

Geylang Methodist School (Secondary) Preliminary Examination 2018

SCIENCE (CHEMISTRY/BIOLOGY)

Paper 1

5078/1 Sec 4E/5N

Additional materials : Optical Answer sheet (OAS) 1 hour

Setter: Iskandar 18 Aug 2018

Ms Lam Yuit Kwai

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

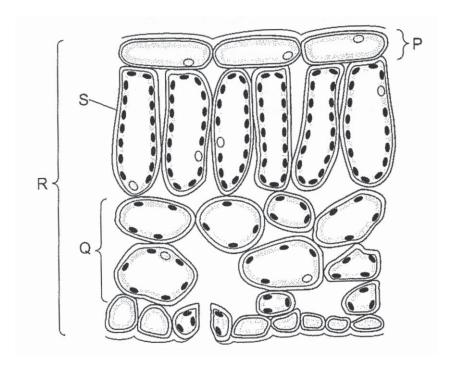
Do not use staples, paper clips, highlighters, glue or correction fluid on the Optical Answer Sheet.

Write your name, class and index number on the Optical Answer Sheet provided.

There are **forty** questions in this paper. Answer all the questions. For each question, there are four possible answers, **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate answer sheet.

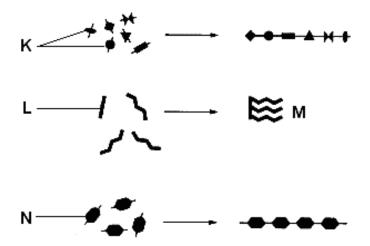
Read the instructions on the answer sheet very carefully.


Each correct answer will score one mark. No mark will be deducted for a wrong answer.

Any rough work should be done in this booklet.

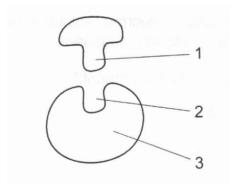
A copy of the periodic table is printed on page 24.

Section A


The diagram shows a section through a leaf.

Which of the following correctly identifies an organ and a tissue?

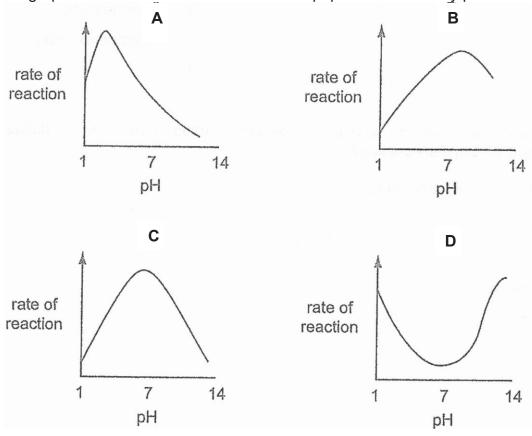
	organ	tissue				
Α	Р	R				
В	Q	S				
С	R	Р				
D	S	Q				


The diagram shows some chemical molecules found in the human body and how they join to form larger molecules.

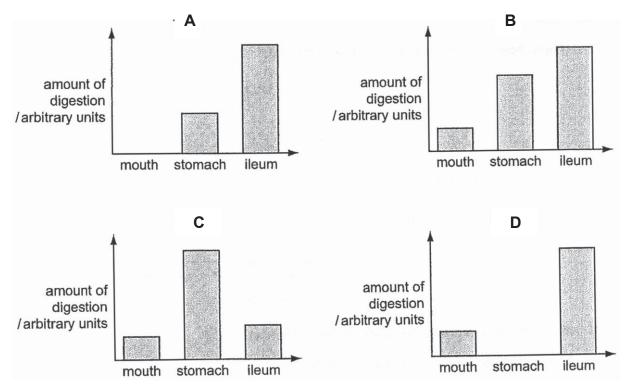
Which of the following correctly identifies molecules K, L, M and N?

	K	L	M	N
Α	amino acid	glycerol	fat	glucose
В	protein	glycerol	fatty acid	starch
С	maltose	fat	glycerol	cellulose
D	fatty acid	amino acid	starch	glucose

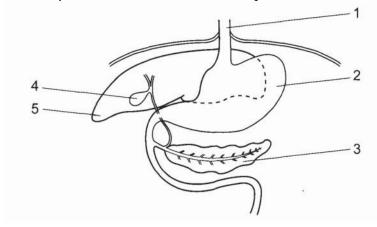
The diagram illustrates the 'lock and key' hypothesis of enzyme action.



Which of the following correctly identifies the enzyme, the active site and the substrate?

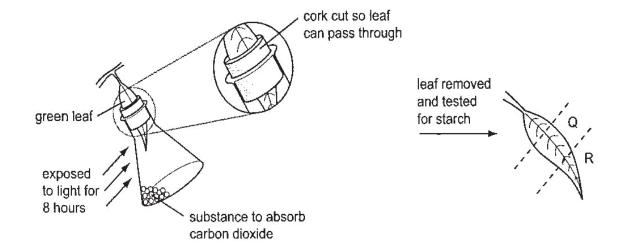

	enzyme	active site	substrate
Α	1	2	3
В	1	3	2
С	3	1	2
D	3	2	1

Pepsin is an enzyme that is active in the human stomach.


Which graph shows how the rate of reaction of pepsin is affected by pH?

Which bar chart represents the amount of starch digested in the mouth, stomach and ileum of a human?

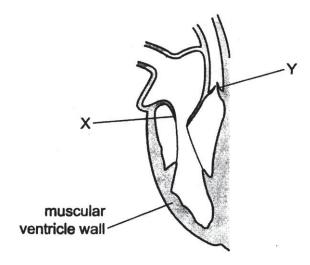
The diagram shows part of the human alimentary canal.



Which two structures produce substances involved in the digestion of fat?

- **A** 1 and 4
- **B** 3 and 5
- **C** 2 and 3
- **D** 4 and 5

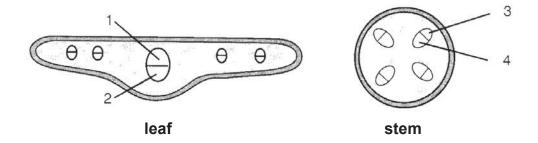
27 A plant is kept in the dark for two days.


A leaf is used in an experiment to investigate the effect of two factors on photosynthesis, as shown in the diagram.

What are the colours of **Q** and **R**, when the leaf is tested for starch?

	Q	R
Α	brown	brown
В	brown	blue-black
С	blue-black	brown
D	blue-black	blue-black

The diagram shows the right-hand side of the human heart when the ventricle is relaxed.



Which row correctly describes the position of the valves X and Y when the ventricle contracts?

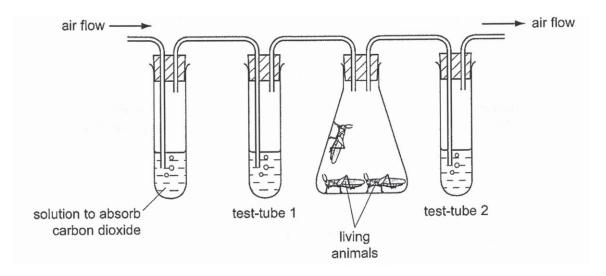
	valve at X	valve at Y
Α	closed	closed
В	closed	open
С	open	closed
D	open	open

A shoot is placed in a beaker of red coloured water for 3 hours.

The diagrams show transverse sections of a leaf and stem of the shoot.

Which regions, 1 - 4, will be stained red after three hours?

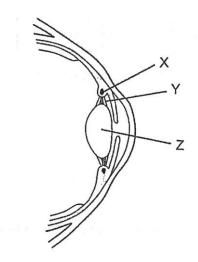
A 1 and 2


B 2 and 4

C 1 and 4

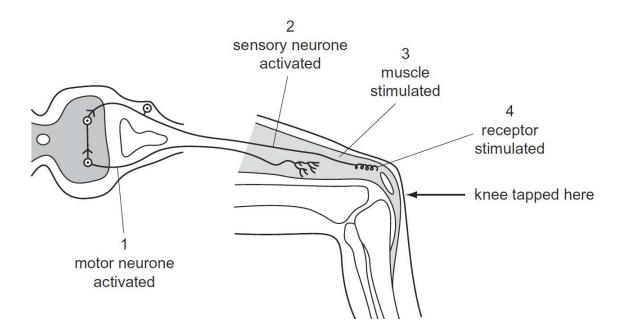
D 2 and 3

30 An experiment is set up as shown.


Test-tubes 1 and 2 contain limewater. Limewater is a clear solution that turns cloudy in the presence of carbon dioxide. Air is pumped through the apparatus.

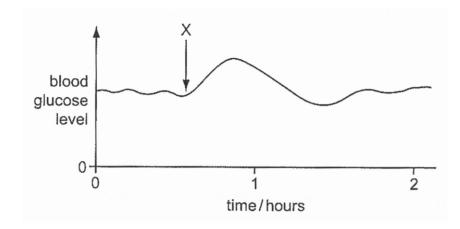
What is the appearance of the limewater in test-tubes 1 and 2 after a period of ten minutes?

	test-tube 1	test-tube 2				
Α	clear	clear				
В	clear	cloudy				
С	cloudy	clear				
D	cloudy	cloudy				


The diagram shows a section through part of the eye.

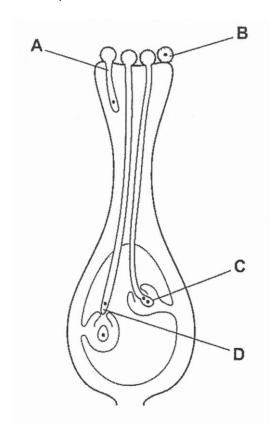
What happens to parts X, Y and Z when the eye focuses on a near object?

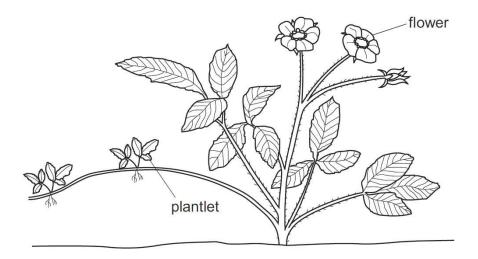
	Х	Υ	Z
Α	contracts	tight	less convex
В	contracts	slack	more convex
С	relaxes	tight	less convex
D	relaxes	slack	more convex


The diagram shows a simple knee-jerk reflex.

What is the correct order of events after the knee is tapped?

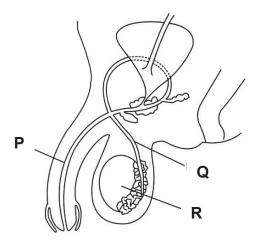
- A $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
- $\mathbf{B} \quad 1 \rightarrow 4 \rightarrow 2 \rightarrow 3$
- $\mathbf{C} \qquad 4 \rightarrow 2 \rightarrow 1 \rightarrow 3$
- **D** $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$


The graph shows changes in the glucose concentration in the blood of a person during two hours.


What explains the shape of the graph after X?

- **A** The person has eaten a jam sandwich.
- **B** The person has had an insulin injection.
- **C** The person is running a marathon.
- **D** The person is suffering from a condition in which insulin is lacking.
- The diagram shows the stigma, style and ovary of a flower.

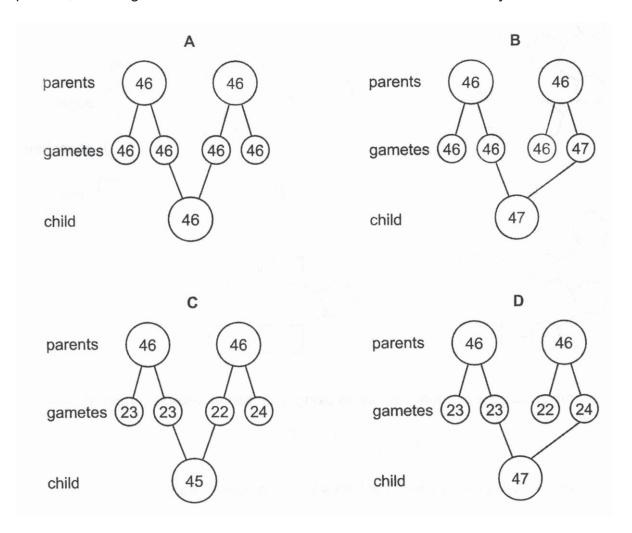
Where does fertilisation take place?


The diagram shows a plant that is producing small plantlets.

Which statement about the plantlets is correct?

- **A** They are genetically identical to the parent plant.
- **B** They are genetically different from the parent plant.
- **C** They are produced by seeds formed in the fruit while attached to the plant.
- **D** They are produced as a result of the fusion of nuclei.

The diagram shows part of the human male reproductive system.

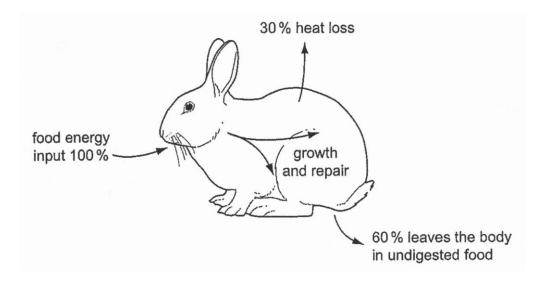


What are the structures **P**, **Q** and **R**?

	Р	Q	R
Α	sperm duct	urethra	testis
В	sperm duct	testis	urethra
С	urethra	testis	sperm duct
D	urethra	sperm duct	testis

37 A Down's Syndrome child is born.

Which diagram shows the correct number of chromosomes in the cells of the parents, in their gametes and in the cells of their child with Down's Syndrome?



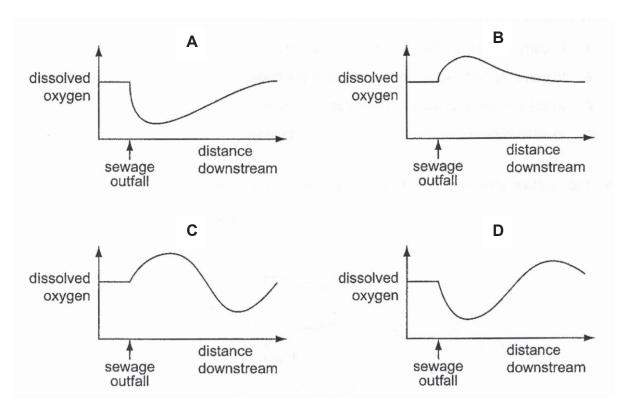
In mice, the allele for long fur is dominant and the allele for short fur is recessive.

Several heterozygous mice with long fur were mated with several mice with short fur. For every 100 offspring, how many should be predicted to have short fur?

- **A** 25
- **B** 50
- **C** 75
- **D** 100

39 The diagram show the energy losses and gains of a rabbit.

Which percentage of food energy is used for growth and repair?


A 10%

C 60%

B 30%

D 70%

Which graph shows the most likely effect of pollution by sewage on the amount of oxygen dissolved in a river?

End of Paper

DATA SHEET
The Periodic Table Of The Elements

					1														7	l		Г	_
	0	4	He	Helium 2	20	Ne	Neon 10	40	Ar	Argon 18	84	궃	Krypton 36	131	Xe	Xenon 54		R	Radon 86				
	IIN					Щ	Fluorine 9	35.5	ਹ	Chlorine 17	80	Ä	Bromine 35	127		lodine 53		Αt	Astatine 35				0.07100001000
					16	0	Oxygen 8	32	ഗ	Sulfur 16	62	Se	Selenium 34	128	Te	Tellurium 52		Ро	Ε				
	>				41	z	Nitrogen 7	31	۵	Phosphorus 15		As	O	122		Antimony 51	209	B	Bismuth 83				10
	2				12	ပ	Carbon 6	28	S	Silicon 14	73	Ge	=	l	Sn		207	Pp	Lead 82				
	=				11	В	п	27	¥	Ę	20	Ga	_	115	므	Indium 49		F	Thallium 81				-
											65	Zu	Zinc 30	112	B	Cadmium 48	201	Ε̈́	Mercury 80				
											64	J O	Copper 3	108	Ag		37	Au					N. William College
Group	•												<u>-</u>		Pd	Palladium 46		చ	Platinum 78				1
Green					_						69	ပိ						<u></u>	Iridium 77				
		-	I	Hydrogen 1							99	Fe		l .	Ru	Niobium Molybdenum Technetium Ruthenium Rhodium 41 44 45 45	190	SO	Osmiun 76				
											55	Mn	Manganese 25		ے ا	Technetium 43	186	Re	Rhenium 75				
											52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	>	Tungsten 74				
											51	>	Vanadium Chromium Manganese 23 24 25	93			181	Та	Tantalum 73				770
											48	ï	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72				
											45	Sc	Scandium 21	89	>	Yttrium 39	139	Гa	Lanthanum 57 *	227	Actinium	+ 68	
	=				6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Potassium Calcium	88	Š	Strontium 38	137	Ba	Barium 56	226	Radium	88	
	_				7	:=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Вb	Rubidium 37	133	Cs	Caesium 55	ů	Francium	87	

141	144		150	152	157	159	162	165	167	169	173	175
P	PZ	Pm	Sm	En	В	Тb	۵	운	ш	H	Хp	Γn
miun	raseodymium Neodymiur	m Promethium	Samarium	Europium	Gadolinium	Terbium	inm	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	09	61	62	63	64	65	99	29	68	69	70	71
	238											
Ра	\supset	ď	Pu	Am	CH	Ř	ರ	Es	Fm	Md	2	ت
Ę	actinium Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
	92	93	94	92	96	97	86	66	100	101	102	103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

Q

a = relative atomic massX = atomic symbol

 \times

Key

*58-71 Lanthanoid series +90-103 Actinoid series

Geylang Methodist School (Secondary) Preliminary Examination 2018

Candidate Name		
Class	Index Number	

SCIENCE 5078/04

Paper 4 Biology

Sec 4 Express Sec 5 Normal (A)

Additional materials: Writing paper 1 hour 15 minutes

Setter: Ms Lam Yuit Kwai 20 Aug 2018

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A (45 marks)

Answer all the questions.

Write your answers in the spaces provided on the question paper.

Section B (20 marks)

Answer any **two** questions.

Write your answers in the spaces provided on the question paper and the question no. you have attempted in the box on the right side of this page.

The number of marks is given in brackets [] at the end of each question or part question.

For Marker	s' Use
Section A	45
Section B	
	10
	10
TOTAL	65

This question paper consists of 16 printed pages.

Turn over

Section A

Answer **all** the questions in the spaces provided.

1 A student cut six pieces of potato and weighed each one.

He placed each piece of potato in a different concentration of sugar solution for 60 minutes.

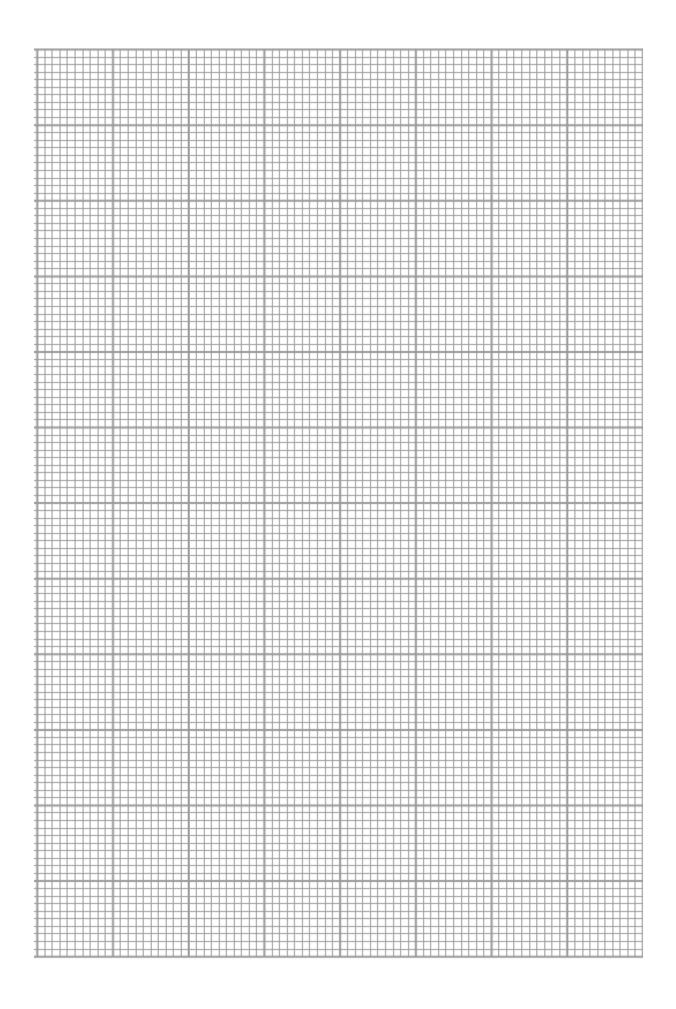
He then re-weighed each piece of potato.

He worked out the change in mass for each piece as a percentage of the original mass

His results are shown in Table 1.1.

Table 1.1

concentration of sugar solution /	mass of potato / g		percentage change in	
mol per dm ³	start	finish	mass / %	
0.20	8.42	9.18	+9.0	
0.30	8.15	8.68	+6.5	
0.40	8.30	8.48	+2.2	
0.50	8.62	8.31	-3.6	
0.60	8.38	7.83	-6.6	
0.70	8.22	7.53		


(a) Calculate the percentage change in mass for the sugar concentration of 0.70 mol per dm³.

percentage change in mass =	%	[2]

(b) On the grid provided on the next page, plot the graph of percentage change in mass against concentration of sugar solution. Use the results in **Table 1.1** and your answer to (a).

On your graph, use appropriate scales, label the axes and draw a line of best-fit.

[4]

(c)	(i)	Use your graph to suggest	a concentration for the cell sap in the potat	to.
			mol per dm ³	[1]
	(ii)	Explain your answer to (c)	(i).	
				[2]

2 Fig. 2.1 shows the human respiratory system.

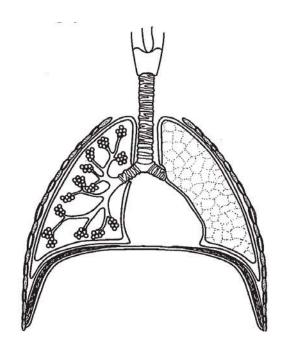


Fig. 2.1

(a) Add labels to the diagram to show the trachea, a bronchiole and some alveoli.

[3]

b)	At the bloo	e exchange surface of the alveoli, oxygen travels from the air to the)
		ain how the structure of the alveoli aids the rapid transfer of oxygen a surface.	t
			_
			_
			3]
c)	Smo	king cigarettes can have serious effects on health.	
	(i)	Name three major toxic compounds of tobacco smoke.	
		1. 2.	
			3]
	(ii)	Suggest two ways that smoking cigarettes may affect the health of the lungs.	;
			_
			_
		[:	2]

3 Fig. 3.1 and F3.2 show two frontal views of an eye under different lighting conditions.

Fig. 3.1

Fig. 3.2

(a)	On Fig. 3.1, use label lines to identify the following structures				
	(i)	iris	[1]		
	(ii)	pupil	[1]		
(b)	Sug	gest how the change in the eye from Fig. 3.1 to Fig. 3.2 is brought about	t.		
			[3]		

4 Haemochromatosis is an inherited disorder that results in an accumulation (build up) of iron in the liver. It is inherited as a recessive allele.

7

Fig. 4.1 shows how haemochromatosis was inherited in one family.

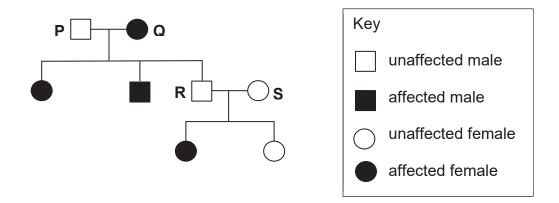
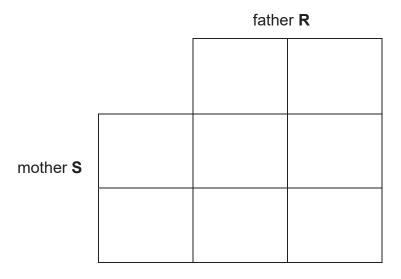
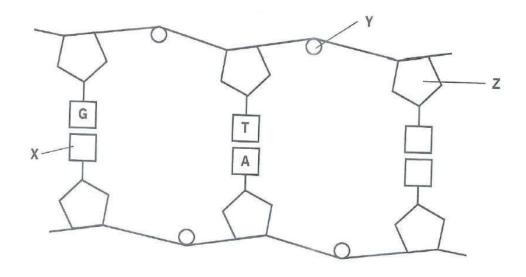



Fig. 4.1

In answers to this question, use ${\bf H}$ to represent the normal allele and ${\bf h}$ to represent the recessive allele.


- (a) (i) What is the genotype of parent **P**? [1]
 - (ii) What is the genotype of parent **Q**? [1]
- **(b)** Parents **R** and **S** have a third child. What is the chance that this child has haemochromatosis?

Use the Punnett square to work out your answer.

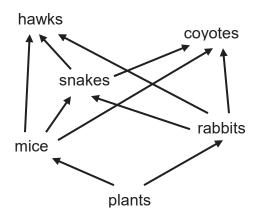
Chance of the child having the disorder = _____ [3]

5 Fig. 5.1 below shows a section of a DNA molecule.

8

Fig. 5.1

(a) (i) Name the parts labelled X, Y and Z.


X :	
Y :	
Z :	[3]

- (ii) Draw a circle around the components which make up **one** nucleotide on Fig. 5.1. [1]
- **(b)** Table 5.1 shows the percentage composition of bases in the DNA of rat. Complete the table.

Table 5.1

organism	% A	% C	% G	% T
rat	28			

[2]

9

Fig. 6.1

(i)	a herbivore,
(ii)	a carnivore
	disease myxomatosis kills most of the rabbits in this habitat. lict and explain one significant impact this has on the food web.

(c) (i) From the food web in Fig. 6.1, construct a food chain with four trophic levels. [1]

	(ii)	Sketch a fully labelled pyramid of number for the food chain you have constructed in (i)	
			ſΟ.
			[2]
d)	Sug	gest why food chains generally do not have more than four trophic leve	ls.
			[2]

Section B

Answer **two** questions from this section. Write your answers in the spaces provided.

7 Fig. 7.1 shows the carbon cycle.

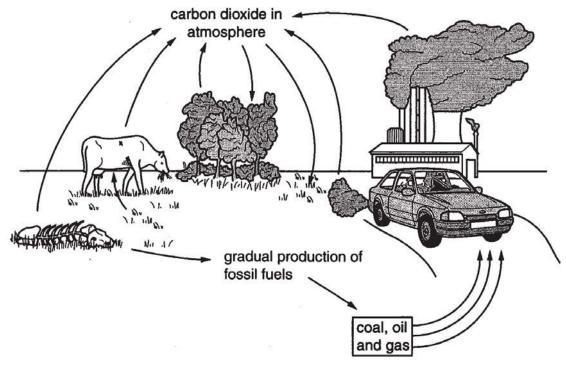
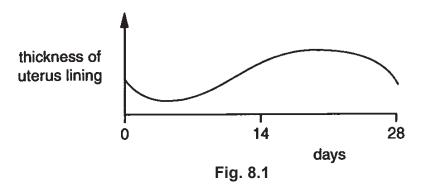



Fig. 7.1

(a)	With reference to Fig. 7.1, explain how photosynthesis, respiration and animal nutrition are involved in the carbon cycle.

		[6]
(b)	Burning of fossil fuels and destruction of the world's forests are both increasing.	
	Predict and explain what effect these increases will have on the carbon	
	cycle.	
		[4]
i F		171

8 Fig. 8.1 shows the thickness of the uterus lining changes during a woman's menstrual cycle. Fig. 8.2 shows how concentrations of the hormones oestrogen and progesterone change during the same cycle.

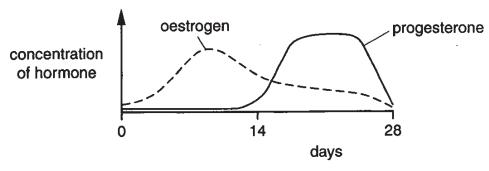


Fig. 8.2

(a) Describe how the lining of the uterus changes from day 0 to day 28 of the menstrual cycle. Include in your description how the hormones oestrogen and progesterone affect the uterus lining during the menstrual cycle.

menstrual cycle. [6]

			[6]
b)	(i)	Suggest and explain what differences you would expect in Fig. 8.1 and Fig. 8.2 if an egg is fertilised during the cycle.	[0]
			[2]
	(ii)	Explain why the woman's whole menstrual cycle is made up of fertile and non-fertile phases. Include which days are the fertile phase for this woman's cycle in your answer.	
			[2]

14

GMS(S)/Science(Bio)/P4/Prelim2018/4E/5NA

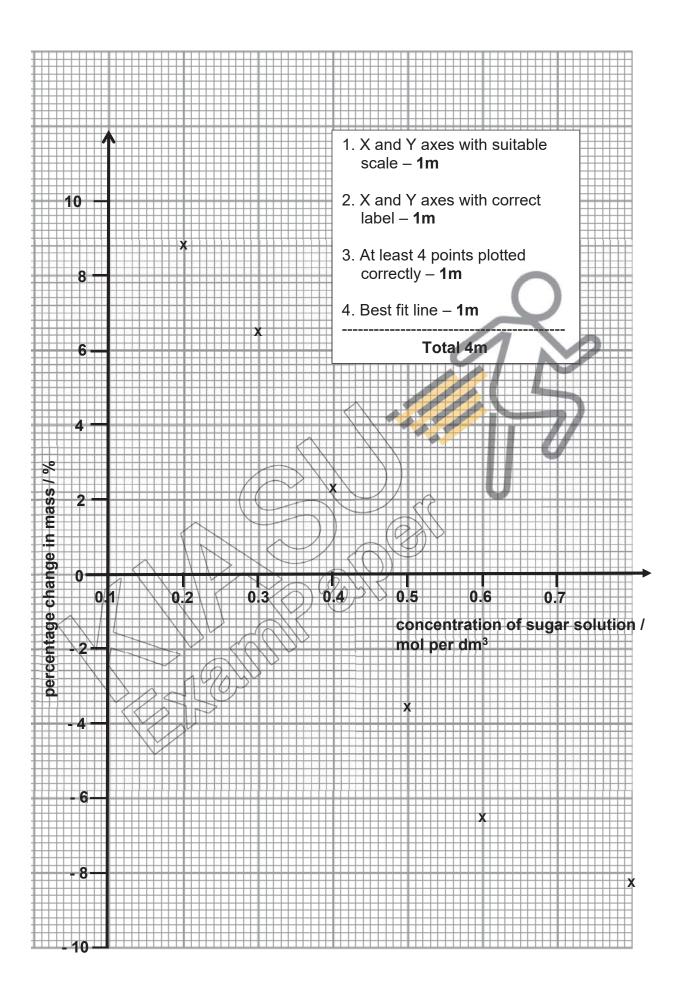
9	(a)	Describe three differences between a typical plant cell and a typical animal cell. Suggest how each difference is essential to the survival of the plant.
		[6]

(b)	Suggest how the differences between a red blood cell and a typical animal cell are related to the function of the red blood cell.						
	[4]						

End of Paper

Geylang Methodist School Secondary Preliminary Exam 2018 Science (Biology) Papers 1 and 4 Sec 4E/5NA

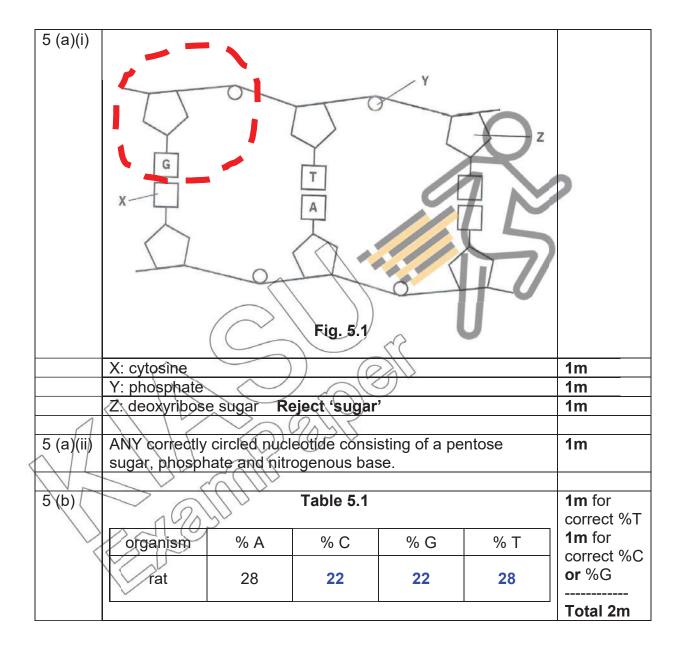
MARKING SCHEME


Paper 1 (Biology Section - Q21 to Q40))

Qn No.	21	22	23	24	25	26	27	28	29	30
<u>Ans</u>	С	Α	D	A	D	В	A	В	C	В

Qn No.	31	32	33	34	35	36	37 38	39	40	
Ans	В	С	Α	С	Α	D	D B	A	Α	

Paper 4 (Biology)


Section A	Section A						
Qn. No	Answers	Marks					
1 (a)	(7.53 – 8.22) 8,22 X 100%	1m					
	% change in mass = - 8.4%	1m					
1 (b)	See graph on next page. Correctly labelled X-axis and scale						
	Correctly labelled Y-axis and scale At least 4 out of 6 correctly marked plots	1m each					
	Best fit line	Total 4m					
1 (c)(i)	From the graph, concentration of cell sap is <u>4.4</u> mol per dm ³	1m					
1 (c)(ii)	The sugar solution which results in no % change in mass of the potato indicates that there is no net movement of water.	1m					
	This can only happen if the water potential of the sugar solution is the same as that of the cell sap of the potato cells.	1m					

bronchiole alveoli Fig. 2.1	1m each correctly identified and labelled partTotal 3m
Spherical shape of the alveoli provides a large surface area to volume ratio which increases the rate of oxygen	1m
Thin / one-cell thick alveolar wall which reduces the distance oxygen has to diffuse through to get to the	1m
3. Presence of a thin tilm of moisture in the inner surface of the alveolus enables oxygen to dissolve in which facilitates	1m
Note: question is about "structure of alveoli", hence any reference to features other than this is not accepted, e.g. proximity of blood capillaries	Total 3m
1. Nicotine	1m each
2. Tar3. Carbon monoxide	Total 3m
 Any TWO of the 3 ways: Irritants and tar in the cigarette smoke causes inflammation of the bronchioles (bronchitis), a condition in which the passage of air in the bronchial tubes is blocked due to the secretion of large amounts of mucus. Prolonged smoking causes emphysema where the alveolar walls breakdown resulting in a reduced surface area for oxygen absorption. Carcinogens in cigarette smoke cause the cells in the lungs to grow uncontrollably leading to cancer. 	1m for each correct answerTotal 2m
	1. Spherical shape of the alveoli provides a large surface area to volume ratio which increases the rate of oxygen transfer. 2. Thin / one-cell thick alveolar wall which reduces the distance oxygen has to diffuse through to get to the capillaries. 3. Presence of a thin tilm of moisture in the inner surface of the alveolus enables oxygen to dissolve in which facilitates the diffusion of the oxygen across the alveolus. Note: question is about "structure of alveoli", hence any reference to features other than this is not accepted, e.g. proximity of blood capillaries 1. Nicotine 2. Tar 3. Carbon monoxide Any TWO of the 3 ways: 1. Irritants and tar in the cigarette smoke causes inflammation of the bronchioles (bronchitis), a condition in which the passage of air in the bronchial tubes is blocked due to the secretion of large amounts of mucus. 2. Prolonged smoking causes emphysema where the alveolar walls breakdown resulting in a reduced surface area for oxygen absorption. 3. Carcinogens in cigarette smoke cause the cells in the

3 (a)	Correctly labelled iris and pupil	
o (u)	pupil iris Fig. 3.1	1m each correctly identified and labelled partTotal 2m
3 (b)	When the eye is exposed to bright light, the pupil automatically becomes smaller / constricts .	1m
	This is due to the <u>circular muscles of</u> the <u>iris</u> which <u>contract</u> while radial muscles (of the iris) relax (max 1m if 'iris' is omitted)	1m 1m Total 3m
		7)

4 / \/'\		4
4 (a)(i)	Hh	1m
4 (a)(ii)	hh	1m
4 (b)	father R	
	H h	1m for correct parental gametes
	mother S H HH unaffected Unaffected	
	h Hh hh unaffected affected	offspring genotype and phenotype
	Chance of the child having the disorder = 25% or 1/4	1m

6 (a)(i)	mouse / rabbit	1m
6 (a)(ii)	snake / hawk / coyote	1m
6 (b)	Population of mice will increase. More plants available for mice to feed on.	1m 1m
6 (c)(i)	ANY ONE of the following food chains:	
	plants → mice → snakes → hawks plants → mice → snakes → coyotes plants → rabbits → snakes → hawks plants → rabbits → snakes → coyotes	1m

6 (c)(ii)	Pyramid of number	1m for correct
	hawks	relative
	snakes	size of trophic levels
	rabbits	ieveis
	plants	1m for regular height
6 (d)	About 90% of energy is lost to the environment during energy transfer from one trophic level to the next in the food chain.	1m
	Hence an organism beyond the 4 th trophic level would not be able to obtain sufficient energy to sustain life.	1m Total 2m

Section B

7 (a)	CO ₂ in the atmosphere is constantly removed by all green	1m
	plants for the process of <u>photosynthesis.</u>	
	During this process, carbon is used to make carbohydrate/	1m
	glucose molecules which the plants use for tissue respiration	1m
	to release energy for their cellular activities	
	Excess glucose made is either stored up in the plant as starch	1m
	/ converted to other organic compounds within the plant body	
\wedge	When herbivorous <u>animals feed on the green plants</u> (animal	1m
	nutrition), the carbon locked in the plant body is <u>transferred</u> into and becomes part of the animal.	
	into and becomes part of the animal.	
	When the animal uses the carbon compound glucose for	1m
	tissue respiration, CO ₂ is produced which is returned back into	
	the atmosphere.	Total 6m
7 (b)	The burning of fossil fuels (such as coal, oil and gas) releases the locked-up carbon in the fossil fuels as CO ₂ into the atmosphere.	1m
	An increase in the burning of fossil fuels therefore will result in more CO ₂ being released into the atmosphere.	1m
	Forests comprise green plants/trees which play a major role in removing CO ₂ from the atmosphere for the process of photosynthesis.	1m

	ncreasing destruction of the world's forests will mean that less CO ₂ in the atmosphere will be removed, causing CO ₂	1m
le	evels to remain high.	Total 4m

8 (a)	From day 0 to day 5, menstruation occurs during which the uterine lining breaks down and its thickness decreases.	1m
	From day <u>6 to day 10</u> , increasing oestrogen level promotes the repair and growth of the uterine lining.	1m
	As the concentration of oestrogen increases further, the uterine starts to thicken from day 11 to day 17.	1m
	From day 18 onwards, under the influence of increasing	1m
	progesterone level, the uterine lining <u>continues to thicken</u> <u>further</u> and is <u>maintained</u> .	1m
	At day 28 when the level of progesterone has decreased sharply, the uterine lining can no longer be maintained and it	1m
	starts to break down, marking the end of the menstrual cycle (and the beginning of the next cycle).	Total 6m
	(and the beginning of the floor syste).	
8 (b)(i)	If an egg is fertilised during the cycle, The level of progesterone in Fig. 8.2 will continue to remain	1m
	high in order to maintain the uterine lining prevents the uterine lining from breaking down	
	The thickness of the uterine lining in Fig. 8.1 will remain high to enable the fertilised egg/zygote to be implanted so that it	1m
	can continue to grow and develop into a foetus	Total 2m
0 (1) (11)		
8 (b)(ii) \	A ripe/mature egg is released from the ovary between day 11 and day 17 of the menstrual cycle which represents the fertile phase of the cycle as the chance of egg being fertilised by a sperm is very high.	1m
	Hence outside of day 11 to day 17, the chance of fertilisation is very low or non-existent, representing the non-fertile period of the menstrual cycle.	1m
		Total 2m

9 (a)	A typical plant cell has <u>chloroplasts containing chlorophyll</u> while a typical animal cell does not have.	1m
	Chlorophyll in the chloroplasts of plant cells enables the plant to <u>absorb sunlight</u> for the process of <u>photosynthesis to make food</u> which is essential for the survival of the plant.	1m
	 A typical plant cell has a <u>cell wall</u> which is absent in a typical animal cell. 	1m
	Cell wall provides <u>protection against mechanical damage</u> and gives shape to the cell, both essential for the survival of the plant.	1m
	3. A typical plant cell has a <u>large central vacuole</u> whereas a typical animal cell has <u>numerous small vacuoles</u> . A large central vacuole allows the cell to store water and nutrients and keep the cell turgid, which enables soft	1m 1m
	tissues in the plant to stay erect.	Total 6m
9 (b)	Any TWO of the following:	
9 (b)	Any TWO of the following:	
	A red blood cell (RBC) has haemoglobin which is absent in a typical animal cell.	1m
	Haemoglobin binds reversibly to oxygen which enables the	1m
	RBC to transport oxygen from the lungs to all parts of the	
	body	
/ /	2. Nucleus is present in a typical animal cell but absent in a	1m
	RBC. Absence of a nucleus enables the RBC to pack in	1m
	more haemoglobin and thus it can <u>carry more oxygen</u> .	
	3. A RBC has a <u>biconcave disc shape</u> , unlike the irregular	1m
	shape of a typical animal cell.	
	The biconcave shape of the RBC increases its surface area	1m
	to volume ratio, allowing oxygen to diffuse into and out of	
	the RBC at a <u>faster rate</u> .	Total 4m

End of Paper