter paper. After evaporating the filtrate, a white precipitate is left.


What do these observations suggest?

- A The green solid is an element.
- B The turquoise powder is a compound.
- C The turquoise powder is a mixture.
- D The white precipitate is a mixture.

24 Which set of substances contains an element, a compound, and a mixture?

- A air, pure water, silver nitrate
- B brass, iron(II) sulfate, seawater
- C copper, chicken soup, gold
- D platinum, petrol, sodium chloride

25 A solution of fertiliser was tested.

Which ions are present in the fertiliser solution?

- A Fe2+ and NO3-
- B Fe2+ and NH4+
- C Fe3+ and NO3-
- D Fe3+ and NH4+

26 An element, D, has p protons and n neutrons in its nucleus.

Which row gives a possible correct number of protons, neutrons and electrons in a positive ion of an isotope of D?

	protons	neutrons	electrons
А	р	n	p+1
В	р	n + 1	p – 1
С	p+1	n	p + 1
D	p+1	n + 1	p – 1

Belief: 'Learn. Improve. Excel.'

Page 3

[Turn over

27 An atom of element M is represented by $^{39}_{19}\mathrm{M}$.

Which statement about this atom of M is correct?

- A It is in Group I of the Periodic Table.
- B It is in Group VII of the Periodic Table.
- C The number of neutrons is 19.
- D The total number of protons and electrons is 39.
- 28 Element Y has the electronic configuration 2, 2.

Element Z has the electronic configuration 2, 8, 7.

What is the formula of the compound formed between Y and Z?

- A YZ
- B YZ₂
- $\mathbf{C} \quad Y_2 Z$
- D Y_3Z_2
- 29 Which change describes what happens when ice is melted?

	arrangement of particles	energy change
Α	moving closer together	endothermic
В	moving closer together	exothermic
С	moving further apart	endothermic
D	moving further apart	exothermic

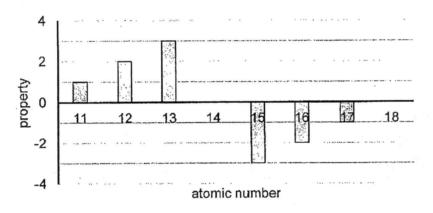
30 In which substance are the particles vibrating about fixed positions at room temperature?

	melting point/°C	boiling point/°C
Α	-189	-155
В	~25	28
С	5	79
D	59	174

31 20 g of sodium hydroxide just neutralises 100 cm³ of dilute sulfuric acid according to the following equation:

What is the concentration of dilute sulfuric acid?

- A 0.25 mol/dm³
- B 0.5 mol/dm³
- C 2.5 mol/dm³
- D 5.0 mol/dm³
- 32 Which is a reason for recycling aluminium?
 - A aluminium made by recycling is less pure than that made by extraction
 - B less energy is needed for recycling than extraction
 - C recycling aluminium is less expensive than extraction
 - D to reduce damage to the environment caused by extraction
- Iron is extracted in the blast furnace using the raw materials haematite, coke and limestone.


Which substance undergoes thermal decomposition?

- A carbon monoxide
- B coke
- C haematite
- D limestone

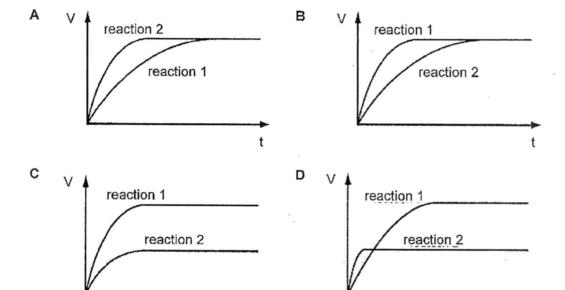
34 Which row correctly matches an atmospheric pollutant to its source?

	pollutant	source
A	carbon monoxide	complete combustion of fossil fuels
В	oxides of nitrogen	vehicle exhaust fumes
С	oxides of nitrogen	volcanic eruption
D	sulfur dioxide	lightning activity

35 The graph below shows the trend of a property of the elements in Period 3.

Which is the correct property shown?

- A charge of ions
- B ease of forming ions
- C number of electron shells
- D number of valence electrons


36 A student conducted two experiments.

Reaction 1: 20 g of magnesium ribbon with excess 1.5 mol/dm³ dilute nitric acid.

Reaction 2: 10 g of magnesium powder with excess 1.5 mol/dm3 dilute nitric acid.

In both experiments, the volume of hydrogen produced, V, is measured against time, t, and the results plotted graphically.

Which set of graphs is correct?

37 Substance Q turns a solution of aqueous potassium iodide from colourless to brown.

What must substance Q be?

- A a reducing agent
- B an acid
- C an alkali
- D an oxidising agent

38 The table shows the boiling point of four fractions, T, U, V and W, obtained when crude oil is fractionally distilled.

fraction	Τ.	U	V	W
boiling range/°C	40 – 75	150 – 240	300 – 350	> 350

Which statement is correct?

- A Fraction T contains smaller molecules than Fraction V.
- B Fraction T has a higher percentage of carbon than Fraction W.
- C Fraction U is more flammable than Fraction T.
- D Fraction V is more viscous than Fraction W.
- 39 Which equation represents a cracking process?
 - A $C_4H_8 + H_2 \rightarrow C_4H_{10}$
 - B $C_8H_{18} \rightarrow 2C_3H_6 + C_2H_4 + H_2$
 - C C₆H₁₂O₆→ 2C₂H₅OH + 2CO₂
 - D $C_4H_9OH \rightarrow C_4H_8 + H_2O$
- 40 An organic compound is shown below.

What functional groups are present in this compound?

- A alkane and carboxyl groups
- B alkane and hydroxyl groups
- C alkene and carboxyl groups
- D alkene and hydroxyl groups

~ End of Paper ~

Belief: 'Learn. Improve. Excel.'

Page 8

[Turn over

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of the Elements

									Group	9								
_	-	=	-										=	≥	>	5	5	0
_	-							-										4
								·I										운
								hydrogen										helium 2
												_	11	12	4	16	19	20
	- :	ဘ (<u> </u>	ن !	z	0	ட	Ne
	lithum	peryllium												carbon		охудеп 8	fluorinc 9	neon 10
	3	4											27	28	31	32	35.5	40
	3 5	1 2											Αſ	S	Д	S	ö	Ar
	-	magnesium											aluminium 13	silican (14	shosphorus 15	sulfur 6	chlorine 17	argon 18
	1	77	AE		r.	52	55.5	99	59	59	64	65	20	-	75	79	80	\$
	R >	⊋ ¿	i d	? F	5 >	ن ا	M	, e	S	Z	3	Zu	Ga	Ge	As	Se	ğ	눟
	- 3) ag	scandiu	titanium	vanad	chromium 24	lum chromium manganese ir	, E	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	jermanium 32	arscoic 33	selenium 34	bromine 5	63
	200	2 0	00	0,4	3 6	96	1	0	103	106	108	112	115	119	122	128	127	131
	8 4	8 7	3 >	5 7	Ž	§ №	2	3u	뫈	Pd	Ag	S	디	Sn	Sp.	Te.	т.	×e
	mnipidn	S	yttrium	zirconium	niobium	molybdenu	malybdenu technetium ru	thenlum	rhadium	palladium 46		cadmium 48	indium 49		antimony 51	tellurium 52	loaine 53	Skerion 54
-	37	38	55	40	4	42	3		2	2		2	2					
	133	137	139	178	181	184	186	190	192	195	197	201	504	207	503	ا ا	ιŹ	
	Cs	B	La	士	⊢ a	≷	Re	SO.	ij	<u>ت</u> ا	Au	B.	7	r G g	hismuth	minolon	astaline	radon
	caesium 55	barit 56	im lanthanum 57 * 7	hafnium 72	tanfalum 73	tungsten 74	rhenium 75	DSMIUM 76	indium 77	78	. gailu	80	81	82	83	84 8	82	8
ــــــــــــــــــــــــــــــــــــــ	1	1	1															
	F		Ac															
	francium 87	mujpeu 88	actinium 89 +									÷						
				_														
•	-58-71	*58-71 Lanthanoid series	id series															

The volume of one mole of any gas is 24 dm3 at room temperature and

Key

Name Register Number

Class

GREENRIDGE SECONDARY SCHOOL

Preliminary Examination 2017 Secondary 4 Express / 5 Normal Academic

SCIENCE

Paper 3 Chemistry

5076/5078/03 25 August 2017 1 hour 15 minutes

Additional Materials: Nil

GREENRIDGE SECONDARY SCHOOL GR

Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, register number and class on the question booklet and Answer Sheet in the spaces provided unless this has been done for you.

Section A

Answer all questions in the spaces provided.

Section B

Answer any two questions.

Write your answers in the spaces provided on the Question Paper.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

In calculations, you should show all steps in your working, giving your answer at each stage. The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 65.

A copy of the Data sheet is printed on page 14.
A copy of the Periodic Table is printed on page 15.

Setter: Ms Lin Liyi

For Examin	er's Use Only
Section A	/ 45
Section B	/ 20
Total	/ 65

[Turn over

Section A [45 marks]

A list	of oxides	is given below	w.			
		bon dioxide	carbon mo		iron(II) oxide	
Each			e, more than on			
	e an oxide			,		
(a)	reacts w	vith both dilute	e hydrochloric a	cid and dilute	potassium hydroxid	le,
(b)	reacts w		rochloric acid to		ı solution,	
(c)			form a solution			
(d) is used as a reducing agent in the bla						
(e)		d by lightning				
Class	ify oach -	ubotones is T				
Class	siry each s	ubstance in 1		cing a tick (√) le 2.1	in one box in each	row.
su	bstance	element	compound	mixture of elements	mixture of compounds	mixture of elements a compound
	air					
ŀ	oronze					
	hélium	SSE R				
	opper(II) sulfate solution					
-						

Page 2

Belief: 'Learn, Improve, Excel.'

A3 (a) Fig. 3.1 shows an experimental set-up used to separate pure water from a sample of tap water.

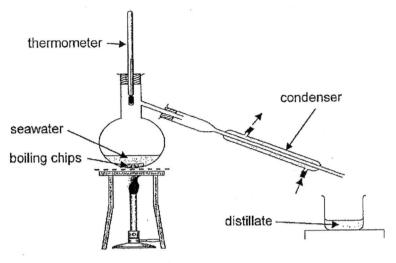


Fig. 3.1

(i) Name this method of separation.

[1]

(ii) Predict the reading on the thermometer during the separation.

[1]

(iii) State the purpose of the condenser.

.....[1]

(b) The pure water obtained is used to dilute a purple cabbage indicator.

Fig. 3.2 shows the preparation of the coloured solution extracted from purple cabbage.

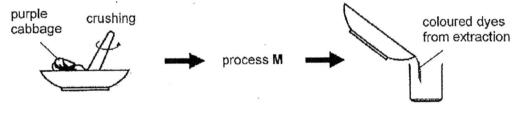


Fig. 3.2

Process M is carried out to remove any uncrushed cabbage parts.

Name process M.

Belief: 'Learn, Improve, Excel.'

Page 3

[Turn over

The following substances were tested using the purple cabbage indicator and the resulting colour of the solution is shown in Table 3.3. (c)

Table 3.3

substance	colour of solution
hydrochloric acid	pink
ethanoic acid	violet
distilled water	violet
baking soda	blue
sodium hydroxide	yellow

	(i)	Using the information from Table 3.3. determine the colour of the solution when the purple cabbage indicator is added to aqueous ammonia.
		[1]
	(ii)	Name the limitation of using the purple cabbage indicator to determine the pH of solutions. Suggest another indicator that can be used instead.
		[2]
44 (a)	Four of The in	elements, P, Q, R and S are found in the same period of the Periodic Table. Information about these four elements are given below:
		Element P forms a covalent compound with chemical formula P ₂ O.
		Element Q is ductile and malleable, and is a solid at room temperature.
		Element R reacts explosively with water to form an alkaline solution.
		Element S exists as an inert gas and is used in vacuum-tubes.
	(i)	State one similarity of the electronic structures of these four elements.
		[1]
	(ii)	Arrange these elements in order of increasing atomic number.
		[1]
	(iii)	Suggest how element R can be extracted from its compounds.
		[1]
Belief: 'Le	arn. Improve	. Excel.' Page 4 Turn over
		TOWN T

(b) Table 4.1 shows some physical properties of the Group VII elements.

Table 4.1

halogen	melting point / °C	boiling point / °C	colour
fluorine	- 220	- 188	pale yellow
chlorine	- 101	- 35	
bromine	- 7	59	reddish-brown
iodine	114	184	grey-black

		(i)	Complete Table 4.1 by filling in the colour of chlorine.	[1]
		(ii)	Using the information in Table 4.1, describe the arrangement and movement of bromine at room temperature.	
				[2]
A5	When of	chlorine emical	e gas is bubbled through a solution of sodium bromide, a chemical reaction occu equation of the reaction is stated below:	rs.
			2NaBr (aq) + C/₂ (g) → 2NaC/ (aq) + Br₂ (/)	
	(a)	Sugge	st the expected observation for this reaction.	
				[1]
	(b)	State t	he type of reaction that has occurred. Explain your answer.	
				[2]
	(c)	(i)	Explain, with reasons, whether bromine in sodium bromide has been oxidised or reduced.	r
				.
				.[2]
		(ii)	Identify the reducing agent.	
				.[1]
			•	

time/s

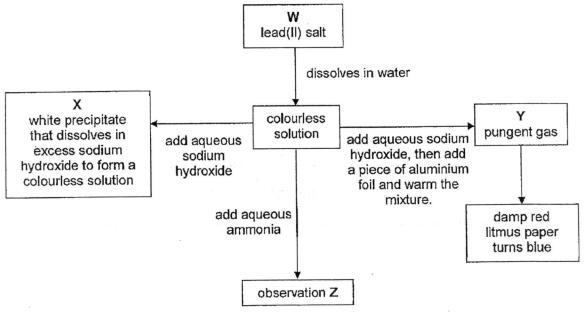
	(a)	Suggest an identity for solution J .
		[1]
A6		masses of calcium carbonate was reacted with dilute nitric acid of the same concentration eriment I and II. Nitric acid was added in excess.
		iment I: lumps of calcium carbonate powder was added. iment II: powdered calcium carbonate powder was added.
		hass of calcium carbonate was measured and calculated at regular time intervals. esults of the experiments are shown in Fig. 6.1.
	mas calci carb	·

Experiment II

(a) Describe one measure to be taken so that a fair experiment is conducted.[1] (b) State the experiment that is faster.[1] (c) Using your knowledge of collisions between reacting particles, explain your answer in (b).[2] Write out a balanced chemical equation for this reaction. (d)

Fig. 6.1

Belief: 'Learn, Improve, Excel.'


Page 6

Turn over

(e) If 28.6 g of calcium carbonate was reacted, calculate the volume of gas evolved at room temperature and pressure.

[2]

A7 Fig. 7.1 shows some reactions of a lead(II) salt W.

	Fig. 7.1	
(a)	Suggest the identity of substances W, X and Y.	
	W:	
	X:	
	Υ:	[3]
(b)	State what observation Z would be.	
		[1]
Belief: 'Learr	n. Improve. Excel.' Page 7 [Turn	over

	(c)	Suggest a suitable method to prepare salt W . Name the two reagents needed to prepare the salt.
		method:[1]
		reagents: [1]
A8	(a)	A solution of potassium hydroxide, KOH, has a concentration of 0.35 mol/dm³. 25 cm³ of KOH was reacted with excess ammonium sulfate as shown in the equation below.
		$2KOH + (NH_4)_2SO_4 \longrightarrow K_2SO_4 + 2NH_3 + 2H_2O$
		Calculate the mass of potassium sulfate formed.
		[2]
	(b)	Another solution of potassium hydroxide was prepared by dissolving 29.5 g of potassium hydroxide in 5 dm³ of distilled water.
		Determine the concentration of the solution in mol/dm³.
		*
*		•
		[2]
		~End of Section A~
Belie	f: 'Learn.	Improve, Excel.' Page 8 [Turn over

Section B [20 marks]

Answer any two questions.

- B9 To determine the reactivity series of metals, a series of experiments were conducted with four different solutions. All four solutions contain nitrate ions. The procedures for the experiment are shown below:
 - 1. A piece of magnesium ribbon was added to 25 cm³ of each solution containing the same concentration.
 - 2. For each experiment, the change in temperature was recorded.

The results of the experiments are listed in Table 9.1.

Table 9.1

solution of	observation	change in temperature / °C
metal A	grey-black solid deposited on the magnesium ribbon.	+14
metal B	reddish-brown solid deposited on the magnesium ribbon.	+ 42
metal C	no visible reaction.	0
metal D	grey-black solid deposited on the magnesium ribbon.	+ 32

(a)	Name the reaction that causes the change in temperature in Table 9.1.
	[1]
(b)	Explain why there is no change in temperature when magnesium ribbon is added to a solution of metal C .
	[2]
(c)	Suggest the identity of metal B.
	[1]
(d)	State the order of reactivity of the metals, A, B, C, D and magnesium, in order of increasing reactivity.
	[1]

Belief. 'Learn. Improve. Excel.'

Page 9

[Turn over

	(e)	A piece of magnesium ribbon was also added to a solution of dilute hydrochloric acid, and bubbles were seen forming.
		Suggest a test, and the expected observation, that would confirm the identity of the gas formed.
		test:
		observation:[2]
	(f)	Pure metals are often too soft to be used widely in the industry, thus, alloys are typically used.
		Explain why alloys are harder than pure metals.
		[3]
B10	(a)	(i) Draw 'dot and cross' diagrams to show the arrangement of electrons in carbon dioxide and water. Show only valence electrons. [Proton numbers: H, 1; C, 6; O, 8]
		carbon dioxide:
	3	

water:

[4]

(ii)	and cross'	diagram d	arawn in (a)(i).		lecule, using t	
			•••••				
		• • • • • • • • • • • • • • • • • • • •					[2
(iii)	An isotope	of carbor	n, ¹³ C, also f	orms a con	npound with o	oxygen.	
	Explain wh	ny the che exide.	mical compo	ound forme	d has the sar	ne chemical fo	ormula as
List th	ree differen	ices betwe	een the phys	sical prope	ties of covale	ent molecules	and ionic
compo							
•		• • • • • • • • • • • • • • • • • • • •				•••••	
		••••••		1			

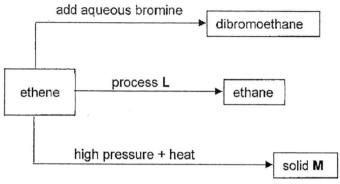
(i)

Belief: 'Learn. Improve. Excel.'

[Turn over

B11 (a) Table 11.1 shows some information about a homologous series of organic compounds called aldehydes.

Table 11.1


name	number of carbon atoms	full structural formula	boiling point / °C
methanal	1	H—C	- 19.0
ethanal	2	H—C—C H	20.2
propanal	3	H H H H H H	48.8

	nomologous series.	
	*	
	[2	2]
ii)	Draw the structural formula of butanal, which contains four carbon atoms.	
	·	1]
iii)	Carboxylic acids have a carboxyl functional group, which contains the structure -COOH.	
	Suggest the structure of the carbonyl functional group of aldehydes.	
		1]

State and explain the trend of the boiling points of the molecules in the aldehyde

Page 12

(b) Fig. 11.2 shows some reactions involving ethene.

	high pressure + heat ▶ solid M
	Fig. 11.2
(i)	State one use of adding aqueous bromine.
	·
	[1]
(ii)	Name process L and state the conditions required for this reaction to occur.
	process:
	conditions:
	[2]
(iii)	Solid M is commonly known as plastic.
	State the chemical name of solid M, including the structural formula of solid M.
	name:
	[2]
(iv)	Explain why land pollution can be caused by the increased use of solid M.
	[1]
	~ End of Paper ~
	and or i apor

Belief: 'Learn. Improve. Excel.'

Page 13

[Turn over

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of the Elements

	-			_			_					_			_								_				_
	0	4 He hefium 2	20	Se	nean 10	\$	ΑΓ	argon 18	\$	조	krypton 36	131	Xe	жепол 54	1	R	radon 86							175	רם ביין	71	
	ΙΙΛ		19	Ι.	fluor.ne 9	35.5	ũ	chlorine 17	80		bromine 35	127	-	iodine. 53	1	A	aslaline 85							173	Yb	70	
	>		16	2	oxygen 8	32	တ	sulfur 16	73	Se	selenium 34	128	Te	telluriom 52	1	Ъ	muincled 84						- 1	169	E P	69	-
	^		4:	z	nitrogen 7	34	а.	S		As	arsenic 33	122	Sb	anlimony 51	208	B	oismuth 83							167	ы	99	-
	2	d	12	ن د	ca:bon	28	Ö	sdicon 14	73	Ge	permanium 32	119	S			8								165	운 :	7	
	=		11		5 boron	27	Αί	aluminium 13	02	Ga	gallium 15	115	Ę	n indium 49	204	ĭ	y thailium 81							162	<u></u>	Sprosium 6	
					-				65	7	zinc 30	112	8	cadmiu:n 48	201	문	mercur 80						- 1		-	22	
									64	ភ	со з рег 29	108	Ag	4	197	Au	geld 79							157	ල :	B4 84	
Group									29	ž	nickel 28	106	Pd	palladium 46	195	ă	platinum 78							5	Щ.	ешор 63	
Gro			,										몺	rhodium 45	192	ĭ	inoium 77							12	S	2 ma	
		1 H hydrogen 1							99	F.	ncii 26	10	Ru	ruthenium 44	190	S	•							1	Pm	promethium 61	
									25	Mn	E C	1	²	technelium 43	186	Re	-							144	몽	neodymium 60	
									52	ರ	chromium 24	98	Mo	5	184	3	turgsler 74							141	ā	praseodymiu neodymium promethrum sign	200
									51	>	vanadium 23	93	g	nibbium 41	181	Ta	tanlalum 73							140	වී	cerlum 58	
									48	F	ttanium 22	91	Zr .	zirconium 40.	178	Ϊ	hafnium 72				-						
			(4)						45	Sc	E	88	>	ytrium 39	139	La L	lanthanum 57	1	Ac	actinium	E89	d series	series				
	=		6	Be	beryllium 4	24	Mg	magnesium 12	40	S	calcium	88	Š	38	137	Ba	_	ı	& e	nadium n	00	*58-71 Lanthanoid series	†90-103 Actinoid series				
			7	=	lithium 3	1	Na		39	×	5	85	Rb Rb	rubidium 37	133	S	caesium 55	i	占	francium P.7	10	*58-71 L	190-103				

141 Pr praseodym 59 82 X = atomic symbol b = proton (atomic) number a = relative atomic mass a

Key

The volume of one mole of any gas is 24 dm³ at room temperature and

Belief: 'Learn, Improve, Excel.'

Cand	lidate	Name

Index Number

Class

GREENRIDGE SECONDARY SCHOOL

Preliminary Examination 2017 Secondary 4 Express & 5 Normal Academic

SCIENCE (CHEMISTRY, BIOLOGY)

5078/05

Paper 5 Practical Test

22 August 2017 1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions.

GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY SCHOOL
GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY SCHOOL
GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY SCHOOL
GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE.	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY SCHOOL

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. The use of an approved calculator is expected, where appropriate.

Answer both questions.

You are advised to spend 45 minutes on each question. Chemistry practical notes for this paper are printed on page 10.

The number of marks is given in brackets [] at the end of each question or part question.

ters: Ms Lin Liyi & Mdm Clara Wang

For Examiner	For Examiner's Use Only									
1										
2										
Total										

This document consists of 10 printed pages, including this cover page.

1 You are provided with three labelled samples of solutions P, Q and R. Two of the solutions contain acid and carbonate.

Carry out the following tests. You should test any gases evolved. Carefully record your observations.

The volumes given below are approximate and should be estimated rather than measured.

		test	observations
(a)	(i)	Add about 2 cm³ of solution P into a clean test tube. To this test-tube, add about 2 cm³ of solution Q, with shaking, until no further change is seen.	
	(ii)	To the same test-tube, slowly add about 2 cm³ of solution R , with shaking, until no further change is seen.	
			[3]
(b)	(i)	Add about 2 cm³ of solution Q into a clean test-tube. To this test-tube, add about 2 cm³ of solution R and shake the mixture thoroughly until no further change is seen.	
	(ii)	To the same test-tube, slowly add about 2 cm ³ of solution P , with shaking, until no further change is seen.	
			[2]

Belief. 'Learn. Improve. Excel.'

Page 2

[Tum over

(c)	(i)	Add about 2 cm³ of solution R into a clean test-tube.	
a	В	To this test-tube, slowly add about 2 cm ³ of solution P , with shaking, until no further change is seen.	
		The farage to seem	
	(ii)	To the same test-tube, add about 2 cm³ of solution Q and shake the mixture thoroughly until no further	
		change is seen.	
			[2]
			[-1]
	(iii)	Transfer the mixture in (c)(ii) into a boiling tube.	
		Using a measuring cylinder, add 3 cm³ of dilute sodium hydroxide to the mixture.	
			,
		Heat the boiling tube gently until no further changes are seen.	
			121
			[3]

Belief: 'Learn, Improve, Excel'

Page 3

[Turn over .

(Turn over

Conclusions.

(f)	Using your observations, deduce which of the solutions, P, Q or R, contains sulfuric acid. Explain your answer using evidence from your observations.
	solution
	explanation
	[1]
(g)	Using your observations in (a), (b), and (c), deduce which of the solutions, P, Q or R, contains carbonate.
	Explain your answer using evidence from your observations in (a), (b), and (c).
	solution
	explanation
	[1]
(h)	Suggest the identity of the last solution.
	[1]

4E/5NA Sc(Chemistry) Prelims 2017 Answer Scheme

Paper 1 (5076)

C	hem	21	22	23	24	.25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
		С	В	С	D	D	В	Α	В	С	D	С	D	D	В	Α	D	D	Α	В	D

Paper 3

A1(a)	lead(II) oxide	[1]
(b)	iron(II) oxide	[1]
(c)	carbon dioxide	[1]
(d)	carbon monoxide	[1]
(e)	nitrogen dioxide	[1]
A2	air (mixture of elements and compounds) bronze (mixture of elements) helium (element) copper(II) sulfate (compound)	[2] Every two correct, 1 mark awarded
A3(a)(i)	Simple distillation	[1]
(a)(ii)	100 ℃	[1]
(a)(iii)	It is to <u>cool and condense vapour into liquid.</u>	[1]
(b)	Filtration	[1]
(c)(i)	blue	[1]
(c)(ii)	It cannot differentiate between weakly acidic and neutral (uric acid and distilled water). Use universal indicator instead. [Note: litmus paper not accepted]	[1] [1]
A4(a)(i)	They all have the same number of electron shells.	[1]
(a)(ii)	R, Q, P, S	[1]
(iii)	It can be extracted using electrolysis.	[1]
(b)(i)	greenish-yellow / yellow	[1]
(ii)	At room temperature, bromine is a liquid, thus, it has a <u>disorderly</u> arrangement and is less closely packed than in the solid. Particles can <u>slide over one another over a short distance</u>	[1]

A5(a)	Colourless solution turns reddish-brown/brown	[1]
(b)	Displacement reaction.	[1]
	Chlorine is more reactive than bromine, thus will displace bromine	[1]
(c)(i)	Bromine is <u>oxidised</u> .	[1]
	In the reaction, the oxidation state of bromine changes from — 1 in NaBr to 0 in	F41
	Br ₂ . The reducing agent is <u>sodium bromide / NaBr</u>	[1]
(ii)	The reddening agent is south in bronning reads.	[1]
(d)	Silver nitrate / lead(II) nitrate	[1] .
A6(a)	Ensure temperature remains constant for both experiments.	[1]
(b)	Experiment II	[1]
(c)	In Experiment II, powdered calcium carbonate is used. The smaller particle size leads to an increase in total surface area, thus more surfaces exposed.	[1]
a.	Collision between particles increases, leading to <u>increase in frequency/rate</u> of effective collision, thus, faster speed of reaction.	[1]
(d)	$CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$	[2]
	[1 mark for balanced equation, 1 mark for correct chemical formula]	
(e)	No. of moles of $CaCO_3 = 28.6 / (40+12+3(16)) = 0.286 \text{ mol}$	[1]
	Mole ratio of CaCO ₃ : CO ₂ = 1:1	
	Thus, no. of mole of HC/ = 0.286 mol	
	Volume of $HCI = 0.286 \times 24 = 6.864 \text{ dm}^3$	[1]
A7(a)	W: lead(II) nitrate	[1]
	X. lead(II) hydroxide	[1]
	Y: ammonia gas	[1]
(b)	White precipitate, insoluble in excess sodium hydroxide.	[1]
(c)	Method: Acid reaction with metal, base, carbonate	[1]
	Reagents: nitric acid / lead(II) carbonate / lead(II) oxide	[1]
A8(a)	No. of moles of KOH = 0.35 x (25/1000) = 0.00875 mol	[1]
	Mole ratio of KOH: K ₂ SO ₄ = 2:1	
	Thus, no. of mole of $K_2SO_4 = 0.004375$ mol	
	Mass of $K_2SO_4 = 0.004375 \times (2(39) + 32 + 4(16)) = 0.76125 g$	[1]
(b)	No. of moles of KOH = 29.5 / (39+16+1) = 0.5267857143 mol (leave to 5 d.p.)	[1]
	Concentration = 0.52679 / 5 = 0.1053571429 mol/dm³ ≈ 0.105 mol / dm³	[1]
B9(a)	Exothermic reactions	[1]
	[MR: endothermic reaction, displacement reaction (not considering the change in temperature)]	- •

(b)	Metal C is more reactive than magnesium.	[1]							
	Thus, magnesium will not displace metal C.	[1]							
	[MR: many students wrote that metal C is not reactive at all, thus, displaying a lack of understanding of the reaction taking place. Some students also merely wrote that no reaction has taken place, which is too vague]	÷							
(c)	Copper	[1]							
	[MR: iron(III), iron(III) hydroxide/oxide, copper(II) – Lack of understanding that sodium hydroxide/aqueous ammonia is necessary for iron(III) hydroxide/oxide to be formed.]								
(d)	B, D, A, magnesium, C	[1]							
	[MR: Many students missed out magnesium as one of the metals to write in. Some students also wrote the answer in decreasing reactivity instead]								
(e)	test: place a lighted splint near the mouth of the test-tube.	[1]							
	[accept: insert lighted splint into test-tube/place lighted splint near the reaction BUT not place into reaction]	[1]							
	[MR: many students simply wrote lighted splint test/use a lighted splint/insert lighted splint]								
	observation: lighted splint <u>extinguished with a 'pop' sound</u> .								
(f)	thus it disrupts the regular arrangement of atoms in the pure metal.								
	[accept: various sizes of atoms] [marks awarded as long as students show awareness that pure metals have a regular/orderly/neat arrangement]	* 1. · ·							
	[MR: many students were missing key words, such as the different sized atoms, or that the regular/orderly arrangement was disrupted.]								
	Thus, atoms cannot slide over each other easily.	[1]							
	[accept: harder/more difficult for atoms to slide over each other]								
	[MR: many students wrote that it prevents atoms from sliding over each other – NOT true as it merely makes it more difficult!]								
	In a pure metal, layers of atoms slide over one another easily.	[1]							
	[MR: some students only wrote that atoms can slide over one another]								
	[In general: some students wrote about MOLECULES instead of atoms/particles, which is incorrect!]								
B10(a)(i)	carbon dioxide water	[4]							
	O (C () O) (H) (H)	2 marks for each correct compound drawn							

	in this participation of the contract of the c	
	[correct number of bonding electrons [1]; correct number of non-bonding electrons (only if number of bonding electrons is correct) [1]]	
	[MR: a few students drew carbon dioxide molecule as an ionic compound; quite a few students did not pair up the non-bonding electrons in O, or drew only one covalent bond between C and O.]	a
~	[MR: water molecule was generally well-drawn; some students confused the chemical formula to be HO ₂ instead]	
(a)(ii)	Water molecules are formed by covalent bonds, where oxygen atom shares one electron each with a hydrogen atom	[1]
	[MR: majority of students gave generic answers (covalent bonding, share electrons etc.) without reference to the water molecule. Many of them also did not state accurately how many electrons were shared between oxygen and each hydrogen atom]	[1]
	to form a stable noble gas configuration.	
	[mark awarded here only if students show awareness of covalent compounds = sharing of electrons]	
	[in general: many students started talking about the weak intermolecular forces of attraction between molecules, instead of referring to the 'dot and cross' diagram.]	
(a)(iii)	Isotopes have the same proton and electron number/same number of valence electrons but different number of neutrons.	[1]
	[MR: many students only talked about the number of protons being the same or that they have similar chemical properties or stated the definition of isotopes only]	
(b)	lonic compounds have <u>high melting points</u> , while covalent compounds have <u>low melting points</u> .	[1]
	[MR: some students wrote about why the compounds have high melting/boiling points which was not necessary!]	[1]
	lonic compounds are generally <u>soluble in water and insoluble in organic</u> <u>solvents</u> , while covalent compounds are generally <u>soluble in organic</u> <u>solvents and insoluble in water.</u>	[1]
	[MR: some students mixed up between ionic compound solubility and covalent compound solubility]	
	[accept: soluble in water and insoluble in organic solvent, while covalent compound is opposite (meaning is same)]	
	lonic compounds can <u>conduct electricity in molten/liquid and aqueous</u> <u>states</u> , while covalent compounds <u>cannot conduct electricity in any</u> <u>state/non-conductors of electricity.</u>	
	[MR: many students were not specific (e.g. ionic compounds conduct electricity while covalent compounds do not; conduct only in aqueous state etc.)]	
	[In general: some students confused the physical properties with chemical properties (sharing/giving away electrons); some students also mixed up the physical properties with that of metals/non-metals (e.g. density, hard, ductile, malleable, solid at r.t.p etc.)]	

B11(a)(i)	As the number of carbon atoms increases, boiling point increases.	[1].
	As the molecular size increases, the forces of attractions between the molecules increase, thus more energy is needed to overcome the forces of attraction.	(I)
	[accept: intermolecular forces of attraction increases] [MR: explanation was not well done – many students missing out key points (e.g. only talking about forces of attraction increasing, or molecular size increasing, but not both); some students also talked about the percentage of carbon (related to flammability)]	
(ii)	H H H H-C-C-C-C H H H H	[1]
	[MR: generally well done]	
(iii)	-CHO / - COH [MR: some students did not understand the question, either restating the question, or attempting to write the general formula]	[1]
(b)(i)	To <u>distinguish</u> between saturated and unsaturated hydrocarbons / alkanes and alkenes. [accept: to identify/to test if it is alkane or alkene] [MR: a number of students wrote ethene and ethane specifically; some students also wrote about converting alkenes to alkanes]	[1]
(b)(ii)	process: hydrogenation/addition of hydrogen [MR: some students wrote cracking instead] conditions: high temperature of 200 °C, nickel catalyst [accept: if students wrote process as addition] [MR: no marks awarded if process is wrong but conditions is correct; some students spelt nickel as nickle]	[1]
(b)(iii)	name: polyethene / poly(ethene)	[1]
	$\begin{pmatrix} H & H \\ -C - C \\ - H & H \end{pmatrix}_n$	[1] At least 3 repeating units
(iv)	[MR: a number of students did not put the <i>n</i> at the bottom; some students drew the monomer]	[1]
	Plastics are <u>non-biodegradable/do not decompose</u> , thus, will not break down.	1.1
	[accept: hard to break down, difficult/long time to decompose]	
	[do not accept: decay]	
: ,	[MR: some students spelt non-biodegradable as non-biodegrable]	

~						
Ca	nn	Ma	ATA	N	21	ma
Ou.	ı ıu	u		1.3		

Index Number

Class

GREENRIDGE SECONDARY SCHOOL

Preliminary Examination 2017 Secondary 4 Express & 5 Normal Academic

SCIENCE (PHYSICS, CHEMISTRY) 5076/05

Paper 5 Practical Test

22 August 2017 1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions.

GREENRIDGE GREENRIDGE GREENRIDGE GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY
GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY	SCHOOL	GREENRIDGE	SECONDARY

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer both questions.

You are advised to spend 45 minutes on each question. Chemistry practical notes for this paper are printed on page 9.

The number of marks is given in brackets [] at the end of each question or part question.

Setters: Mr Goh Weibeng Ms Lin Liyi

For Examiner's Use Only					
1					
2					
Total	: 1				

This document consists of 6 printed pages, including this cover page.

You are provided with three labelled samples of solutions P, Q and R. Two of the solutions contain acid and carbonate.

Carry out the following tests. You should test any gases evolved. Carefully record your observations.

The volumes given below are approximate and should be estimated rather than measured.

		test	observations
(a)	(i)	Add about 2 cm ³ of solution P into a clean test tube.	
		To this test-tube, add about 2 cm³ of solution Q , with shaking, unitl no	Pale blue / light blue / bluish-green ppt formed [1]
		further change is seen.	[MR: students try to write too much, making it difficult to find the key points]
	(ii)	To the same test-tube, slowly add about 2 cm³ of solution R , with	Pale blue ppt dissolves to form a pale blue solution [1]
		shaking, until no further change is	[accept: ppt dissolved/soluble]
		seen.	[MR: many students did not write this accurately – a number of students missing out key words "dissolves"]
		asáculan bezernek köl	Bubbles observed.
			White ppt formed in limewater [1]
			[MR: many students did not test for gas. A number of them forgot to write that there were bubbles produced and a few still wrote limewater forms white ppt]
			[3
(b)	(i)	Add about 2 cm ³ of solution Q into a clean test-tube.	
		To this test-tube, add about 2 cm ³ of	No visible reaction [1]
		solution R and shake the mixture thoroughly until no further change is	[accept: no visible change/observation]
		seen.	[MR: Some students wrote that blue solution turned light blue]
	(ii)	To the same test-tube, slowly add	Bubbles observed.
	(")	about 2 cm3 of solution P, with	White ppt formed in limewater [1]
		shaking, until no further change is seen.	[MR: some students did not test for gas here, or tested for ammonia/H ₂ gas or

Belief: 'Learn. Improve. Excel.'

Page 2

[Turn over

			simply stated the gas present without the observations]
		* *	[2]
(c)	(i)	Add about 2 cm³ of solution R into a clean test-tube. To this test-tube, slowly add about 2 cm³ of solution P, with shaking, until no further change is seen.	Bubbles observed. White ppt formed in limewater [1] [MR: some students did not test for gas here; a number wrote that damp blue litmus paper turned red]
	(ii)	To the same test-tube, add about 2	No visible reaction [1]
		cm³ of solution Q and shake the mixture thoroughly until no further change is seen.	OR colourless solution turns light blue / blue [1]
			[MR: many students simply wrote that solution turned blue instead of colourless solution turning blue/the word clear was used instead]
			[2]
	(iii)	Transfer the mixture in (c)(ii) into a boiling tube.	
		Using a measuring cylinder, add 3 cm³ of dilute sodium hydroxide to	Blue/dark blue ppt formed. [1]
		the mixture.	[do not accept: light blue ppt]
		,	[MR: a number of students wrongly identified this as a solution]
		Heat the boiling tube gently until no further changes are seen.	Bubbles observed. A pungent gas is formed.
			Damp red litmus paper turns blue [1]
			[accept if students did not write bubbles observed; do not accept if the word damp is missing]
			[MR: many students did not test for this]
			black ppt formed in colourless solution/ black ppt formed/blue ppt turns black [1]
			OR pale / green ppt formed in colourless solution/blue ppt turned green
			[MR: many students missed out this observation] [3]

Turn over

GSS Prelim 2017 Sci(Phy/Chem) 5076/05

Committee

Conclusions

Using your observations, deduce which of the solutions P, Q or R, contains sulfuric acid. Explain your answer using evidence from your observations. solution R explanation In (e), white ppt of BaSO₄ formed when acidified barium chloride solution is added. [accept: students not writing the part, but describing the test properly; white ppt formed when barium chloride solution added] [MR: most students were able to correctly identify R as H2SO4 and could give a good explanation.] Using your observations in (a), (b), and (c), deduce which of the solutions P, Q or (g) R, contains carbonate. Explain your answer using evidence from your observations in (a), (b), and (c). solution P explanation in (a), (b) and (c), carbon dioxide is produced, as shown by the white ppt formed in limewater. [accept: students only writing one part of the question; only writing that white ppt formed in limewater; do not accept: limewater turns chalky] [MR: some students only wrote that bubbles were produced] (h) Suggest the identity of the last solution.

Copper(II) chloride [1]

[MR: many students could identify that the solution contained copper(II) or chloride ions, although some of them could not piece them together.]

~ End of Paper ~

NOTES FOR QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C l^-) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH4 ⁺)	ammonia produced on warming	4"
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt.
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
Iron(111) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
lead(II) (Pb ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
zinc (Zn²+)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test result
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	gives white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine (CI ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O₂)	relights a glowing splint
sulfur dioxide (SO ₂)	turns aqueous acidified potassium manganate(VII) from purple to colourless