

PASIR RIS CREST SECONDARY SCHOOL Mid-Year Examination Secondary Four Express and Five Normal Academic

CANDIDATE NAME			
CLASS	/	INDEX NUMBER	

Science (Physics / Chemistry / Biology)

Paper 1 Multiple Choice

5076, 5078/01 11 May 2018 1 hour

Additional materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces provided. Write in soft pencil. Do not use staples, paper clips, glue or correction fluid.

There are **forty** questions on this paper. Answer all questions. For each equation there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 8.

A copy of the Periodic Table is printed on page 9.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use
40
Parent's Signature

This document consists of 9 printed pages, including the cover page.

Multiple Choice Questions (40 marks)

Answer all questions.

- A student mixes 25 cm³ samples of acid solution with different volumes of alkali solution. At every 30 seconds, the student measures the change in temperature. Which piece of apparatus is **not** needed?
 - **A** gas syringe
 - B measuring cylinder
 - **C** thermometer
 - **D** stop watch
- 2 A separation technique is shown below.

Which pair of mixtures can best be separated by the above technique?

- A aqueous sodium chloride and aqueous copper(II) sulfate
- B dilute hydrochloric acid and aqueous potassium hydroxide
- **C** magnesium carbonate and dilute nitric acid
- **D** zinc oxide and aqueous calcium nitrate
- **3** The table shows the melting and boiling points of four substances.

Which of the following substances contains particles that are sliding past each other at room temperature (25 °C)?

	melting point / °C	boiling point / °C
Α	- 110	- 55
В	- 20	15
С	0	100
D	744	1214

4 Aqueous sodium hydroxide is added to aqueous salt Z and a white precipitate formed. The white precipitate dissolved when excess sodium hydroxide is added.

When this reaction was completed, aluminium foil is added to the solution. The gas given off turned damp red litmus blue.

What is aqueous salt Z?

- A calcium nitrate
- B lead(II) sulfate
- c zinc nitrate
- D zinc sulfate
- 5 The symbols for two ions are shown below.

Which of the following statements is correct?

- **A** Both the ions contain the same number of electrons.
- **B** Both the ions contain the same number of protons.
- **C** The fluoride ion contains more electrons than the sodium ion.
- **D** The sodium ion contains more neutrons than the fluoride ion.
- 6 Statement 1: Non-metals share electrons to attain electronic configuration of a noble gas.

Statement 2: Non-metals share electrons to form covalent compounds.

Which of the following is true?

- A Both statements are correct, and statement 2 explains statement 1.
- **B** Both statements are correct, but statement 2 does not explain statement 1.
- **C** Statement 1 is correct but statement 2 is incorrect.
- **D** Statement 2 is correct but statement 1 is incorrect.
- 7 Which change occurs when magnesium bonds with chlorine?
 - A Chlorine loses seven electrons to form a noble gas configuration.
 - **B** Chlorine shares electrons with magnesium to form a molecule of magnesium chloride.
 - **C** Magnesium gains two electrons for form Mg²⁺ ions.
 - **D** Magnesium loses two electrons to form Mg²⁺ ions.

8 50 cm³ of nitrogen gas reacts with 50 cm³ of oxygen gas to produce nitrogen dioxide. The chemical equation for the reaction is given below:

 $N_2(g)$ + 2 $O_2(g)$ \rightarrow 2 $NO_2(g)$

What are the volumes of the gases remaining at room temperature and pressure?

		volume of gases / cm ³	
	nitrogen	oxygen	nitrogen dioxide
Α	0	0	100
В	0	25	50
С	25	0	50
D	25	25	50

9 20 g of magnesium oxide, MgO, reacts completely with 500 cm³ of dilute nitric acid.

The chemical equation of the reaction is as follows:

MgO (s) + 2 HNO₃ (aq) \rightarrow Mg(NO₃)₂ (aq) + H₂O (l)

What is the concentration of the acid used? [relative atomic masses, A_r: O, 16; Mg, 24]

- A 0.002 mol/dm³
- **B** 0.008 mol/dm³
- C 2 mol/dm³
- **D** 8 mol/dm³
- **10** Which substance below will **not** react with aqueous potassium hydroxide but will react with dilute hydrochloric acid to form a salt and water?
 - A aluminium oxide
 - B carbon monoxide
 - **C** copper(II) oxide
 - D nitrogen dioxide

11 Which pair of reagents can be best used to prepare insoluble magnesium carbonate?

	reagent 1	reagent 2
Α	magnesium	ammonium carbonate
В	magnesium chloride	calcium carbonate
С	magnesium oxide	potassium carbonate
D	magnesium sulfate	sodium carbonate

12 Which of the following reactions will have the slowest rate of reaction?

- **13** What determines the Group of an element in the Periodic Table?
 - A The number of completely filled electron shells.
 - **B** The number of electrons in the valence shell.
 - **C** The number of electron shells containing electrons.
 - **D** The number of protons in the nucleus.
- **14** Caesium and potassium are both in Group I of the Periodic Table.

Which of the following statements about the elements is correct?

- A Caesium has a higher density than potassium.
- B Caesium reacts violently with water but potassium reacts explosively with water.
- **C** Potassium atoms are larger than caesium ions.
- **D** Potassium has a lower melting point than caesium.
- 15 Chlorine is in Group VII of the Periodic Table.

Which of the following statements is a property of chlorine?

- A It can displace bromine from aqueous sodium bromide.
- **B** It forms a basic oxide.
- **C** It has a darker colour than iodine.
- **D** It is a monoatomic element.

16 The pie-chart shows the composition of pure air.

Which of the following rows correctly identifies gases F, G and H?

	F	G	Н
Α	nitrogen	carbon dioxide	oxygen
В	nitrogen	oxygen	argon
С	oxygen	nitrogen	carbon dioxide
D	water vapour	oxygen	hydrogen

- 17 Which of the following statement(s) is/are true for all metals?
 - 1 They conduct electricity.
 - 2 They form basic oxides.
 - 3 They have high melting points.
 - 4 They have high densities.
 - A 1 only
 - **B** 1 and 2 only
 - **C** 1, 3 and 4 only
 - **D** 1, 2, 3 and 4
- **18** Excess dilute nitric acid is added to brass. Which of the following observations is correct?
 - **A** A blue solution is observed.
 - **B** A colourless solution is observed.
 - **C** A grey deposit is observed and a blue solution is formed.
 - **D** A reddish-brown deposit is observed and a colourless solution is formed.

19 A metal X reacts as follows:

- X + dilute acid \rightarrow salt + hydrogen gas
- X + cold water \rightarrow no reaction
- X + aqueous silver nitrate \rightarrow silver metal + nitrate of X

By comparing X with calcium and silver, which of the following shows the correct order of reactivity of the metals, starting with the least reactive?

- A calcium, silver, X
- **B** calcium, X, silver
- **C** silver, X, calcium
- D X, calcium, silver

20 An experiment was set up as shown below to investigate the rate of rusting under different conditions.

Which of the following predicts the order of the test-tubes in which rust would first appear?

- **A** 1, 2, 3, 4
- **B** 1, 3, 2, 4
- **C** 4, 2, 3, 1
- **D** 4, 3, 2, 1

End of Paper

Data Sheet

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

Colours of Some Common Metal Hydroxides

The Periodic Table of Elements

	r											T							_			-			7						
	0	~	helium helium	4	10	Ne	пеоп	50	18	Ar	argon 40	36	z	krypton 0.4	54 54	5 >	24	131	86	'n	radon					71	Lu	175	207	3 -	lawrencium
	NII N				6	u.	fluorine	19	17	ĩ	chlorine 35.5	35	Б	bromine	200	3 -	I adina	127	85	At	astatine 					70	γb	ytterbium 173	102	No.	nobelium
	2				8	0	oxygen	16	16	S	sulfur 32	34	Se	selenium	2 2	2 F	tollarity	128	84	ይ	polonium	116	2	ivermorium		69	ц Т	thulium 160	101	M	nendelevium
	>				7	z	nitrogen	14	15	۵.	phosphorus 31	ß	As	arsenic 75	5 5	5 8		122	83	ä	bismuth 209					68	ய்	erbium 167		2 6	fermium
	≥				9	U	carbon	12	14	ល៊	silicon 28	32	Ge	germanium	202	З й	5 4	119	82	9	lead 207	114	F/	flerovium -		67	유	holmium 165	3 8	Зц	einsteinium
	=				5	6	boron	11	13	A1	aluminium 27	31	Ga	gallium		<u></u>	111 malium	115	81	T1	thallium 204					66	2	dysprosium 163	go	3 2	californium
												30	Z	zinc	c av	7 7	and minim	112	80	Рġ	mercury 201	112	ວົ	copernicium		65	ą	terbium 150	07	đ	berkelium
												29	Cu	copper	5	- c	2	108	79	Au	gold 197	111	ß	roentgenium		64	g	gadolinium	2 8	s e	curium
dn												28	īZ	nickel	en er	2 7	Dollardium -	106	78	đ.	platinum 195	110	S	Jarmstadtium		63	Еu	europium 150	22	Am Am	americium
Gro												27	റ്	cobalt 50	45	2 4	rhodium minim	103	11	Ir	iridium 192	109	Ĭ	meitnerium		62	Sm	samarium 150	200	ā	plutonium
		- 1	hydrogen	-								26	e e	iron 56	S VV	ā	nthenium -	101	76	S	osmium 190	108	Hs.	hassium		61	Бщ	promethium -	69	n n	neptunium
												25	Mn	manganese	3.64	۲ ۲	technotium	ree ale and the	75	Re	rhenium 186	107	Ъ.	Dohrium		60	PN	neodymium 144	6		uranium 238
					umber			mass				24	Շ	chromium 50	47	WO	UNU multipologium	96	74	≥	tungsten 184	106	Sg	seaborgium		59	ዾ	praseodymium 141	6	- a	protactinium 231
				Key	(atomic) n	mic symt	name	/e atomic i				23	>	vanadium 51	44	, q	middin	93	73	Та	tantalum 181	105	a	upuidub		58	0 C	cerium 140	00	3 6	thorium 232
					proton	atc		relativ				22	F	titanium 48	40	2	zirconium	91	72	ī	hafnium 178	104	Ϋ́	Rutherfordium		57	La	lanthanum 139	89	Ac	actinium
												21	ഗ്ഗ	scandium A 5	de.	3 >	vitrium	89	57 - 71	lanthanoids		89 - 103	actinoids			5					
	=				4	Be	berylium	ה	12	Mg	magnesium 24	20	Sa	calcium AD	86	3 8	ctrontium	88	56	Ba	barium 137	88	Ra	radium –		Inthanoid			antinoide		
	_				ო	5	lithium	_	7	Na	sodium 23	19	×	potassium 20	37	5 6	rihidium	85	55	പ്	caesium 133	87	۲ ۲	francium -		a					
-				-	-	_		_	_			_	_		-				-	and the second se		_	_	_	-						

www.KiasuExgamPaper.com

PASIR RIS CREST SECONDARY SCHOOL Mid-Year Examination Secondary Four Express and Five Normal Academic

NAME			
CLASS		INDEX NUMBER	
Science (Che	emistry)		5076, 5078 / 03

Paper 3

5076, 5078 / 03 7 May 2018 1 hour and 15 minutes

No additional materials

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces above.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer **all** questions. Write your answers in the spaces provided on the question paper.

Section **B**

Answer any **two** questions. Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 15. A copy of the Periodic Table is printed on page 16.

The number of marks is given in the brackets [] at the end of each question or part question.

This document consists of **16** printed pages, including the cover page.

Section A [45 marks]

Answer **all** the questions in the spaces provided.

1 Name the substances needed for the following purposes.

purpose	name of substance
reducing the acidity in soil	
testing for presence of carbon dioxide gas	
testing for presence of chloride ions in water	

^[3] [Total: 3 marks]

2 The diagrams N, P, Q, R, S and T in Fig 2.1 represent the particles in different substances.

Use the diagrams N, P, Q, R, S and T to answer the questions below.

(a) Which of the following above best represents liquid water?

(b) Which of the following above best represents a mixture containing fluorine and chlorine gases?
(c) Which of the following above best represents air?
(d) Which of the following above best represents neon gas?

3 The atomic structures of atoms **W**, **X**, **Y** and **Z** are shown below. The elements are found in Period 3 of the Periodic Table. The letters do not represent the elements and only the valence electrons of the elements are shown.

..... [2] Write the chemical formula of the compound formed between atoms W and X. (b) (i) [1] The compound formed between W and X has a melting point of 1100 °C. In terms of (ii) structure and bonding of the compound formed, explain why it has a high melting point. [2] (C) Explain why atom Y is the least chemically reactive as compared to the other atoms. [1] [Total: 6 marks]

- 4 The Blast furnace reaction is an industrial process used to obtain iron from its ore. The iron obtained is usually used to produce stainless steel, an *alloy*, which is harder and stronger than pure iron. Stainless steel is an important material in construction building.
 - (i) Define the term, *alloy*.
 [1]
 (ii) Apart from its hardness and strength, state another advantage of using stainless steel as an industrial material.
 - (b) Carbon, also known as coke, is added to the Blast furnace reaction for the extraction of iron. The chemical equation for this reaction is given below.

 $2 \operatorname{Fe}_2 \operatorname{O}_3(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Fe}(l) + 3 \operatorname{CO}_2(g)$

Given 30% of iron(III) oxide, Fe_2O_3 , is present in 1000 kg of haematite used, calculate the mass of carbon required for the extraction of iron. [relative atomic masses, A_r: C, 12; O, 16; Fe, 56]

mass of carbon required =[3]

[1]

 (c) Silicon dioxide, SiO₂, is an impurity produced in Blast furnace. Explain how silicon dioxide is removed from the Blast furnace.
 [2]
 (d) During the production of iron, sulfur dioxide gas is produced. Explain why sulfur dioxide gas produced pose an environmental threat to water bodies.
 [2]
 [2]
 [2]
 [2]
 [2]
 [2]
 [2]
 [2]

- 5 Chlorine gas, a member of the halogens, is an element in Group VII of the Periodic Table.
 - (a) State two physical properties of chlorine, other than existing as a gas at room temperature and pressure.

..... [2] (b) Explain, using its electronic structure, why chlorine is found in Period 3 of the Periodic Table. [2] (C) Chlorine gas reacts vigorously with hot zinc metal to produce solid zinc chloride. Construct a balanced chemical equation, including state symbols, for the reaction. [2] (d) When chlorine gas is bubbled into aqueous potassium bromide, potassium chloride and bromine solution is obtained. Explain why this reaction occurs. [2]

[Total: 8 marks]

6 (a) Metals A, B and C are placed in salt solutions as shown in the table.

metal	result of placing metal in solution of										
metai	salt of A	salt of B	salt of C								
Α		no reaction	C displaced								
В	A displaced		C displaced								
С	no reaction	no reaction									

Arrange the reactivity of the metals, starting with the least reactive metal.

	[1]
(b)	Explain why carbon can be used to obtain zinc from zinc oxide but not to obtain sodium from sodium oxide.
	[2]
(c)	Sodium metal is kept in oil to prevent it from corrosion. Explain how the oil prevents the sodium metal from corrosion, stating clearly the conditions that cause the corrosion of sodium.
	[3]
	[Total: 6 marks]

7 The figure below describes the reactions between colourless solution **A** and grey solid **B**.

Section B [20 marks]

Answer any **two** questions in this section.

Write your answers in the spaces provided.

- 8 Nitrogen, oxygen and argon gases can be extracted from compressed liquefied air (mixture of miscible liquids) at -200 °C.
 - (a) (i) State the separation method used to obtain the gases separately at -200 °C.

			[1]
	(ii)	Describe the changes in movement of the air particles as it is compressed and confrom room temperature to -200 °C.	oled
			[1]
(b)	Oxy	gen is a reactive non-metal.	
	Dese	cribe, in terms of the number of electrons gained, lost or shared, what happens when	
	(i)	an oxygen atom combines with magnesium atom(s).	
			[2]
	(ii)	an oxygen atom combines with fluorine atom(s).	
			[2]

(c) (i) Draw a 'dot-and-cross' diagram for nitrogen gas.

(ii) Draw a 'dot-and-cross' diagram for oxygen gas.

[2] [Total: 10 marks] 9 (a) State two physical properties of copper metal.

Property 1:	
Property 2:	

- (b) Describe a way to prepare a pure sample of copper(II) sulfate crystals, from copper metal. Use the following information to help you
 - copper does not react with dilute acids
 - copper burns in oxygen to form a black solid, which is copper(II) oxide
 - copper(II) oxide is insoluble in water
 - copper(II) sulfate is soluble in water

[4]

(c) 10 g of copper(II) carbonate lumps were reacted with excess 1.0 mol/dm³ hydrochloric acid and the carbon dioxide gas produced was collected. The experiment was repeated again but using excess 2.0 mol/dm³ hydrochloric acid. The graph of the data collected is plotted and shown below.

time / min

[2]

experiment 1: 10 g of copper(II) carbonate lumps with excess 2.0 mol/dm³ hydrochloric acid experiment 2: 10 g of copper(II) carbonate lumps with excess 1.0 mol/dm³ hydrochloric acid

(i) State why the production of carbon dioxide gas stopped after a period of time.

[1]

(ii) Use your knowledge of reacting particles to explain why a higher concentration of acid results in a faster rate of reaction.

[2]

(iii) The experiment is repeated using 5 g of **powdered** copper(II) carbonate and excess 2.0 mol/dm³ hydrochloric acid. Add to Fig. 9.1 the graph you would expect. The original graphs are already included. Label the new graph as 3.

[Total: 10 marks]

(i) Use the diagram above to describe the change in atomic radius **across** the Period and **down** the Group.

(c) Describe a laboratory investigation that can be used to justify the relative positions of iron, magnesium and silver in the reactivity series. You may include a diagram if it helps you to answer the question.

<u>Diagram</u>

[4]
[Total: 10 marks]

End of Paper

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

								Gro	dno								NUT AL YOUR CONTACT OF
	=											Ξ	≥	>	N	NI	0
							- :										2
							hvdroaen										He
				Key			1										4
ო	4		proton	(atomic) n	umber							5	9	7	8	6	10
:=	Be		ato	mic syml	loc							۵	o	z	0	u.	Ne
min ,	berylium		1	name								boron	carbon	nitrogen	oxygen	fluorine	neon
	ס		relativ	/e atomic	mass							11	12	14	16	19	20
1	5											13	14	15	16	17	18
Ra	Mg											A1	N	۵.	S	ĩ	Ar
23 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 30	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	8	34	35	36
¥	Ca	ပ္ပ	F	>	ວັ	Mn	Ъе	ပိ	ïZ	Cu	Zn	g	e	As	Se	ğ	Ϋ́
39	calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 20	cobalt 50	nickel 50	copper 64	zinc	galium 70	germanium 73	arsenic 75	selenium 70	bromine RO	krypton 8.4
37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	22	53	24
å	ي ک	≻	Z	qN	Mo	Tc	ßu	栕	Ъ	Ag	ບິ	IJ	Sn	Sb	Te	Ι	×
idium	strontium	yttrium	zirconium	miobium	moiybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	Ę	antimony	tellurium	iodine	xenon
S	8	RA	6	83	96 A		101	103	106	108	112	115	119	122	128	127	131
ß	20	57 - 71	72	73	74	22	76	11	78	29	8	81	82	ŝ	8	85	86
ട്	Ba	lanthanoids	Ť	Та	8	å	so	Ir	۵.	Au	Рg	T <i>i</i>	Р	B	6	At	R
esium	barium		4 7 D	tantalum	tungsten	100	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
3	20	007 00	0/1	0	104	00		182	CRI	181	102	204	702	807		1	ſ
20 1	88 I	89 - 103	<u>1</u> 04	105	106	107	108	109	110	11	112		114		116		
 L	τ α	activitions	ż		ຮີ	5	۲. ۲	Ţ	ŝ	۶.	້ວ		E .		2		
ncium	radium		Rutherfordium		seaborgium -		hassium	meitnerium	darmstædtium -	roentgenium	copernicium		flerovium		livermorium		
0	Inthanoid	s	57	58	59	60	61	62	63	64	65	66	67	68	69	70	11
			La	မီ	ዾ	PN	Бд	Sm	Ш	B	đ	2	ት	ய்	Tm	٩۲	Ľ
			lanthanum 130	cerium 140	praseodymium	neodymium 111	promethium	samarium 150	europium	gadolinium	150	dysprosium	holmium	erbium 167	thulium 4 co	ytterbium	Iutetium
			30	20	2	Es	1 8	3 3	701	200	201	3	38	101	201	0.1	0.1
	actinoids		ο9 Ο Ο Ο	2° 4	200	11	CP N	* <u>-</u>	۲ <u>۳</u>	ۍ م	10	8 č	лц		101	ZOL	103
			actinkum	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkellum	californium	einsteinium	fermium	mendelevium	UN	LI lawrencium
			I	232	231	238	1	1	1	1	1	1	1	1	-	1	1

16 www.KiasuExamPaper.com

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.).

www.KiasuExamPaper.com

Secondary 4 Express and 5 Normal Academic Science(Chemistry) Mid-Year Examination Mark Scheme

Qn no.			A	Answer Sche	me			Marks
1	٨	6	P	11		16	P	Allocated
2	A	7	D	12	 D	17	A	20 m max
3	C	8	C	13	B	18	D	20 111 1103
4	С	9	С	14	Α	19	С	
5	Α	10	С	15	Α	20	D	
1	purpose name of substance							
	reducing	the acidit	y in soil	calcium d lime / slak	ed lime / cal	cium nyd alcium ca	arbonate	
	testing carbo	for prese	nce of gas	limewa	nter/calci	um hydro	oxide	
	testing for presence of acidified silver nitrate / acidified							
	reading intrater actuilled silver suilate							[3]
	1m each Reject: ch	emical fo	rmula of	substances	5			Total: 3
2(a)	S	200		JD				[1]
2(b)	N		0,50					[1]
2(c)	Q //							[1]
2(d)	Р							[1]
								Total: 4
3(a)	Z belongs t it contains	to <u>group</u> two valer	II because nce elect	e [1] r ons . OR				
	It has <u>two</u>	electrons	in the <u>or</u>	<u>itermost ele</u>	ctron she	<u>II</u> . [1]		[2]
3(b)(i)	X ₂ W ₃ (reje	ect: W ₃ X ₂)					[1]
3(b)(ii)	The compo amount of attraction	ound forn energy is between	ned has needed to <u>the oppo</u>	a <u>giant latt</u> o <u>overcome</u> ositely charg	ice_struct strong ele ed ions [1	ture [1]. ectrostati].	Thus, large <u>c forces of</u>	[2]
	Reject: "bi bonds", "gi atoms".	reak stro ant ionic	ng electr structure"	ostatic force , "oppositely	es of attra charged p	action", " particles /	break ionic molecules /	

Does not need to take intrave out of share electrons with other elements.[1]Image: the take intravelop out of share electrons with other elements.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons with other elements /substances.[1]Image: take intravelop out of share electrons in the electrons in the electron elements (1)[1]Image: take intravelop out of share electron electron.[2]Image: take intravelop out of electron electron electron electron electron electron electron electron electron electron.[2]Image: take intravelop out of electron electron.[2][2]Image: take intravelop out of electron electron.[2][2]Image: take intravelop out of electron electron.[3][2]Image: take intravelop out of electron.[4] <th>3(c)</th> <th>It has <u>eight valence electrons</u> / <u>a completely filled valence shell</u> /</th> <th></th>	3(c)	It has <u>eight valence electrons</u> / <u>a completely filled valence shell</u> /	
Image: constraint of the second state is a second state of the second state is a seco		elements.	[1]
4(a)(i) An alloy is a mixture containing at least one metal with other elements / substances. [1] 4(a)(ii) It is more corrosion-resistant / does not rust easily. [1] 4(b) Mass, Fe ₂ O ₃ , present = 30% x 1000 = <u>300 kg</u> [1] [1] Mole, Fe ₂ O ₃ = (300 x 1000) + (2 x 56 + 3 x 16) = <u>1875 mol [1]</u> [1] Mole ratio: 2 Fe ₂ O ₃ : 3 C [1] Mole ratio: 2 Fe ₂ O ₃ : 3 C [3] Note: 1. . -1 if no/wrong units written for final answer. 2. -1 if no/wrong units written for final answer. 4(c) Limestone [1] is used to remove silicon dioxide. It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide. 4(d) Sulfur dioxide gas dissoft/es in trainwater, producing acid rain [1]. This causes, the water bodies to be more acidit, kitting marine/aquatic lives / fishes [1]. 5(a) Low meting-point/ low boling point / light-green in colour / does not conduct electricity //exist as diatomic molecules [Any two] [2] 5(b) Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3. [2] 5(c) $Cl_2(Q) + Zn(S) - ZnCl_2(S)$ [2] (d) Chlorine is more reactive than bromine [1]. Hence, it can displace b			Total: 6
4(a)(ii) It is more corrosion-resistant / does not rust easily. [1] 4(b) Mass, Fe ₂ O ₃ , present = 30% x 1000 = <u>300 kg</u> [1] [1] 4(b) Mass, Fe ₂ O ₃ = (300 x 1000) + (2 x 56 + 3 x 16) = <u>1875 mol</u> [1] [1] Mole, Fe ₂ O ₃ = (300 x 1000) + (2 x 56 + 3 x 16) = <u>1875 mol</u> [1] [3] Mole ratio: 2 Fe ₂ O ₃ : 3 C [3] Note: 1. Allow ECF for wrong answers. [3] 21 if no/wrong units written for final answer. [4] 4(c) Limestone [1] is used to remove silicon dioxide. It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide. 4(d) Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidio. killing marine/aquatic lives / fishes [1]. 5(a) Low matting point / low boiling point / light-green in colour / does not conduct electroity/rexist as diatomic molecules [Any two] [2] 5(b) Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3. [2] 5(c) C_{12} (q) + Zn (s) \rightarrow ZnC/2 (s) [m - correct state symbols [2] 5(d) Chlorine is more reactive than bromine [1]. Hence, it can displace promine [1] to form potassium chloride and bromine. [2]	4(a)(i)	An alloy is a <u>mixture containing</u> at least <u>one metal with other elements</u> / <u>substances</u> .	[1]
4(b) Mass, Fe ₂ O ₃ , present = 30% x 1000 = <u>300 kg</u> [1] Mole, Fe ₂ O ₃ = (300 x 1000) + (2 x 56 + 3 x 16) = <u>1875 mol</u> [1] Mole ratio: 2 Fe ₂ O ₃ : 3 C Mass, C = 2812.5 x 12 = <u>33 750 g / 33.75 kg</u> [1] [3] Note: 1. Allow ECF for wrong answer. [3] 21 if no/wrong units written for final answer. [3] 4(c) Limestone [1] is used to remove silicon dioxide/ It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide. [2] 4(d) Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidio, killing marine/aquatic lives / fishes [1]. [2] 5(a) Low melting point / low boiling point / light-green in colour / does not conduct electricity/rexist as diatomic molecules [Any two] [2] 5(b) Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3. [2] 5(c) $Cl_2 (q) + Zn (s) \rightarrow ZnCl_2 (s)$ 1m - correct balanced equation; 1m - correct state symbols [2] 5(d) Chlorine is more reactive than bromine [1]. Hence, it can displace promine [1] to form potassium chloride and bromine. [2]	4(a)(ii)	It is more corrosion-resistant / does not rust easily .	[1]
Mole, $Fe_2O_3 = (300 \times 1000) + (2 \times 56 + 3 \times 16) = 1875 \text{ mol} [1]$ Mole ratio: $2 Fe_2O_3 : 3 C$ $1875 : 2812.5$ [3]Mass, $C = 2812.5 \times 12 = 33750 \text{ g} / 33.75 \text{ kg} [1]$ Note: 	4(b)	Mass, Fe ₂ O ₃ , present = 30% x 1000 = <u>300 kg</u> [1]	
Mole ratio: $2 \operatorname{Fe}_2 \operatorname{O}_3 : 3 \operatorname{C}_{1875 : 2812.5}$ [3]Mass, $C = 2812.5 \times 12 = 33750 \operatorname{q}/33.75 \operatorname{kg}[1]$ [3]Note: 1. Allow ECF for wrong answer. 21 if no/wrong units written for final answer.[3]4(c)Limestone [1] is used to remove silicon dioxide. It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide.[2]4(d)Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidid, kitling marine/aquatic lives / fishes [1].[2]5(a)Low melting point / low boiling point / light-green in colour / does not conduct electricity/rexist as diatomic molecules [Any two][2]5(b)Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2]5(c) $Cl_2(\mathfrak{g}) + Zn(\mathfrak{g}) \rightarrow ZnC/2(\mathfrak{g})$ $\operatorname{Im} - correct state symbols[2]5(d)Chlorine is more reactive than bromine [1]. Hence, it can displacebromine [1] to form potassium chloride and bromine.[2]$		Mole, $Fe_2O_3 = (300 \times 1000) \div (2 \times 56 + 3 \times 16) = 1875 \text{ mol} [1]$	
Mass, C = 2812.5 x 12 = $33750 \text{ g}/33.75 \text{ kg}$ [1][3]Note:1. Allow ECF for wrong answer.21 if no/wrong units written for final answer.4(c)Limestone [1] is used to remove silicon dioxide. It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide.[2]4(d)Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidio. kitling marine/aquatic lives / fishes [1].[2]5(a)Low melting point / low boiling point / light-green in colour / does not conduct electricity/ lexist as diatomic molecules [Any two][2]5(b)Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2]5(d)Chlorine is more reactive than bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine.[2]		Mole ratio: 2 Fe ₂ O ₃ : 3 C 1875 : 2812.5	>
Note: 1. Allow ECF for wrong answer. 21 if no/wrong units written for final answer.Image: Composes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide.4(c)Limestone [1] is used to remove silicon dioxide. It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide.[2]4(d)Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidio, kitling marine/aquatic lives / fishes [1].[2]5(a)Low meting point / low boiling point / light-green in colour / does not conduct electricity //exist as diatomic molecules[2]5(a)Low meting point / low boiling point / light-green in colour / does not conduct electricity //exist as diatomic molecules[2]5(b)Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2]5(c) Cl_2 (g) + Zn (s) \rightarrow $ZnCl_2$ (s) 		Mass, C = 2812.5 x 12 = <u>33 750 g / 33.75 kg</u> [1]	[3]
4(c) Limestone [1] is used to remove silicon dioxide. It decomposes at high temperature in Blast furnace to produce basic calcium oxide [1], which reacts with silicon dioxide. [2] 4(d) Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidio, kitting marine/aquatic lives / fishes [1]. [2] 5(a) Low melting point / low boiling point / light-green in colour / does not conduct electricity/resist as diatomic molecules [Any two] [2] 5(b) Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3. [2] 5(c) Cl_2 (g) + Zn (s) \rightarrow ZnCl ₂ (s) [1] m - correct balanced equation; 1m - correct state symbols [2] 5(d) Chlorine is more reactive than bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine. [2]		Note: 1. Allow ECF for wrong answer. 2. –1 if no/wrong units written for final answer.	
4(d) Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidio, kitting marine/aquatic lives / fishes [1]. [2] 5(a) Low melting point / low poiling point / light-green in colour / does not conduct electricity / rexist as diatomic molecules [Any two] [2] 5(b) Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3. [2] 5(c) $Cl_2 (g) + Zn (s) \rightarrow ZnCl_2 (s) \\ 1m - correct balanced equation; 1m - correct state symbols [2] 5(d) Chlorine is more reactive than bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine. [2] $	4(c)	Limestone [1] is used to remove silicon dioxide. It <u>decomposes at high</u> <u>temperature</u> in Blast furnace to produce basic <u>calcium oxide</u> [1], which reacts with silicon dioxide.	[2]
fishes[1].[2] $5(a)$ Low melting point / low boiling point / light-green in colour / does not conduct electricity / exist as diatomic molecules [Any two][2] $5(b)$ Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2] $5(c)$ $C_{l2}(g) + Zn(s) \rightarrow ZnC_{l2}(s)$ $1m - correct balanced equation; 1m - correct state symbols[2]5(d)Chlorine is more reactive than brominebromine [1] to form potassium chloride and bromine.[2]$	4(d)	Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidic, killing marine/aquatic lives /	
5(a)Low melting point / low boiling point / light-green in colour / does not conduct electricity / texist as diatomic molecules[2]5(b)Chlorine has an electronic structure of $2.8.7$ [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2]5(c) Cl_2 (g) + Zn (s) \rightarrow ZnC l_2 (s) 1m - correct balanced equation; 1m - correct state symbols[2]5(d)Chlorine is more reactive than bromine bromine [1] to form potassium chloride and bromine.[2]		fishes [1].	[2]
$5(a)$ Low melting point / low boiling point / light-green in colour / does not conduct electricity / exist as diatomic molecules[2] $5(b)$ Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2] $5(c)$ Cl_2 (g) + Zn (s) \rightarrow ZnCl ₂ (s) 1m - correct balanced equation; 1m - correct state symbols[2] $5(d)$ Chlorine is more reactive than bromine bromine [1] to form potassium chloride and bromine.[2]		1 - Com	Total: 9
5(b)Chlorine has an electronic structure of 2.8.7 [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.[2]5(c) Cl_2 (g) + Zn (s) \rightarrow ZnC l_2 (s) 1m - correct balanced equation; 1m - correct state symbols[2]5(d)Chlorine is more reactive than bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine.[2]	5(a)	Low melting point / low boiling point / light-green in colour / does not conduct electricity / exist as diatomic molecules [Any two]	[2]
$5(c)$ $\underline{Cl_2(g) + Zn(s) \rightarrow ZnCl_2(s)}{1m - correct balanced equation; 1m - correct state symbols}$ [2] $5(d)$ Chlorine is more reactive than bromine bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine.[2]	5(b)	Chlorine has an electronic structure of $2.8.7$ [1], hence it contains 3 electrons shells [1] filled with electrons. Therefore, it is in period 3.	[2]
5(d)Chlorine is more reactive than bromine[1]. Hence, it can displace bromine[2][2]	5(c)	$\frac{Cl_2(g) + Zn(s) \rightarrow ZnCl_2(s)}{1m - correct balanced equation; 1m - correct state symbols}$	[2]
	5(d)	<u>Chlorine is more reactive than bromine</u> [1]. Hence, it can <u>displace</u> <u>bromine</u> [1] to form potassium chloride and bromine.	[2]
l otal: 8			Total: 8

6(a)	C, A, B (only answer)	[1]
6(b)	Carbon <u>is more reactive than zinc</u> [1], but <u>less reactive than sodium</u> [1]. Hence it displaces zinc from zinc oxide but not sodium from sodium oxide.	[2]
6(c)	By keeping sodium in oil, the oil <u>creates a physical barrier</u> [1] that prevents the surface of sodium metal to come in contact with <u>oxygen gas</u> [1] and <u>water / water vapour</u> [1], which causes corrosion.	[3] Total: 6
7(a)	A – nitric acid or HNO ₃ B – iron metal or Fe C – hydrogen gas or H ₂ D – iron(II) nitrate or Fe(NO ₃) E – iron(II) hydroxide or Fe(OH) ₂	
	1m each; accept chemical formula	[6]
7(b)	Fe ²⁺ + 2 OH ⁻ → Fe(OH) ₂ 1m – correct equation, 1m – balanced equation	[2]
7(c)	A metal carbonate will produce carbon dioxide gas , instead of hydrogen gas. OR A metal carbonate does not produce hydrogen gas when reacted with acid.	[1]
		Total: 9

9(a)	High density / High melting and boiling points / conducts electricity / conducts heat / malleable / ductile / shiny surface / Solid at room temperature / Pink/brown solid [Any two]	[2]
9(b)	 Heat/Burn copper metal in air / in oxygen to produce copper(II) oxide. [1] To an excess amount of CuO, add a fixed volume of sulfuric acid and stir the mixture. [1] Filter to remove the excess CuO from the mixture. [1] Warm/Heat the filtrate to saturation and then allow it to cool for crystallization to occur. [1] 	[4]
9(c)(i)	Copper(II) carbonate is used up.	[1]
9(c)(ii)	At a higher concentration, there are <u>more reactant particles per unit</u> <u>volume</u> [1]. Hence, the <u>frequency of effective collisions between</u> <u>particles increases</u> [1], leading to a faster rate of reaction.	[2]
9(c)(iii)	Graph showing half the volume of carbon dioxide gas and faster rate of reaction compared to Graph 1. Graph must be labelled.	[1]
		Total: 10
10(a)(i)	Atomic radius increases down the group [1] and decreases across the period [1].	[2]
10(a)(ii) 10(b)	The elements changes from <u>metals to non-metals across the period</u> / <u>becomes less metallic across the period</u> <u>metallic to non-metallic</u> <u>character across the period</u> [1] and the oxides changes from <u>basic to</u> <u>acidic across the period</u> [1]. Physical property trend: <u>melting or boiling point decreases</u> / <u>density</u> <u>increases</u> [1]	[2]
	Chemical property trend: chemical reactivity increases [1]	[2]

10(c)	Reaction condition [1]: state the use of either water / steam / dilute acids	
	Data collection [1]: counting the number of bubbles produced /	
	measure volume of gas produced at regular intervals / measure lost	
	in mass over regular intervals	
	Comparison of data [1]:	
	The beaker / lest-tube / boiling-tube with more bubbles produced with	
	be magnesium, followed by Iron. Silver will not have any bubbles	
	produced as it is unreactive towards acid.	
	OR U	
	measure the gas collected at regular intervals and plot a graph of	
	volume of gas produced over time / Measure the lost in mass at	
	regular intervals and plot a graph of mass reading on scale balance	
	against time. The graph with steepest gradient will be magnesium,	
	followed by iron, followed by silver which shows a horizontal line due	
	to its chemical unreactivity	
	Justification of relative positions [1]	
	Hence magnesium is the most reactive followed by iron and silver	
	is the least reactive (pr vice verse)	[4]
		נדין
		Total: 10

www.KiasuExamPaper.com 96